首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
3.
4.
Arabidopsis superman (sup, also referred to as floral mutant10) mutants have previously been shown to have flowers with supernumerary stamens and reduced carpels as a result of ectopic expression of the floral homeotic gene APETALA3 (AP3). Here, we report that sup mutations also cause specific alterations in ovule development. Growth of the outer integument of wild-type ovules occurs almost exclusively on the abaxial side of the ovule, resulting in a bilaterally symmetrical hoodlike structure. In contrast, the outer integument of sup mutant ovules grows equally on all sides of the ovule, resulting in a nearly radially symmetrical tubular shape. Thus, one role of SUP is to suppress growth of the outer integument on the adaxial side of the ovule. Genetic analyses showed that the effects of sup mutations on ovule development are independent of the presence or absence of AP3 activity. Thus, SUP acts through different mechanisms in its early role in ensuring proper determination of carpel identity and in its later role in asymmetric suppression of outer integument growth.  相似文献   

5.
6.
7.
8.
Ectopic expression of OsYAB1causes extra stamens and carpels in rice   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Morphological transitions associated with ovule diversification provide unique opportunities for studies of developmental evolution. Here, we investigate the underlying mechanisms of one such transition, reduction in integument number, which has occurred several times among diverse angiosperms. In particular, reduction in integument number occurred early in the history of the asterids, a large clade comprising approximately one-third of all flowering plants. Unlike the vast majority of other eudicots, nearly all asterids have a single integument, with the only exceptions in the Ericales, a sister group to the other asterids. Impatiens, a genus of the Ericales, includes species with one integument, two integuments, or an apparently intermediate bifid integument. A comparison of the development of representative Impatiens species and analysis of the expression patterns of putative orthologs of the Arabidopsis thaliana ovule development gene INNER NO OUTER (INO) has enabled us to propose a mechanism responsible for morphological transitions between integument types in this group. We attribute transitions between each of the three integument morphologies to congenital fusion via a combination of variation in the location of subdermal growth beneath primordia and the merging of primordia. Evidence of multiple transitions in integument morphology among Impatiens species suggests that control of underlying developmental programs is relatively plastic and that changes in a small number of genes may have been responsible for the transitions. Our expression data also indicate that the role of INO in the outgrowth and abaxial-adaxial polarity of the outer integument has been conserved between two divergent angiosperms, the rosid Arabidopsis and the asterid Impatiens.  相似文献   

11.
12.
13.
Molecular and genetic analyses have shown that the Arabidopsis thaliana gene SUPERMAN (SUP) has at least two functions in Arabidopsis flower development. SUP is necessary to control the correct distribution of cells with either a stamen or carpel fate, and is essential for proper outgrowth of the ovule outer integument. Both these functions indicate a role for SUP in cell proliferation. To study the function of the Arabidopsis SUP gene in more detail, we over-expressed the SUP gene in petunia and tobacco in a tissue-specific manner. The petunia FLORAL BINDING PROTEIN 1 (FBP1) gene promoter was used to restrict the expression of SUP to petals and stamens. The development of petals and stamens was severely affected in both petunia and tobacco plants over-expressing SUP. Petals remained small and did not unfold, resulting in closed flowers. Stamen filaments were thin and very short. Detailed analysis of these floral organs from the petunia transformants showed that cell expansion was dramatically reduced without affecting cell division. These results reveal a novel activity for SUP as a regulator of cell expansion.  相似文献   

14.
The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development.  相似文献   

15.
16.
Broadhvest J  Baker SC  Gasser CS 《Genetics》2000,155(2):899-907
The short integuments 2 (sin2) mutation arrests cell division during integument development of the Arabidopsis ovule and also has subtle pleiotropic effects on both sepal and pistil morphology. Genetic interactions between sin2 and other ovule mutations show that cell division, directionality of growth, and cell expansion represent at least partially independent processes during integument development. Double-mutant analyses also reveal that SIN2 shares functional redundancy with HUELLENLOS in ovule primordium outgrowth and proximal-distal patterning and with TSO1 in promotion of normal morphological development of the four whorls of primary floral organs. All of these observations are consistent with SIN2 being a promoter of growth and cell division during reproductive development, with a primary role in these processes during integument development. On the basis of the floral pleiotropic effects observed in a majority of ovule mutants, including sin2, we postulate a relationship between ovule genes and the evolutionary origin of some processes regulating flower morphology.  相似文献   

17.
INNER NO OUTER (INO) expression is limited to the abaxial cell layer of the incipient and developing outer integument in Arabidopsis ovules. Using deletion analysis of the previously defined INO promoter (P-INO), at least three distinct regions that contribute to the endogenous INO expression pattern were identified. One such positive element, designated POS9, which comprises at least three distinct subelements, was found to include sufficient information to duplicate the INO expression pattern when four or more copies were used in conjunction with a heterologous minimal promoter. While known regulators of INO, including INO, SUPERMAN, BELL1, and AINTEGUMENTA, did not detectably interact with POS9 in yeast one-hybrid assays, two groups of proteins that interact specifically with POS9 were identified in one-hybrid library screens. Members of one group include C2H2 zinc finger motifs. Members of the second group contain a novel, conserved DNA-binding region and were designated the BASIC PENTACYSTEINE (BPC) proteins on the basis of conserved features of this region. The BPC proteins are nuclear localized and specifically bind in vitro to GA dinucleotide repeats located within POS9. The widespread expression patterns of the BPCs and the large number of GA repeat potential target sequences in the Arabidopsis genome indicate that BPC proteins may affect expression of genes involved in a variety of plant processes.  相似文献   

18.
19.
20.
The YABBY (YAB) genes specify abaxial cell fate in lateral organs in Arabidopsis. Loss-of-function mutants in two early-expressing YAB genes, FILAMENTOUS FLOWER (FIL) and YAB3, do not exhibit vegetative phenotypes as a result of redundancy. Mutations in these genes result in the derepression of the KNOX homeobox genes SHOOTMERISTEMLESS (STM), BREVIPEDICELLUS, and KNAT2 in the leaves and in the partial rescue of stm mutants. Here, we show that fil yab3 double mutants exhibit ectopic meristem formation on the adaxial surfaces of cotyledons and leaf blades. We propose that in addition to abaxial specification, lateral organ development requires YAB function to downregulate KNOTTED homeobox genes so that meristem initiation and growth are restricted to the apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号