首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract

Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer, and therefore PTK inhibitors are currently under intense investigation as potential drug candidates. PTK inhibitor screening data are, however, poorly comparable because of the different assay technologies used. Here we report a comparison of ELISA-based assays for screening epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitory compound libraries to study interassay variations. All assays were based on the same protocol, except for the source of EGFR-TK enzymes. In the first protocol, the enzyme was isolated from A431 cells without affinity purification. In the second protocol, commercial EGFR-TK (Sigma) isolated from A431 cells by affinity-purification was employed. In the third protocol, an enzyme preparation obtained from a recombinant (Baculovirus transfected Sf9 cells) expression system was used. All assays employed the synthetic peptide substrate poly-(Glu, Tyr)1:4 and an ELISA-based system to detect phosphorylated tyrosine residues by a monoclonal antibody. We observed significant differences in both the activity of the enzymes and in the EGFR-TK inhibitory effect of our reference compound PD153035. The differences were significant in case of A431 cell lysate compared to affinity purified EGFR-TKs derived from either A431cells or Baculovirus transfected Sf9 cells, whereas the latter two showed comparable results. Our data suggest that differences in terms of interassay variation are not related to the source of the enzyme but to its purity; changes in the mode of detection can markedly influence the reproducibility of results. In conclusion, normalization of the EGFR activity used for inhibitor screening and standardization of detection methods enable safe comparison of data.  相似文献   

2.
表皮生长因子受体(Epidermal growth factor receptor,EGFR)属受体酪氨酸激酶(Tyrosine kinase,TK)家族,其胞内的酪氨酸激酶在细胞信号转导通路中具有十分重要的作用。许多肿瘤的发生、发展都与EGFR胞内酪氨酸激酶的异常表达密切相关。因此,EGFR胞内酪氨酸激酶的抑制剂有可能成为治疗肿瘤的有效药物。本研究从人脐静脉内皮细胞(HUVEC) 提取总RNA,采用RT-PCR获得EGFR酪氨酸激酶催化域的编码基因。将其克隆至载体pET-30a,在E.coli BL21(DE3)中进行了成功表达,采用Ni-NTA亲和层析对其进行了纯化。通过对酶的活性的测定,证明重组EGFR酪氨酸激酶蛋白具有利用ATP催化底物发生磷酸化反应的激酶活性。以该重组激酶为靶位构建了酶抑制剂筛选模型,拟对微生物代谢产物进行筛选。  相似文献   

3.
G A Grabowski  W R White  M E Grace 《Enzyme》1989,41(3):131-142
A cDNA encoding human acid beta-glucosidase (N-acylsphingosyl-1-O-beta-D-glucoside: glucohydrolase, EC 3.2.1.45) expressed catalytically active enzyme in transfected COS-1 or infected Spodoptera frugiperda (Sf9) cells. The expression plasmid p91023(B) (p91023B/Glc) and a Baculovirus (AcMNPV/Glc) containing the cDNA were constructed and used with the respective cells. By immunoblotting a glycosylated, 63-kilodalton human acid-beta-glucosidase was detected in the transfected or infected cells. A 56-kilodalton human polypeptide was obtained after complete deglycosylation with N-Glycanase. The expressed human enzymes also had partial endoglycosidase H sensitivity. The human enzyme expressed at high levels in Sf9 cells and had normal immunologic properties. With the partially purified enzyme from Sf9 cells, intact function of active site was indicated by normal kcat and Kmapp or Kiapp values for alternative substrates or potent inhibitors, respectively. The expressed enzyme was also activated normally by the negatively charged lipid, taurocholate. The results of these studies indicate that the Baculovirus expression system could provide a convenient source of normal human enzyme for structure/function investigations. In addition, this expression system should prove useful for the identification and evaluation of putative etiologic point mutations in Gaucher disease variants with kinetically altered residual enzymes.  相似文献   

4.
2-Aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-one has been proposed as a novel scaffold of EGFR inhibitor based on scaffold hoping. In the present study, a series of 2-aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-one derivatives were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against two human cancer cell lines, including A431 and A549. The SAR of the title compounds was preliminarily discussed. The compounds with ideal inhibition were evaluated through ELISA-based EGFR-TK assay. Compound 6c showed the best activity against A431 and EGFR tyrosine kinase. These findings suggest that title compounds are EGFR inhibitors with novel structures.  相似文献   

5.
In accordance with our recent results obtained with cultured rat hepatocytes [Fujioka, T. & Ui, M. (2001) Eur. J. Biochem. 268, 25-34], epidermal growth factor (EGF) gave rise to transient tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-2), thereby activating the bound phosphatidylinositol 3-kinase in human epidermoid carcinoma A431 cells normally abundant in EGF receptors (EGFR) and Chinese hamster ovary (CHO) cells transfected with full-length EGFR. These actions of EGF, although much smaller in magnitude than those of insulin or IGF-I in the same cells, were accompanied by tyrosine phosphorylation of EGFR rather than insulin or IGF-I receptors, never observed in wild-type CHO cells expressing no EGFR, and totally inhibited by an inhibitor of EGFR kinase, AG1478, that was without effect on insulin or IGF-I actions. Recombinant IRS-1 was phosphorylated on tyrosines upon incubation with purified EGFR from A431 cells and 32P-labeled ATP. When CHO cells were transfected with C-terminal truncated EGFR lacking three NPXY motifs responsible for direct binding to phosphotyrosine-binding domains of IRSs, no effect of EGF could be observed. We suggest that tyrosine phosphorylation of IRS-1 or IRS-2 could mediate EGFR-induced activation of phosphatidylinositol 3-kinase in mammalian cells.  相似文献   

6.
7.
Modulation of protein kinase FA /glycogen synthase kinase-3α (kinase FA /GSK-3α) by reversible tyrosine phosphorylation/dephosphorylation was investigated. In addition to genistein, other protein tyrosine kinase (PTK) inhibitors, such as tyrphostin A47 and B42, also could induce tyrosine dephosphorylation and inactivation of kinase FA /GSK-3α in A431 cells, and this process was found to be reversible. Pretreatment of the cells with 100 μM orthovanadate, a protein tyrosine phosphatase (PTP) inhibitor, could diminish significantly the effects of PTK inhibitors on both enzyme activity and phosphotyrosine content of the kinase, suggesting that the PTK inhibitors induced tyrosine dephosphorylation/inactivation of this kinase is mediated by orthovanadate-sensitive PTP(s) in A431 cells. Moreover, the phosphotyrosine moiety of kinase FA /GSK-3α was found to be highly turned over in resting cells. Interestingly, we found that the less active, tyrosine-dephosphorylated form of kinase FA /GSK-3α immunoprecipitated from genistein-treated cells was able to reactivate partially with concomitant rephosphorylation of tyrosine residue in vitro. Taken together, these findings demonstrate that tyrosine phosphorylation and concomitant activation of kinase FA /GSK-3α can be carried out both in vitro and in vivo and an in vivo phosphatase activity may function in antagonism to PTK activation of kinase FA /GSK-3α. J. Cell. Physiol. 171:95–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
PTK6 (also known as Brk) is a non-receptor-tyrosine kinase containing SH3, SH2, and catalytic domains, that is expressed in more than 60% of breast carcinomas but not in normal mammary tissues. To analyze PTK6-interacting proteins, we have expressed Flag-tagged PTK6 in HEK293 cells and performed co-immunoprecipitation assays with Flag antibody-conjugated agarose. A 164-kDa protein in the precipitated fraction was identified as ARAP1 (also known as centaurin δ-2) by MALDI-TOF mass analysis. ARAP1 associated with PTK6 in an EGF/EGF receptor (EGFR)-dependent manner. In addition, the SH2 domain of PTK6, particularly the Arg105 residue that contacts the phosphate group of the tyrosine residue, was essential for the association. Moreover, PTK6 phosphorylated residue Tyr231 in the N-terminal domain of ARAP1. Expression of ARAP1, but not of the Y231F mutant, inhibited the down-regulation of EGFR in HEK293 cells expressing PTK6. Silencing of endogenous PTK6 expression in breast carcinoma cells decreased EGFR levels. These results demonstrate that PTK6 enhances EGFR signaling by inhibition of EGFR down-regulation through phosphorylation of ARAP1 in breast cancer cells.  相似文献   

9.
AimsAmlodipine, a dihydropyridine Ca2+ channel blocker, inhibits the proliferation of human epidermoid carcinoma A431 cells in vitro and in vivo. This study examined the underlying mechanism of this antiproliferative effect in relation to epidermal growth factor receptor (EGFR) signaling.Main methodsThe tyrosine phosphorylated active state of EGFR in A431 cells incubated with the test agents was evaluated by western blot with anti-phosphotyrosine antibody. EGFR phosphorylation levels in A431 xenograft tumors were assessed by immunostaining of matrigel plug sections and western blotting for phosphoEGFR in A431 xenograft tumor homogenates.Key findingsIn vitro treatment of exponentially growing A431 cells with amlodipine decreased the tyrosine phosphorylation states of EGFR. Amlodipine also suppressed the EGF-stimulated phosphorylation of EGFR and a membrane scaffolding protein, caveolin-1, in serum-starved A431 cells. Amlodipine attenuated the EGF-stimulated phosphorylation of EGFR coimmunoprecipitated with caveolin-1 without affecting the EGFR/caveolin-1 interaction. Crosslinking experiments showed that amlodipine also suppressed the EGF-stimulated phosphorylation of EGFR predimers. Addition of cholesterol abolished these inhibitory effects of amlodipine plus its inhibition of cell growth. Furthermore, treatment of mice with amlodipine (10 mg/kg/day × 7 days, i.p.) decreased the levels of phosphorylated EGFR in A431 xenograft tumors.SignificanceThe results indicated that amlodipine inhibits tyrosine phosphorylation of EGFR in vitro and in vivo, possibly via modulating cholesterol-rich, caveolin-1-containing membrane microdomains.  相似文献   

10.
The tyrosine kinase activity associated with epidermal growth factor receptor (EGFR) has been a target in studies of pharmacological reagents to inhibit growth of cancer cells, which are mostly of epidermal origin. Lyso-GM3 dimer showed stronger inhibitory effect on the tyrosine kinase of EGFR than GM3, with minimal cytotoxicity [Y. Murozuka, et al. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj. J. 24 (2007) 551-563]. Synthesis of lipids with sphingosine requires many steps, and the yield is low. A biocombinatory approach overcame this difficulty; however, products required a C(12) aliphatic chain, rather than the sphingosine head group [Y. Murozuka, et al. Efficient sialylation on azidododecyl lactosides by using B16 melanoma cells. Chemistry & Biodiversity 2 (2005) 1063-1078]. The present study was to clarify the effects of these lipid mimetics of GM3 and lyso-GM3 dimer on EGFR tyrosine kinase activity, and consequent changes of the A431 cell phenotype, as follows. (i) A lipid mimetic of lyso-GM3 dimer showed similar strong inhibitory effect on EGF-induced EGFR tyrosine kinase activity, and similar low cytotoxicity, as the authentic lyso-GM3 dimer. (ii) A lipid mimetic of lyso-GM3 dimer inhibited tyrosine phosphorylation of EGFR or its dimer to a level similar to that of the authentic lyso-GM3 dimer, but more strongly than GM3 or a lipid mimetic of GM3. (iii) Associated with the inhibitory effect of a lipid mimetic of lyso-GM3 dimer on EGF-induced EGFR kinase activity, only Akt kinase activity was significantly inhibited, but kinases associated with other signal transducers were not affected. (iv) The cell cycle of A431 cells, and the effects of GM3 and a lipid mimetic of lyso-GM3 dimer, were studied by flow cytometry, measuring the rate of DNA synthesis with propidium iodide. Fetal bovine serum greatly enhanced S phase and G(2)/M phase. Enhanced G(2)/M phase was selectively inhibited by pre-incubation of A431 cells with a lipid mimetic of lyso-GM3 dimer, whereas GM3 had only a minimal effect.  相似文献   

11.
The benzamides 1 and the benzamidines 2-3 were synthesized as the mimics of 4-anilinoquinazolines, which possess inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase, and tested for cytotoxicity toward A431 and inhibitory activity toward autophosphorylation by the enzyme assay. High cell growth inhibition was observed in a series of the cyclic benzamides 3: the IC(50) values are 0.09-0.32 mM. The benzamidines 3a and 3b exhibited high inhibition of EGFR tyrosine kinase at a 1.0 microM concentration, although the benzamides 1 and the benzamidines 2 did not show significant kinase inhibition at a 10 microM concentration.  相似文献   

12.
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism.  相似文献   

13.
A series of indenopyrazoles 8 and 9 were designed and synthesized as EGFR tyrosine kinase inhibitors by in silico high-throughput screening. Compounds 8b and 8d showed significant inhibition of A431 cell growth (GI50 = 0.062 and 0.057 microM, respectively). Compounds 8b and 9a showed inhibitory activity toward both EGFR and VEGFR-2 (KDR) tyrosine kinases, whereas 8d inhibited VEGFR-2 tyrosine kinase, exclusively.  相似文献   

14.
Growth of epidermoid carcinoma cell lines, A431 and KB, has been known to be controlled by the interaction of epidermal growth factor (EGF) and its receptor (EGFR) with tyrosine kinase. Ganglioside GM3 was previously found to interact with EGFR and to inhibit EGFR tyrosine kinase. However, motility of these cells, controlled by EGFR and ganglioside, was not studied. The present study is focused on the control mechanism of the motility of these cells through interaction of ganglioside, tetraspanin (TSP), and EGFR. Key results are as follows: (i) The level of EGFR expressed in A431 cells is 6 times higher than that expressed in KB cells, and motility of A431 cells is also much higher than that of KB cells, yet growth of A431 cells is either not affected or is inhibited by EGF. In contrast, growth of KB cells is enhanced by EGF. (ii) Levels of TSPs (CD9, CD82, and CD81) expressed in A431 cells are much higher than those expressed in KB cells, and TSPs expressed in A431 cells are reduced by treatment of cells with EtDO-P4, which inhibits the synthesis of glycosphingolipids (GSLs) and gangliosides. (iii) These TSPs are co-immunoprecipitated with EGFR in both A431 and KB cells, indicating that TSPs are closely associated with EGFR. (iv) High motility of A431 cells is greatly reduced, while low motility of KB cells is not affected, by treatment of cells with EtDO-P4. These results, taken together, suggest that there is a close correlation between high motility of A431 cells and high expression of EGFR and TSPs, and between ganglioside GM3/GM2 and TSP. A similar correlation was suggested between the low motility of KB cells and low levels of EGFR and TSP. The correlation between high motility and high level of EGFR with the ganglioside–TSP complex in A431 cells is unique. This is in contrast to our previous studies that indicate that motility of many types of tumor cells is inhibited by a high level of CD9 or CD82, together with growth factor receptors and integrins.  相似文献   

15.
The present report provides evidence that, in A431 cells, interferon gamma (IFNgamma) induces the rapid (within 5 min), and reversible, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). IFNgamma-induced EGFR transactivation requires EGFR kinase activity, as well as activity of the Src-family tyrosine kinases and JAK2. Here, we show that IFNgamma-induced STAT1 activation in A431 and HeLa cells partially depends on the kinase activity of both EGFR and Src. Furthermore, in these cells, EGFR kinase activity is essential for IFNgamma-induced ERK1,2 activation. This study is the first to demonstrate that EGFR is implicated in IFNgamma-dependent signaling pathways.  相似文献   

16.
We have used quinazoline inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase to study the link between EGFR signaling and G(1) to S traverse. Treatment of A431 and MDA-468 human tumor cells with 0.1-10 microM AG-1478 inhibited basal and ligand-stimulated EGFR phosphorylation without a decrease in receptor content, EGF-binding sites, or binding affinity. Incubation of A431 cells with 0.1-1 microM AG-1517 abrogated (125)I-EGF internalization. Both AG-1478 and AG-1517 markedly inhibited A431 and MDA-468 colony formation in soft agarose at concentrations between 0.01 and 1 microM. Daily injections of AG-1478 at 50 mg/kg delayed A431 tumor formation in athymic nude mice. A transient exposure of A431 cells to AG-1478 resulted in a dose-dependent up-regulation of the cyclin-dependent kinase inhibitor p27, down-regulation of cyclin D1 and of active MAPK, and hypophosphorylation of the retinoblastoma protein (Rb). These changes were temporally associated with recruitment of tumor cells in G(1) phase and a marked reduction of the proportion of cells in S phase. Upon removal of the kinase inhibitor, EGFR and Rb phosphorylation and the levels of cyclin D1 protein were quickly restored, but the cells did not reenter S phase until p27 protein levels were decreased. Phosphorothioate p27 oligonucleotides decreased p27 protein in A431 cells and abrogated the quinazoline-mediated G(1) arrest. Treatment of A431 cells with PD 098509, a synthetic inhibitor of MEK1, inhibited MAPK activity without inducing G(1) arrest or increasing the levels of p27. However, treatment with LY 294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited basal Akt activity, up-regulated p27, and recruited cells in G(1). These data suggest that p27 is required for the growth arrest that follows interruption of the EGFR kinase in receptor-overexpressing cells. In addition, the G(1) arrest and up-regulation of p27 resulting from EGFR blockade are not due to the interruption of MAPK, but to the interruption of constitutively active PI3K function.  相似文献   

17.
The tyrosine kinase inhibitor gefitinib inhibits growth in some tumor types by targeting the epidermal growth factor receptor (EGFR). Previous studies show that the affinity of the EGF-EGFR interaction varies between hosting cell line, and that gefitinib increases the affinity for some cell lines. In this paper, we investigate possible mechanisms behind these observations. Real-time interaction analysis in LigandTracer® Grey revealed that the HER2 dimerization preventing antibody pertuzumab clearly modified the binding of 125I-EGF to EGFR on HER2 overexpressing SKOV3 cells in the presence of gefitinib. Pertuzumab did not affect the binding on A431 cells, which express low levels of HER2. Cross-linking measurements showed that gefitinib increased the amount of EGFR dimers 3.0–3.8 times in A431 cells in the absence of EGF. In EGF stimulated SKOV3 cells the amount of EGFR dimers increased 1.8–2.2 times by gefitinib, but this effect was cancelled by pertuzumab. Gefitinib treatment did not alter the number of EGFR or HER2 expressed in tumor cell lines A431, U343, SKOV3 and SKBR3. Real-time binding traces were further analyzed in a novel tool, Interaction Map, which deciphered the different components of the measured interaction and supports EGF binding to multiple binding sites. EGFR and HER2 expression affect the levels of EGFR monomers, homodimers and heterodimers and EGF binds to the various monomeric/dimeric forms of EGFR with unique binding properties. Taken together, we conclude that dimerization explains the varying affinity of EGF – EGFR in different cells, and we propose that gefitinib induces EGFR dimmers, which alters the interaction characteristics with 125I-EGF.  相似文献   

18.
Inositol-specific phospholipase Cs(PLCs) are a group of enzymes involved in the signal transduction pathway of many plasma membrane receptor mediated events. We developed a modified solid surface to capture [(3)H] PIP(2) onto the Basic FlashPlate(R) in order to monitor PLC activity. Our results clearly demonstrate the utility of [(3)H] PIP(2)-Coated Phospholipid FlashPlate(R) microtiter plates for assessing PLC activity for HTS of receptor-coupled functional assays. The results show that PLC activity can be measured easily from a variety of sources including purified recombinant enzyme preparations, crude HL60 cell lysates and permeabilized A431 human carcinoma cells. Moreover, this format provides a surface comparable to that used for classical solution based radiolabeled mixed phospholipid micelle studies and illustrates the feasibility of this assay for measuring PLC activation in a variety of different drug screening assays.  相似文献   

19.
Du H  Hu Z  Bazzoli A  Zhang Y 《PloS one》2011,6(7):e22367
The epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) is an important protein target for anti-tumor drug discovery. To identify potential EGFR inhibitors, we conducted a quantitative structure-activity relationship (QSAR) study on the inhibitory activity of a series of quinazoline derivatives against EGFR tyrosine kinase. Two 2D-QSAR models were developed based on the best multi-linear regression (BMLR) and grid-search assisted projection pursuit regression (GS-PPR) methods. The results demonstrate that the inhibitory activity of quinazoline derivatives is strongly correlated with their polarizability, activation energy, mass distribution, connectivity, and branching information. Although the present investigation focused on EGFR, the approach provides a general avenue in the structure-based drug development of different protein receptor inhibitors.  相似文献   

20.
A novel label-free electrochemical method for measuring the activity of protein tyrosine kinases (PTK) has been developed. Epidermal growth factor receptor (EGFR), a typical PTK associated with a large percentage of all solid tumors, was used as the model kinase. Poly(glu, tyr) (4:1) peptide, as a substrate of EGFR, was covalently immobilized on the surface of indium tin oxide (ITO) electrode by silane chemistry. The tyrosine (Tyr) residue in the polypeptide served as an electrochemical signal reporter. Its voltammetric current was catalyzed by a dissolved electron mediator Os(bpy)(3)(2+) (bpy=2,2'-bipyridine) for increased sensitivity. Phosphorylation of the Tyr led to a loss of its electrochemical current, thus providing a sensing mechanism for PTK activity. Experimental conditions for the silanization of ITO surface and immobilization of polypeptide were investigated in details to facilitate the generation of Tyr electrochemical signal. The proposed biosensor exhibited high sensitivity and excellent stability. The limit of detection for EGFR was 1 UmL(-1). Furthermore, this biosensor can also be used for quantitative analysis of kinase inhibition. On the basis of the inhibitor concentration dependent electrochemical signal, the half-maximal inhibition value IC(50) of three EGFR inhibitors, PD-153035, OSI-774 and ZD-1839, and their corresponding inhibition constants K(i) were estimated, which were in agreement with those obtained from the conventional kinase assay. This electrochemical biosensor can be implemented in an array format for the high throughput assay of in vitro PTK activity and PTK inhibitors screening for practical diagnostic application and drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号