共查询到20条相似文献,搜索用时 15 毫秒
1.
Leena Maddukuri Amit Ketkar Sarah Eddy Maroof K. Zafar Robert L. Eoff 《Nucleic acids research》2014,42(19):12027-12040
Human DNA polymerase kappa (hpol κ) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol κ activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxo-dG bypass activity of hpol κ in vitro by enhancing the correct base insertion opposite the lesion, as well as extension from dC:8-oxo-dG base pairs. Steady-state kinetic analysis reveals that WRN improves hpol κ-catalyzed dCMP insertion opposite 8-oxo-dG ∼10-fold and extension from dC:8-oxo-dG by 2.4-fold. Stimulation is primarily due to an increase in the rate constant for polymerization (kpol), as assessed by pre-steady-state kinetics, and it requires the RecQ C-terminal (RQC) domain. In support of the functional data, recombinant WRN and hpol κ were found to physically interact through the exo and RQC domains of WRN, and co-localization of WRN and hpol κ was observed in human cells treated with hydrogen peroxide. Thus, WRN limits the error-prone bypass of 8-oxo-dG by hpol κ, which could influence the sensitivity to oxidative damage that has previously been observed for Werner''s syndrome cells. 相似文献
2.
Zhang Y Yuan F Wu X Rechkoblit O Taylor JS Geacintov NE Wang Z 《Nucleic acids research》2000,28(23):4717-4724
DNA lesion bypass is an important cellular response to genomic damage during replication. Human DNA polymerase η (Polη), encoded by the Xeroderma pigmentosum variant (XPV) gene, is known for its activity of error-free translesion synthesis opposite a TT cis-syn cyclobutane dimer. Using purified human Polη, we have examined bypass activities of this polymerase opposite several other DNA lesions. Human Polη efficiently bypassed a template 8-oxoguanine, incorporating an A or a C opposite the lesion with similar efficiencies. Human Polη effectively bypassed a template abasic site, incorporating an A and less frequently a G opposite the lesion. Significant –1 deletion was also observed when the template base 5′ to the abasic site is a T. Human Polη partially bypassed a template (+)-trans-anti-benzo[a]pyrene-N2-dG and predominantly incorporated an A, less frequently a T, and least frequently a G or a C opposite the lesion. This specificity of nucleotide incorporation correlates well with the known mutation spectrum of (+)-trans-anti-benzo[a]pyrene-N2-dG lesion in mammalian cells. These results show that human Polη is capable of error-prone translesion DNA syntheses in vitro and suggest that Polη may bypass certain lesions with a mutagenic consequence in humans. 相似文献
3.
DNA polymerase (pol) iota has been proposed to be involved in translesion synthesis past minor groove DNA adducts via Hoogsteen base pairing. The N2 position of G, located in minor groove side of duplex DNA, is a major site for DNA modification by various carcinogens. Oligonucleotides with varying adduct size at G N2 were analyzed for bypass ability and fidelity with human pol iota. Pol iota effectively bypassed N2-methyl (Me)G and N2-ethyl(Et)G, partially bypassed N2-isobutyl(Ib)G and N2-benzylG, and was blocked at N2-CH2(2-naphthyl)G (N2-NaphG), N2-CH2(9-anthracenyl)G (N2-AnthG), and N2-CH2(6-benzo[a]pyrenyl)G. Steady-state kinetic analysis showed decreases of kcat/Km for dCTP insertion opposite N2-G adducts according to size, with a maximal decrease opposite N2-AnthG (61-fold). dTTP misinsertion frequency opposite template G was increased 3-11-fold opposite adducts (highest with N2-NaphG), indicating the additive effect of bulk (or possibly hydrophobicity) on T misincorporation. N2-IbG, N2-NaphG, and N2-AnthG also decreased the pre-steady-state kinetic burst rate compared with unmodified G. High kinetic thio effects (S(p)-2'-deoxycytidine 5'-O-(1-thiotriphosphate)) opposite N2-EtG and N2-AnthG (but not G) suggest that the chemistry step is largely interfered with by adducts. Severe inhibition of polymerization opposite N2,N2-diMeG compared with N2-EtG by pol eta but not by pol iota is consistent with Hoogsteen base pairing by pol iota. Thus, polymerization by pol iota is severely inhibited by a bulky group at G N2 despite an advantageous mode of Hoogsteen base pairing; pol iota may play a limited role in translesion synthesis on bulky N2-G adducts in cells. 相似文献
4.
DnaE-type DNA polymerases belong to the C family of DNA polymerases and are responsible for chromosomal replication in prokaryotes. Like most closely related Gram-positive cells, Streptococcus pyogenes has two DnaE homologs Pol C and DnaE; both are essential to cell viability. Pol C is an established replicative polymerase, and DnaE has been proposed to serve a replicative role. In this report, we characterize S. pyogenes DnaE polymerase and find that it is highly error-prone. DnaE can bypass coding and noncoding lesions with high efficiency. Error-prone extension is accomplished by either of two pathways, template-primer misalignment or direct primer extension. The bypass of abasic sites is accomplished mainly through "dNTP-stabilized" misalignment of template, thereby generating (-1) deletions in the newly synthesized strand. This mechanism may be similar to the dNTP-stabilized misalignment mechanism used by the Y family of DNA polymerases and is the first example of lesion bypass and error-prone synthesis catalyzed by a C family polymerase. Thus, DnaE may function in an error-prone capacity that may be essential in Gram-positive cells but not Gram-negative cells, suggesting a fundamental difference in DNA metabolism between these two classes of bacteria. 相似文献
5.
Yuan F Zhang Y Rajpal DK Wu X Guo D Wang M Taylor JS Wang Z 《The Journal of biological chemistry》2000,275(11):8233-8239
DNA polymerase eta (Pol(eta), xeroderma pigmentosum variant, or Rad30) plays an important role in an error-free response to unrepaired UV damage during replication. It faithfully synthesizes DNA opposite a thymine-thymine cis-syn-cyclobutane dimer. We have purified the yeast Pol(eta) and studied its lesion bypass activity in vitro with various types of DNA damage. The yeast Pol(eta) lacked a nuclease or a proofreading activity. It efficiently bypassed 8-oxoguanine, incorporating C, A, and G opposite the lesion with a relative efficiency of approximately 100:56:14, respectively. The yeast Pol(eta) efficiently incorporated a C opposite an acetylaminofluorene-modified G, and efficiently inserted a G or less frequently an A opposite an apurinic/apyrimidinic (AP) site but was unable to extend the DNA synthesis further in both cases. However, some continued DNA synthesis was observed in the presence of the yeast Pol(zeta) following the Pol(eta) action opposite an AP site, achieving true lesion bypass. In contrast, the yeast Pol(alpha) was able to bypass efficiently a template AP site, predominantly incorporating an A residue opposite the lesion. These results suggest that other than UV damage, Pol(eta) may also play a role in bypassing additional DNA lesions, some of which can be error-prone. 相似文献
6.
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) associated with potent carcinogenic activity. Mutagenesis induced by benzo[a]pyrene DNA adducts is believed to involve error-prone translesion synthesis opposite the lesion. However, the DNA polymerase involved in this process has not been clearly defined in eukaryotes. Here, we provide biochemical evidence suggesting a role for DNA polymerase eta (Poleta) in mutagenesis induced by benzo[a]pyrene DNA adducts in cells. Purified human Poleta predominantly inserted an A opposite a template (+)- and (-)-trans-anti-BPDE-N2-dG, two important DNA adducts of benzo[a]pyrene. Both lesions also dramatically elevated G and T mis-insertion error rates of human Poleta. Error-prone nucleotide insertion by human Poleta was more efficient opposite the (+)-trans-anti-BPDE-N2-dG adduct than opposite the (-)-trans-anti-BPDE-N2-dG. However, translesion synthesis by human Poleta largely stopped opposite the lesion and at one nucleotide downstream of the lesion (+1 extension). The limited extension synthesis of human Poleta from opposite the lesion was strongly affected by the stereochemistry of the trans-anti-BPDE-N2-dG adducts, the nucleotide opposite the lesion, and the sequence context 5' to the lesion. By combining the nucleotide insertion activity of human Poleta and the extension synthesis activity of human Polkappa, effective error-prone lesion bypass was achieved in vitro in response to the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts. 相似文献
7.
The 3 million-base pair genome of Sulfolobus solfataricus likely undergoes depurination/depyrimidination frequently in vivo. These unrepaired abasic lesions are expected to be bypassed by Dpo4, the only Y-family DNA polymerase from S. solfataricus. Interestingly, these error-prone Y-family enzymes have been shown to be physiologically vital in reducing the potentially negative consequences of DNA damage while paradoxically promoting carcinogenesis. Here we used Dpo4 as a model Y-family polymerase to establish the mechanistic basis for DNA lesion bypass. While showing efficient bypass, Dpo4 paused when incorporating nucleotides directly opposite and one position downstream from an abasic lesion because of a drop of several orders of magnitude in catalytic efficiency. Moreover, in disagreement with a previous structural report, Dpo4-catalyzed abasic bypass involves robust competition between the A-rule and the lesion loop-out mechanism and is governed by the local DNA sequence. Analysis of the strong pause sites revealed biphasic kinetics for incorporation indicating that Dpo4 primarily formed a nonproductive complex with DNA that converted slowly to a productive complex. These strong pause sites are mutational hot spots with the embedded lesion even affecting the efficiency of five to six downstream incorporations. Our results suggest that abasic lesion bypass requires tight regulation to maintain genomic stability. 相似文献
8.
We hypothesize that enzymatic switching during translesion synthesis (TLS) to relieve stalled replication forks occurs during transitions from preferential to disfavored use of damaged primer-templates, and that the polymerase or 3'-exonuclease used for each successive nucleotide incorporated is the one whose properties result in the highest efficiency and the highest fidelity of bypass. Testing this hypothesis requires quantitative determination of the relative lesion bypass ability of both TLS polymerases and major replicative polymerases. As a model of the latter, here we measure the efficiency and fidelity of cis-syn TT dimer and abasic site bypass using the structurally well-characterized T7 DNA polymerase. No bypass of either lesion occurred during a single round of synthesis, and the exonuclease activity of wild-type T7 DNA polymerase was critical in preventing TLS. When repetitive cycling of the exonuclease-deficient enzyme was allowed, limited bypass did occur but hundreds to thousands of cycles were required to achieve even a single bypass event. Analysis of TLS fidelity indicated that these rare bypass events involved rearrangements of the template and primer strands, insertions opposite the lesion, and combinations of these events, with the choice among these strongly depending on the sequence context of the lesion. Moreover, the presence of a lesion affected the fidelity of copying adjacent undamaged template bases, even when lesion bypass itself was correct. The results also indicate that a TT dimer presents a different type of block to the polymerase than an abasic site, even though both lesions are extremely potent blocks to processive synthesis. The approaches used here to quantify the efficiency and fidelity of TLS can be applied to other polymerase-lesion combinations, to provide guidance as to which of many possible polymerases is most likely to bypass various lesions in biological contexts. 相似文献
9.
1,2-dihydro-2-oxoadenine (2-OH-A), a common DNA lesion produced by reactive oxygen species, is a strong replicative block for several DNA polymerases (DNA pols). We have previously shown that various bases can be misincorporated opposite the 2-OH-A lesion and the type of mispairs varies with either the sequence context or the type of DNA pol tested. Here, we have analysed the ability of the human pol family X member DNA pol λ, to bypass the 2-OH-A lesion. DNA pol λ can perform error-free bypass of 2-OH-A when this lesion is located in a random sequence, whereas in a repeated sequence context, even though bypass was also largely error-free, misincorporation of dGMP could be observed. The fidelity of translesion synthesis of 2-OH-A in a repeated sequence by DNA pol λ was enhanced by the auxiliary proteins Proliferating Cell Nuclear Antigen (PCNA) and Replication Protein A (RP-A). We also found that the DNA pol λ active site residue tyrosine 505 determined the nucleotide selectivity opposite 2-OH-A. Our data show, for the first time, that the 2-OH-A lesion can be efficiently and faithfully bypassed by a human DNA pol λ in combination with PCNA and RP-A. 相似文献
10.
Seki M Masutani C Yang LW Schuffert A Iwai S Bahar I Wood RD 《The EMBO journal》2004,23(22):4484-4494
Endogenous DNA damage arises frequently, particularly apurinic (AP) sites. These must be dealt with by cells in order to avoid genotoxic effects. DNA polymerase theta; is a newly identified enzyme encoded by the human POLQ gene. We find that POLQ has an exceptional ability to bypass an AP site, inserting A with 22% of the efficiency of a normal template, and continuing extension as avidly as with a normally paired base. POLQ preferentially incorporates A opposite an AP site and strongly disfavors C. On nondamaged templates, POLQ makes frequent errors, incorporating G or T opposite T about 1% of the time. This very low fidelity distinguishes POLQ from other A-family polymerases. POLQ has three sequence insertions between conserved motifs in its catalytic site. One insert of approximately 22 residues into the tip of the polymerase thumb subdomain is predicted to confer considerable flexibility and additional DNA contacts to affect enzyme fidelity. POLQ is the only known enzyme that efficiently carries out both the insertion and extension steps for bypass of AP sites, commonly formed as endogenous genomic lesions. 相似文献
11.
DNA damage that eludes cellular repair pathways can arrest the replication machinery and stall the cell cycle. However, this damage can be bypassed by the Y-family DNA polymerases. Here, Dpo4, an archetypal Y-family member from the thermophilic Sulfolobus solfataricus, was used to extend our kinetic studies of the bypass of an abasic site, one of the most mutagenic and ubiquitous cellular lesions. A short oligonucleotide sequencing assay is developed to directly sequence DNA bypass products synthesized by Dpo4. Our results show that incorporation upstream of the abasic lesion is replicated error-free; yet dramatically, once Dpo4 encounters the lesion, synthesis became sloppy, with bypass products containing a myriad of mutagenic events. Incorporation of dAMP (29%) and dCMP (53%) opposite the abasic lesion at 37 degrees C correlates exceptionally well with our kinetic results and demonstrates two dominant bypass pathways via the A-rule and the lesion loop-out mechanism. Interestingly, the percentage of overall frameshift mutations increased from 71 (37 degrees C) to 87% (75 degrees C). Further analysis indicates that lesion bypass via the A-rule is strongly preferred over the lesion loop-out mechanism at higher temperatures and concomitantly reduces the occurrence of "-1 deletion" mutations observed opposite the lesion at lower temperatures. The bypass percentage via the latter pathway is confirmed by an enzymatic digestion assay, verifying the reliability of our sequencing assay. Our results demonstrate that an abasic lesion causes Dpo4 and possibly all Y-family members to switch from a normal to a very mutagenic mode of replication. 相似文献
12.
Human DNA polymerase kappa (pol kappa) has a sequence significantly homologous with that of Escherichia coli DNA polymerase IV (pol IV). We used a truncated form of human pol kappa (pol kappaDeltaC) and full-length pol IV to explore the miscoding properties of these enzymes. Oligodeoxynucleotides, modified site-specifically with N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-AF), were used as DNA templates in primer extension reactions that included all four dNTPs. Reactions catalyzed by pol kappaDeltaC were partially blocked one base prior to dG-AAF or dG-AF, and also opposite both lesions. At higher enzyme concentrations, a significant fraction of primer was extended. Analysis of the fully extended reaction product revealed incorporation of dTMP opposite dG-AAF, accompanied by much smaller amounts of dCMP, dAMP, and dGMP and some one- and two-base deletions. The product terminating 3' to the adduct site contained AMP misincorporated opposite dC. On templates containing dG-AF, dAMP, dTMP, and dCMP were incorporated opposite the lesion in approximately equal amounts, together with some one-base and two-base deletions. Steady-state kinetics analysis confirmed the results obtained from primer extension reactions catalyzed by pol kappa. In contract, primer extension reactions catalyzed by pol IV were blocked effectively by dG-AAF and dG-AF. At high concentrations of pol IV, full-length products were formed containing primarily one- or two-base deletions with dCMP, the correct base, incorporated opposite dG-AF. The miscoding properties of pol kappa observed in this study are consistent with mutational spectra observed when plasmid vectors containing dG-AAF or dG-AF are introduced into simian kidney cells [Shibutani, S., et al. (2001) Biochemistry 40, 3717-3722], supporting a model in which pol kappa plays a role in translesion synthesis past acetylaminofluorene-derived lesions in mammalian cells. 相似文献
13.
DNA polymerase δ (Pol δ) is one of the main replicative DNA polymerases in human cells and therefore is a critical determinant of the overall accuracy of DNA synthesis. Here we document the fidelity of a human Pol δ holoenzyme and systematically score the types of mutations that the enzyme generates in a forward mutation assay. We find that human Pol δ is highly accurate, catalyzing less than one nucleotide mis-insertion per 220,000 nucleotides polymerized. Inactivation of proofreading or mutation of a conserved active site residue significantly elevates the frequency of incorporation errors, demonstrating the contribution of both the base selection and proofreading domains to the overall accuracy of synthesis by Pol δ. The highly selective nature of the polymerase active site is also indicated by the stalling of Pol δ upon encountering multiple types of DNA lesions. However, DNA damage is not an absolute block to Pol δ progression. We propose that partial lesion bypass by Pol δ represents a balance between stalling to allow for repair of mutagenic lesions by specialized repair proteins and bypass of damage to allow for successful completion of DNA synthesis by Pol δ in the presence of weakly blocking DNA adducts. 相似文献
14.
Servant L Cazaux C Bieth A Iwai S Hanaoka F Hoffmann JS 《The Journal of biological chemistry》2002,277(51):50046-50053
We report here that DNA polymerase beta (pol beta), the base excision repair polymerase, is highly expressed in human melanoma tissues, known to be associated with UV radiation exposure. To investigate the potential role of pol beta in UV-induced genetic instability, we analyzed the cellular and molecular effects of excess pol beta. We firstly demonstrated that mammalian cells overexpressing pol beta are resistant and hypermutagenic after UV irradiation and that replicative extracts from these cells are able to catalyze complete translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). By using in vitro primer extension reactions with purified pol beta, we showed that CPD as well as, to a lesser extent, the thymine-thymine pyrimidine-pyrimidone (6-4) photoproduct, were bypassed. pol beta mostly incorporates the correct dATP opposite the 3'-terminus of both CPD and the (6-4) photoproduct but can also misinsert dCTP at a frequency of 32 and 26%, respectively. In the case of CPD, efficient and error-prone extension of the correct dATP was found. These data support a biological role of pol beta in UV lesion bypass and suggest that deregulated pol beta may enhance UV-induced genetic instability. 相似文献
15.
16.
We found that DNA polymerase I from Chlamydiophila pneumoniae AR39 (CpDNApolI) presents DNA-dependent DNA polymerase activity, but has no detectable 3' exonuclease activity. CpDNApolI-dependent DNA synthesis was performed using DNA templates carrying different lesions. DNAs containing 2'-deoxyuridine (dU), 2'-deoxyinosine (dI) or 2'-deoxy-8-oxo-guanosine (8-oxo-dG) served as templates as effectively as unmodified DNAs for CpDNApolI. Furthermore, the CpDNApolI could bypass natural apurinic/apyrimidinic sites (AP sites), deoxyribose (dR), and synthetic AP site tetrahydrofuran (THF). CpDNApolI could incorporate any dNMPs opposite both of dR and THF with the preference to dAMP-residue. CpDNApolI preferentially extended primer with 3'-dAMP opposite dR during DNA synthesis, however all four primers with various 3'-end nucleosides (dA, dT, dC, and dG) opposite THF could be extended by CpDNApolI. Efficiently bypassing of AP sites by CpDNApolI was hypothetically attributed to lack of 3' exonuclease activity. 相似文献
17.
Evidence for a Watson-Crick hydrogen bonding requirement in DNA synthesis by human DNA polymerase kappa
下载免费PDF全文

Wolfle WT Washington MT Kool ET Spratt TE Helquist SA Prakash L Prakash S 《Molecular and cellular biology》2005,25(16):7137-7143
The efficiency and fidelity of nucleotide incorporation by high-fidelity replicative DNA polymerases (Pols) are governed by the geometric constraints imposed upon the nascent base pair by the active site. Consequently, these polymerases can efficiently and accurately replicate through the template bases which are isosteric to natural DNA bases but which lack the ability to engage in Watson-Crick (W-C) hydrogen bonding. DNA synthesis by Poleta, a low-fidelity polymerase able to replicate through DNA lesions, however, is inhibited in the presence of such an analog, suggesting a dependence of this polymerase upon W-C hydrogen bonding. Here we examine whether human Polkappa, which differs from Poleta in having a higher fidelity and which, unlike Poleta, is inhibited at inserting nucleotides opposite DNA lesions, shows less of a dependence upon W-C hydrogen bonding than does Poleta. We find that an isosteric thymidine analog is replicated with low efficiency by Polkappa, whereas a nucleobase analog lacking minor-groove H bonding potential is replicated with high efficiency. These observations suggest that both Poleta and Polkappa rely on W-C hydrogen bonding for localizing the nascent base pair in the active site for the polymerization reaction to occur, thus overcoming these enzymes' low geometric selectivity. 相似文献
18.
Human DNA polymerase iota (pol(iota)) is a recently discovered enzyme that exhibits extremely low fidelity on undamaged DNA templates. Here, we show that poliota is able to facilitate limited translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). More importantly, however, the bypass event is highly erroneous. Gel kinetic assays reveal that pol(iota) misinserts T or G opposite the 3' T of the CPD approximately 1.5 times more frequently than the correct base, A. While pol(iota) is unable to extend the T.T mispair significantly, the G.T mispair is extended and the lesion completely bypassed, with the same efficiency as that of the correctly paired A. T base pair. By comparison, pol(iota) readily misinserts two bases opposite a 6-4 thymine-thymine pyrimidine-pyrimidone photoproduct (6-4PP), but complete lesion bypass is only a fraction of that observed with the CPD. Our data indicate, therefore, that poliota possesses the ability to insert nucleotides opposite UV photoproducts as well as to perform unassisted translesion replication that is likely to be highly mutagenic. 相似文献
19.
Based upon phylogenetic relationships, the broad Y-family of DNA polymerases can be divided into various subfamilies consisting of UmuC (polV)-like; DinB (polIV/polκ)-like; Rev1-like, Rad30A (polη)-like and Rad30B (polι)-like polymerases. The polIV/polκ-like polymerases are most ubiquitous, having been identified in bacteria, archaea and eukaryotes. In contrast, the polV-like polymerases appear restricted to bacteria (both Gram positive and Gram negative). Rev1 and polη-like polymerases are found exclusively in eukaryotes, and to date, polι-like polymerases have only been identified in higher eukaryotes. In general, the in vitro properties of polymerases characterized within each sub-family are quite similar. An exception to this rule occurs with the polι-like polymerases, where the enzymatic properties of Drosophila melanogaster polι are more similar to that of Saccharomyces cerevisiae and human polη than to the related human polι. For example, like polη, Drosophila polι can bypass a cis-syn thymine–thymine dimer both accurately and efficiently, while human polι bypasses the same lesion inefficiently and with low-fidelity. Even in cases where human polι can efficiently insert a base opposite a lesion (such as a synthetic abasic site, the 3′T of a 6-4-thymine–thymine pyrimidine–pyrimidone photoproduct or opposite benzo[a]pyrene diol epoxide deoxyadenosine adducts), further extension is often limited. Thus, although polι most likely arose from a genetic duplication of polη millions of years ago as eukaryotes evolved, it would appear that polι from humans (and possibly all mammals) has been further subjected to evolutionary pressures that have “tailored” its enzymatic properties away from lesion bypass and towards other function(s) specific for higher eukaryotes. The identification of such functions and the role that mammalian polι plays in lesion bypass in vivo, should hopefully be forthcoming with the construction of human cell lines deleted for polι and the identification of mice deficient in polι. 相似文献