首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
As part of a search for peptides that have specificity for selected protein kinases, the possibility that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) recognizes the hydrogen-bonding potential of its peptide substrates was investigated. A-Kinase catalyzes the phosphorylation of five N alpha-methylated and four depsipeptide derivatives of Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) at rates that differ by at least 7 orders of magnitude. These peptide 1 analogues each lack the ability to donate a hydrogen bond at selected positions in the peptide chain. If a particular amide hydrogen of a peptide amide is involved in hydrogen bonding, which is important for enzyme recognition, the prediction is that peptides which contain an ester or a N-methylated bond at that position in peptide 1 will be comparatively poor substrates. In contrast, if a depsipeptide has a reactivity comparable to that of peptide 1 but the analogous N-methylated peptide has a poor reactivity with A-kinase, the result might indicate that the N-methyl group causes unfavorable steric effects. The depsipeptide that lacks a Leu6 amide proton is a good substrate for A-kinase, but the corresponding N-methylated peptide is phosphorylated far less efficiently. This result and others presented in this paper suggest that although enzyme-substrate hydrogen bonding may play some role in A-kinase catalysis of phosphoryl group transfer, other explanations are necessary to account for the relative reactivities of N alpha-methylated and depsi-containing peptide 1 analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In the previous paper, N-methylated peptides were shown to be sensitive probes of substrate conformation within the adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) active site. While it has been shown that other protein kinases will catalyze the phosphorylation of the same peptide sequences as A-kinase, there is as yet little information as to whether the protein kinases differentiate between substrates on the basis of conformation. For this reason, the conformationally restricted N-methylated peptides were used to probe the active site of guanosine cyclic 3',5'-phosphate dependent protein kinase (G-kinase), which is homologous in sequence to [Takio, K., Wade, R. D., Smith, S. B., Krebs, E. G., Walsh, K. A., & Titani, K. (1984) Biochemistry 23, 4207-4218] and which has substrate specificities similar to [Lincoln, T. M., & Corbin, J. D. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3239-3243] those of A-kinase. Although this enzyme appears to bind the peptides in a conformation resembling that of conformation A, it is more able to accommodate backbone methylation than is A-kinase. A peptide substrate at least 700-fold selective for G-kinase over A-kinase was found. Backbone methylation may, therefore, represent a way of making peptide substrates and inhibitors selective for a particular kinase.  相似文献   

3.
Backbone cyclization (BC) and N-methylation have been shown to enhance the activity and/or selectivity of biologically active peptides and improve metabolic stability and intestinal permeability. In this study, we describe the synthesis, structure-activity relationship (SAR) and intestinal metabolic stability of a backbone cyclic peptide library, BL3020, based on the linear alpha-Melanocyte stimulating hormone analog Phe-D-Phe-Arg-Trp-Gly. The drug lead, BL3020-1, selected from the BL3020 library (compound 1) has been shown to inhibit weight gain in mice following oral administration. Another member of the BL3020 library, BL3020-17, showed improved biological activity towards the mMC4R, in comparison to BL3020-1, although neither were selective for MC4R or MC5R. N-methylation, which restrains conformational freedom while increasing metabolic stability beyond that which is imparted by BC, was used to find analogs with increased selectivity. N-methylated backbone cyclic libraries were synthesized based on the BL3020 library. SAR studies showed that all the N-methylated backbone cyclic peptides demonstrated reduced biological activity and selectivity for all the analyzed receptors. N-methylation of active backbone cyclic peptides destabilized the active conformation or stabilized an inactive conformation, rendering the peptides biologically inactive. N-methylation of backbone cyclic peptides maintained stability to degradation by intestinal enzymes.  相似文献   

4.
MHC class I molecules load antigenic peptides in the endoplasmic reticulum and present them at the cell surface. Efficiency of peptide loading depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading, whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Comparative unrestrained molecular dynamics simulations on the alpha(1)/alpha(2) peptide binding domains performed in the presence of bound peptides resulted in structures in close agreement with experiments for both alleles. In the absence of peptides, allele-specific conformational changes occurred in the first segment of the alpha(2)-helix that flanks the peptide C-terminal binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a shift toward an altered F-pocket structure deviating significantly from the bound form was observed. Subsequent free energy simulations on induced F-pocket opening in B*4402 confirmed a conformation that deviated significantly from the bound structure. For B*4405, a free energy minimum close to the bound structure was found. The simulations suggest that B*4405 has a greater tendency to adopt a peptide receptive conformation in the absence of peptide, allowing tapasin-independent peptide loading. A possible role of tapasin could be the stabilization of a peptide-receptive class I conformation for HLA-B*4402 and other tapasin-dependent alleles.  相似文献   

5.
Protein kinase C, purified to near homogeneity from the brain, has been tested toward a variety of synthetic peptide substrates including different phosphorylatable residues. While it proved totally inactive toward the tyrosyl peptide Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Arg-Arg-Gly, as well as toward several more or less acidic seryl peptides, it phosphorylates with a Ca2+/phospholipid-dependent mechanism, at seryl and/or threonyl residues, many basic peptides, some of which are also good substrates for cAMP-dependent protein kinase (A-kinase). Among the peptides tested, however, the best substrate for protein kinase C, with kinetic constants comparable to those of histones, is the nonapeptide Gly-Ser-Arg6-Tyr, which is not a substrate for A-kinase. Moreover, although the peptide Pro-Arg5-Ser-Ser-Arg-Pro-Val-Arg is a good substrate for both kinases, its derivative with ornitines replacing arginines is phosphorylated only by protein kinase C. Some typical substrates of A-kinase on the other hand, like the peptides Phe-Arg2-Leu-Ser-Ile-Ser-Thr-Glu-Ser and Arg2-Ala-Ser-Val-Ala, are phosphorylated by protein kinase C rather slowly and with unfavourable kinetic constants. It is concluded that, while both protein kinase C and A-kinase need basic groups close to the phosphorylatable residues, their primary structure determinants are quite distinct.  相似文献   

6.
Design, synthesis and DNA binding activities of two peptides containing 32 and 102 residues are reported. A nonlinear 102-residue peptide contains four modified alpha helix-turn-alpha helix motifs of 434 cro protein. These four units are linked covalently to a carboxyterminal crosslinker containing four arms each ending with an aliphatic amino group. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha-helical, beta-sheet and random-coiled conformations with the alpha-helical content of about 16% at room temperature. Upon complex formation between peptide and DNA, a change in the peptide conformation takes place which is consistent with an alpha - beta transition in the DNA binding alpha helix-turn-alpha helix units of the peptide. Similar conformation changes are observed upon complex formation with the synthetic operator of a linear peptide containing residues 7-37 of 434 cro repressor. Evidently, in the complex, residues present in helices alpha 2 and alpha 3 of the two helix motif form a beta-hairpin which is inserted in the minor DNA groove. The last inference is supported by our observations that the two peptides can displace the minor groove-binding antibiotic distamycin A from poly(dA).poly(dT) and synthetic operator DNA. As revealed from DNase digestion studies, the nonlinear peptide binds more strongly to a pseudooperator Op1, located in the cro gene, than to the operator OR3. A difference in the specificity shown by the non-linear peptide and wild-type cro could be attributed to a flexibility of the linker chains between the DNA-binding domains in the peptide molecule as well as to a replacement of Thr-Ala in the peptide alpha 2-helices. Removal of two residues from the N-terminus of helix alpha 2 in each of the four DNA-binding domains of the peptide leads to a loss of binding specificity.  相似文献   

7.
Insulin decreases multifunctional protein kinase (MFPK) activity in rat adipose tissue [Ramakrishna, S., & Benjamin, W. B. (1988) J. Biol. Chem. 263, 12677-12681]. Insulin also decreases the phosphorylation of peptide B but increases the phosphorylation of peptide A of ATP-citrate lyase (ATP-CL). The mechanism for this increase in peptide A phosphorylation was studied with purified ATP-CL from control and insulin- and isoproterenol-treated fat pads by using MFPK and the catalytic subunit of cAMP-dependent protein kinase (A-kinase). ATP-CL purified from insulin-treated fat pads is a better substrate for phosphorylation by MFPK compared to controls. This result is consistent with the hypothesis that insulin action decreases peptide B phosphorylation. To determine if the degree of phosphorylation at peptide B affects the phosphorylation rate of peptide A by A-kinase, ATP-CL was prepared with determined phosphate contents of peptides A and B. ATP-CL with a low phosphate content at peptide B is a better substrate for phosphorylation at peptide A by A-kinase than is ATP-CL with a high phosphate content at peptide B. These results suggest that the insulin-induced increase in ATP-CL phosphorylation at peptide A is due to a decrease in peptide B phosphorylation. ATP-CL prepared from isoproterenol-treated fat pads is also a better substrate for phosphorylation at peptide B by MFPK than controls. This increase in phosphorylation at peptide B by MFPK is due to positive second-site regulation by the isoproterenol-induced increase in peptide A phosphorylation.  相似文献   

8.
The conformation of oligopeptides with hydrophobic side chains, Nps-(L -Leu-L -Leu-L -Ala)n-OEt and Nps-(L -Met-L -Met-L -Leu)n-OEt(n = 1–6), in the solid state, obtained either by evaporation of the solvent or by precipitation with diethyl ether from a 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) solution, has been studied with ir spectroscopy and x-ray powder-diffraction measurements. The conformation of these peptides in the HFIP solution has been studied by CD spectroscopy. Due to a strong preference of the amino acids to form an α helix, the peptides begin forming α helices at the dodecapeptide in the HFIP solution, and in the solid state by evaporation. In the solid state, with precipitation, the α-helical conformation is first observed at the octadecapeptide and the lower peptides assume a β structure. The conformational change, from the α helix to the β structure of the peptides with 12 to 15 amino acid residues, during the precipitation process, is due to a strong tendency of the amino acids to form the β-structure in rather short peptide lengths.  相似文献   

9.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

10.
Cathelicidins comprise a major family of host-defense antimicrobial peptides in vertebrates. The C-terminal part of the cathelicidins is bestowed with antimicrobial and lipopolysaccharide (LPS) neutralizing activities. In this work, we repot high resolution solution structures of two nontoxic active fragments, residues 1-16 or RG16 and residues 8-26 or LK19, of fowlicidin-1, a cathelicidin family of peptide from chicken, as a complex with LPS using two-dimensional transferred nuclear Overhauser effect (Tr-NOE) spectroscopy. Both peptides are highly flexible and do not assume any preferred conformations in their free states. Upon complexation with endotoxin or LPS, peptides undergo structural transitions towards folded conformations. Structure calculations reveal that the LK19 peptide adopts a well defined helical structure with a bend at the middle. By contrast, the first seven amino acids of RG16 are found to be flexible followed by a helical conformation for the residues L8-A15. In addition, a truncated version of LK19 encompassing residues A15-K26 or AK12 displays an amphipathic helical structure in LPS. Saturation transfer difference (STD) NMR studies demonstrate that all peptides, RG16, LK19, and AK12, are in close proximity with LPS, whereby the aromatic residues showed the strongest STD effects. Fluorescence studies with fluorescein isothiocyanate (FITC) labeled LPS in the presence of full-length fowlicidin-1, LK19, RG16, and AK12 indicated that LPS-neutralization property of these peptides may result from plausible dissociation of LPS aggregates. The helical structures of peptide fragments derived from fowlicidin-1 in LPS could be utilized to develop nontoxic antiendotoxic compounds.  相似文献   

11.
It was recently shown that a 25-residue peptide, Dk-(61-85), derived from the alpha 1 domain of a murine major histocompatibility class I molecule (H-2Dk), affects insulin receptor functions (Hansen, T., Stagsted, J., Pedersen, L., Roth, R. A., Goldstein, A., and Olsson, L. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3123-3126; Stagsted, J., Reaven, G. M., Hansen, T., Goldstein, A., and Olsson, L. (1990) Cell 62, 297-307). We now report that this peptide can reversibly assume a biologically active or inactive state as measured in the rat adipocyte glucose uptake assay, implying that the peptide has at least two interconvertible conformations. The peptide has an ordered conformation in 0.1 M HCl or 0.1 M NaCl stock solution as shown by circular dichroism, but has a disordered molecular structure and is inactive when dissolved in H2O. The biologically active peptide forms liquid crystals at the stock solution concentration (1 mM), so the CD spectra do not provide information on the secondary structure. Under all conditions tested, biological activity (measured after transfer to assay buffer) is associated with an ordered conformation in stock solution. Biological activity and an ordered conformation of the peptide in H2O stock solution can be induced by increasing ionic strength (greater than 100 mM NaCl for maximal effect) or increasing pH (greater than 5 for maximal effect). The induction rate of the ordered conformation is slow with a half-maximal value obtained after approximately 20 min. Both biological activity and the ordered structure are lost upon heating of stock solution to 90 degrees C or upon transfer to assay buffer. A similar correlation of ordered structure with biological activity was observed with two truncated peptides derived from Dk-(61-85). It is inferred from these results that the Dk-(61-85) peptide and related peptides only affect insulin-stimulated glucose uptake in rat adipocytes if they have assumed an ordered conformation in stock solution prior to transfer to assay buffer and exposure to cells.  相似文献   

12.
The synthesis and the solution behavior of the linear peptides containing a beta-homo (beta-H) leucine residue-Boc-Leu-beta-HLeu-Leu-OMe, Boc-beta-HLeu-Leu-beta-HLeu-Leu-OMe, and Boc-Leu-beta-HLeu-Leu-beta-HLeu-Leu-OMe-as well as the solid structure of the tripeptide, are reported. The conformational behavior of the peptides was investigated in solution by two-dimensional nmr. Our data support the existence in solution with different families of conformers in rapid interchange. The crystals of the tripeptide are orthorhombic, space group P2(1)2(1)2, with a = 15.829(1) A, b = 29.659(1) A, c = 6.563(1) A, and Z = 4. The structure has been solved by direct methods and refined to final R1 and wR2 indexes of 0.0530 and 0.1436 for 2420 reflections with I > 2sigma(I). In the solid state, the tripeptide does not present intramolecular H bonds, and the peptide backbone of the two leucine residues adopts a quasi-extended conformation. For the beta-HLeu residue, the backbone conformation is specified by the torsion angles straight phi(2) = -120.9(4) degrees, mu(2) = 56.7(4) degrees, psi(3) = -133.2(4) degrees. The side chains of the three residues assume the same conformation (g(-), g(-), trans), and all peptide bonds, except the urethane group at the N-terminus, are in the trans conformation. Preliminary conformational energy calculations carried out on the Ac-NH-beta-HAla-NHMe underline that the conformations with mu angle equal to 180 degrees and 60 degrees assume lower energy with respect to the others. In addition, we found a larger conformational freedom for the psi angle with respect to the straight phi angle.  相似文献   

13.
The pi-helix is a secondary structure with 4.4 amino acids per helical turn. Although it was proposed in 1952, no experimental support for its existence was obtained until the mid-1980s. While short peptides are unlikely to assume a marginally stable secondary structure spontaneously, they might do so in the presence of appropriate structural constraints. In this paper, we describe a peptide that is designed to assume a pi-helical conformation when stabilized by cetyltrimethylammonium bromide (CTAB) micelles and Zn(2+). In the designed peptide, lipophilic amino acids are placed such that it would be amphiphilic in the pi-helical, but not in the alpha-helical, conformation. Also, two His residues are incorporated with i, i + 5 spacing, designed to allow binding of Zn(2+) in a pi-helical but not an alpha-helical conformation. The peptide was found to form moderately stable monolayers at the air-water interface, with a collapse pressure that almost doubled when there was Zn(2+) in the subphase. Also, CTAB micelles induced a marked increase in the helicity of the peptide. In 50% TFE, the peptide had a CD spectrum consistent with an alpha-helical structure. The addition of 1 mM Zn(2+) to this solvent caused a saturable decline in ellipticity to approximately half of its original value. The peptide also bound Zn(2+) when it was bound to CTAB micelles, with Zn(2+) again inducing a decrease in ellipticity. The peptide had slightly greater affinity for Zn(2+) in the presence of the CTAB than in a 50% TFE solution (K(d) = 3.1 x 10(-4) M in CTAB and 2.3 x 10(-4) M in TFE). van't Hoff analysis indicated that thermal denaturation of the peptide in 50% TFE containing 1 mM Zn(2+) was associated with both enthalpic and entropic changes that were greater than those in the absence of Zn(2+). These observations are all consistent with the proposal that the peptide assumed a pi-helical conformation in the presence of Zn(2+) and CTAB micelles, and has allowed the stability of this rare conformation to be assessed.  相似文献   

14.
The deposition of amyloid beta A4 in the brain is a major pathological hallmark of Alzheimer's disease. Amyloid beta A4 is a peptide composed of 42 or 43 amino acid residues. In brain, it appears in the form of highly insoluble, filamentous aggregates. Using synthetic peptides corresponding to the natural beta A4 sequence as well as analog peptides, we demonstrate requirements for filament formation in vitro. We also determine aggregational properties and the secondary structure of beta A4. A comparison of amino-terminally truncated beta A4 peptides identifies a peptide spanning residues 10 to 43 as a prototype for amyloid beta A4. Infrared spectroscopy of beta A4 peptides in the solid state shows that their secondary structure consists of a beta-turn flanked by two strands of antiparallel beta-pleated sheet. Analog peptides containing a disulfide bridge were designed to stabilize different putative beta-turn positions. Limited proteolysis of these analogs allowed a localization of the central beta-turn at residues 26 to 29 of the entire sequence. Purified beta A4 peptides are soluble in water. Size-exclusion chromatography shows that they form dimers that, according to circular dichroism spectroscopy, adopt a beta-sheet conformation. Upon addition of salts, the bulk fraction of peptides precipitates and adopts a beta-sheet structure. Only a small fraction of peptides remains solubilized. They are monomeric and adopt a random coil conformation. This suggests that the formation of aggregates depends upon a hydrophobic effect that leads to intra- and intermolecular interactions between hydrophobic parts of the beta A4 sequence. This model is sustained by the properties of beta A4 analogs in which hydrophobic residues were substituted. These peptides show a markedly increased solubility in salt solutions and have lost the ability to form filaments. In contrast, the substitution of hydrophilic residues leads only to small deviations in the shape of filaments, indicating that hydrophilic residues contribute to the specificity of interactions between beta A4 peptides.  相似文献   

15.
A systematic structural analysis of Afc (9-amino-fluorene-9-carboxylic acid) containing peptides is here reported. The crystal structures of four fully protected tripeptides containing the Afc residue in position 2: Z-X(1)-Afc(2)-Y(3)-OMe (peptide a: X = Y = Gly; peptide b: X = Aib, C(alpha, alpha)-dimethylglycine, Y = Gly; peptide c: X = Gly, Y = Aib; peptide d: X = Y = Aib) have been solved by x-ray crystallography. All the results suggest that the Afc residue has a high propensity to assume an extended conformation. In fact, the Afc residue adopts an extended conformation in three peptides examined in this paper (peptides a-c). In contrast, Afc was found in a folded conformation, in the 3(10)-helical region, only in the peptide d, in which it is both preceded and followed by the strong helix promoting Aib.  相似文献   

16.
Daly NL  Hoffmann R  Otvos L  Craik DJ 《Biochemistry》2000,39(30):9039-9046
A series of peptides corresponding to isolated regions of Tau (tau) protein have been synthesized and their conformations determined by (1)H NMR spectroscopy. Immunodominant peptides corresponding to tau(224-240) and a bisphosphorylated derivative in which a single Thr and a single Ser are phosphorylated at positions 231 and 235 respectively, and which are recognized by an Alzheimer's disease-specific monoclonal antibody, were the main focus of the study. The nonphosphorylated peptide adopts essentially a random coil conformation in aqueous solution, but becomes slightly more ordered into beta-type structure as the hydrophobicity of the solvent is increased by adding up to 50% trifluoroethanol (TFE). Similar trends are observed for the bisphosphorylated peptide, with a somewhat stronger tendency to form an extended structure. There is tentative NMR evidence for a small population of species containing a turn at residues 229-231 in the phosphorylated peptide, and this is strongly supported by CD spectroscopy. A proposal that the selection of a bioactive conformation from a disordered solution ensemble may be an important step (in either tubulin binding or in the formation of PHF) is supported by kinetic data on Pro isomerization. A recent study showed that Thr231 phosphorylation affected the rate of prolyl isomerization and abolished tubulin binding. This binding was restored by the action of the prolyl isomerase Pin1. In the current study, we find evidence for the existence of both trans and cis forms of tau peptides in solution but no difference in the equilibrium distribution of cis-trans isomers upon phosphorylation. Increasing hydrophobicity decreases the prevalence of cis forms and increases the major trans conformation of each of the prolines present in these molecules. We also synthesized mutant peptides containing Tyr substitutions preceding the Pro residues and found that phosphorylation of Tyr appears to have an effect on the equilibrium ratio of cis-trans isomerization and decreases the cis content.  相似文献   

17.
Recently, we described a new strategy for the delivery of proteins and peptides into mammalian cells, based on an amphipathic peptide of 21 residues, Pep-1, which was designed on the basis of a protein-interacting domain associated with a nuclear localization sequence and separated by a linker. This peptide carrier constitutes a powerful tool for the delivery of active proteins or peptides both in cultured cells and in vivo, without requiring any covalent coupling. We have examined the conformational states of Pep-1 in its free form and complexed with a cargo peptide and have investigated their ability to interact with phospholipids and the structural consequences of these interactions. From the conformational point of view, Pep-1 behaves significantly differently from other similarly designed cell-penetrating peptides. CD analysis revealed a transition from a nonstructured to a helical conformation upon increase of the concentration. Determination of the structure by NMR showed that in water, its alpha-helical domain extends from residues 4-13. CD and FTIR indicate that Pep-1 adopts a helical conformation in the presence of phospholipids. Adsorption measurements performed at the air-water interface are consistent with the helical form. Pep-1 does not undergo conformational changes upon formation of a particle with a cargo peptide. In contrast, we observe a partial conformational transition when the complex encounters phospholipids. We propose that the membrane crossing process involves formation of a transient transmembrane pore-like structure. Conformational change of Pep-1 is not associated with complexation with its cargo but is induced upon association with the cell membrane.  相似文献   

18.
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are performed on the peptide in four different environments: trifluoroethanol/water; SDS micelles; DPC micelles; and a DMPC bilayer. A hierarchy of alpha-helix stabilization between the different environments is observed such that TFE/water < micelles < bilayers. Local clustering of trifluoroethanol molecules around the peptide appears to help stabilize an alpha-helical conformation. Single (S22W) and double (S22W,T19R) substitutions at the C-terminus of NK4-M2GlyR-p22 help to stabilize a helical conformation in the micelle and bilayer environments. This correlates with the ability of the W22 and R19 side chains to form H-bonds with the headgroups of lipid or detergent molecules. This study provides a first atomic resolution comparison of the structure and dynamics of NK4-M2GlyR-p22 peptides in membrane and membrane-mimetic environments, paralleling NMR and functional studies of these peptides.  相似文献   

19.
The crystal structures of two diastereomeric alpha,beta-dehydrobutyrine peptides Ac-Pro-(Z)-DeltaAbu-NHMe (I) and Ac-Pro-(E)-DeltaAbu-NHMe (II) have been determined. Both dehydropeptides adopt betaI-turn conformation characterized by the pairs of (phi(i+1), psi(i+1)) and (phi(i+2), psi(i+2)) angles as -66, -19, -97, 11 degrees for I and -59, -27, -119, 29 degrees for II. In each peptide, the betaI turn is stabilized by (i + 3) --> i intramolecular hydrogen bonds with N...O distance of 3.12 A for I and 2.93 A for II. These structures have been compared to the crystal structures of homologous peptides Ac-Pro-DeltaVal-NHMe and Ac-Pro-DeltaAla-NHMe. Theoretical analyses by DFT/B3LYP/6-31 + G** method of conformers formed by these four peptides and by the saturated peptide Ac-Pro-Ala-NHMe revealed that peptides with a (Z) substituent at the C(beta) (i+2) atom of dehydroamino acid, i.e. Ac-Pro-DeltaVal-NHMe and Ac-Pro-(Z)-DeltaAbu-NHMe, predominantly form beta turns, both in vacuo and in polar environment. The tendency to adopt beta-turn conformation is much weaker for the peptides lacking the (Z) substituent, Ac-Pro-(E)-DeltaAbu-NHMe and Ac-Pro-DeltaAla-NHMe. The latter adopts a semi-extended or an extended conformation in every polar environment, including a weakly polar solvent. The saturated peptide Ac-Pro-Ala-NHMe in vacuo prefers a beta-turn conformation, but in polar environment the differences between various conformers are small. The role of pi-electron correlation and intramolecular hydrogen bonds interaction in stabilizing the hairpin structures are discussed.  相似文献   

20.
Synthesis of S-acetamidomethyl and S-fluorenylmethyl derivatives of penicillamine is described. Both groups are completely stable to all the usual reagents in solid-phase peptide synthesis, including the HF cleavage step, and show an excellent degree of orthogonality to each other. Treatment of the protected peptides Ac-L-Pen(X)-L-Pro-D-Val-L-Cys(X)-NH2 with thallium (III) trifluoroacetate or iodine for X = Acm or piperidine/DMF (1:1) for X = Fm induced with good yield the formation of the intramolecular disulfide bridge. This cyclic peptide appears to assume a type II beta-turn conformation in d6-DMSO as evidenced by 1H-NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号