首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A 23-residue peptide termed BH(9-10) was designed based on a beta-hairpin segment of the single-layer beta-sheet region of Borrelia OspA protein. The peptide contains a large number of charged amino acid residues, and it does not follow the amphipathic pattern that is commonly found in natural beta-sheets. In aqueous solution, the peptide was highly soluble and flexible, with a propensity to form a non-native beta-turn. Trifluoroethanol (TFE) stabilized a native-like beta-turn in BH(9-10). TFE also decreased the level of solubility of the peptide, resulting in peptide precipitation. The precipitation process accompanied a conformational conversion to a beta-sheet structure, as judged with circular dichroism spectroscopy. The precipitate was found to be fibrils similar to those associated with human amyloid diseases. The fibrillization kinetics depended on peptide and TFE concentrations, and had a nucleation step followed by an assembly step. The fibrillization was reversible, and the dissociation reaction involved two phases. TFE appears to induce the fibrils by stabilizing a beta-sheet conformation of the peptide that optimally satisfies hydrogen bonding and electrostatic complementarity. This TFE-induced fibrillization is quite unusual, because most amyloidogenic peptides form fibrils in aqueous solution and TFE disrupts these fibrils. Nevertheless, the BH(9-10) fibrils have similar structure to other fibrils, supporting the emerging idea that polypeptides possess an intrinsic ability to form amyloid-like fibrils. The high level of solubility of BH(9-10), the ability to precisely control fibril formation and dissociation, and the high-resolution structure of the same sequence in the beta-hairpin conformation in the OspA protein provide a tractable experimental system for studying the fibril formation mechanism.  相似文献   

2.
Conformational transitions are thought to be the prime mechanism of amyloid formation in prion diseases. The prion proteins are known to exhibit polymorphic behavior that explains their ability of "conformation switching" facilitated by structured "seeds" consisting of transformed proteins. Oligopeptides containing prion sequences showing the polymorphism are not known even though amyloid formation is observed in these fragments. In this work, we have observed polymorphism in a 15-residue peptide PrP (113-127) that is known to form amyloid fibrils on aging. To see the polymorphic behavior of this peptide in different solvent environments, circular dichroism (CD) spectroscopic studies on an aqueous solution of PrP (113-127) in different trifluoroethanol (TFE) concentrations were carried out. The results show that PrP (113-127) have sheet preference in lower TFE concentration whereas it has more helical conformation in higher TFE content (>40%). The structural transitions involved in TFE solvent were studied using interval-scan CD and FT-IR studies. It is interesting to note that the alpha-helical structure persists throughout the structural transition process involved in amyloid fibril formation implicating the involvement of both N- and C-terminal sequences. To unravel the role of the N-terminal region in the polymorphism of the PrP (113-127), CD studies on another synthetic peptide, PrP (113-120) were carried out. PrP(113-120) exhibits random coil conformation in 100% water and helical conformation in 100% TFE, indicating the importance of full-length sequence for beta-sheet formation. Besides, the influence of different chemico-physical conditions such as concentration, pH, ionic strength, and membrane like environment on the secondary structure of the peptide PrP (113-127) has been investigated. At higher concentration, PrP (113-127) shows features of sheet conformation even in 100% TFE suggesting aggregation. In the presence of 5% solution of sodium dodecyl sulfate, PrP (113-127) takes high alpha-helical propensity. The environment-dependent conformational polymorphism of PrP (113-127) and its marked tendency to form stable beta-sheet structure at acidic pH could account for its conformation switching behavior from alpha-helix to beta-sheet. This work emphasizes the coordinative involvement of N-terminal and C-terminal sequences in the self-assembly of PrP (113-127).  相似文献   

3.
The N-terminal amino acid 1–83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1–83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8–33 and 8–33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1–83 fragment and 8–33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1–83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.  相似文献   

4.
Synchrotron x-ray studies on amyloid fibrils have suggested that the stacked pleated beta-sheets are twisted so that a repeating unit of 24 beta-strands forms a helical turn around the fibril axis (. J. Mol. Biol. 273:729-739). Based on this morphological study, we have constructed an atomic model for the twisted pleated beta-sheet of human Abeta amyloid protofilament. In the model, 48 monomers of Abeta 12-42 stack (four per layer) to form a helical turn of beta-sheet. Each monomer is in an antiparallel beta-sheet conformation with a turn located at residues 25-28. Residues 17-21 and 31-36 form a hydrophobic core along the fibril axis. The hydrophobic core should play a critical role in initializing Abeta aggregation and in stabilizing the aggregates. The model was tested using molecular dynamics simulations in explicit aqueous solution, with the particle mesh Ewald (PME) method employed to accommodate long-range electrostatic forces. Based on the molecular dynamics simulations, we hypothesize that an isolated protofilament, if it exists, may not be twisted, as it appears to be when in the fibril environment. The twisted nature of the protofilaments in amyloid fibrils is likely the result of stabilizing packing interactions of the protofilaments. The model also provides a binding mode for Congo red on Abeta amyloid fibrils. The model may be useful for the design of Abeta aggregation inhibitors.  相似文献   

5.
Models of apolipoprotein A-I (apo A-I), the main protein of high-density lipoprotein, predict that it contains 10 amphiphilic, alpha-helical segments connected by turns. We synthesized four peptides with two identical 18-residue, amphiphilic, alpha-helical segments (Anantharamaiah, G. M., et al. (1985) J. Biol. Chem. 260, 10248-10255) connected by putative turn sequences from apo A-I: (1) Ac-DWLKAFYDKVAEKLKEAFKVEPLRADWLKAFYDKVAEKLKEAF-NH2, (2) Ac-DWLKAFYDKVAEKLKEAFGLLPVLEDWLKAFYDKVAEKLKEAF-NH2, (3) Ac-DWLKAFYDKVAEKLKEAFKVQPYLDDWLKAFYDKVAEKLKEAF-NH2, and (4) Ac-DWLKAFYDKVAEKLKEAFNGGARLADWLKAFYDKVAEKLKEAF-NH2. Surprisingly, peptides 1-3 formed fibrils after incubation (37 degrees C, 10 mM sodium phosphate, pH 7.60), but in contrast to beta-sheet amyloid fibrils, these did not bind thioflavin T and they induced a blue shift in the spectrum of Congo red. CD (peptides 1-3) and FTIR (peptides 1 and 2) of the fibrils showed significant alpha-helical character. Synchrotron X-ray fiber diffraction on a magnetically aligned sample of 1 confirmed the alpha-helical character in the fibrils and indicated that the helical axes are oriented perpendicular to the fibril axis. In contrast, peptide 4, containing two Gly residues but no Pro in the turn, formed only a small amount of nonfibrillar precipitate after prolonged incubation. Peptide 4P (peptide 4 with a Pro in place of the central Ala) and peptide 5, containing a PEG block in lieu of the central turn, were similar to peptide 4 in not forming fibrils, possibly because the region linking the helices was unstructured. These studies indicate that varying turn sequences between longer amphiphilic alpha-helical segments can drive the structure of fibrils.  相似文献   

6.
The N-terminal 1–83 residues of apolipoprotein A-I (apoA-I) have a strong propensity to form amyloid fibrils, in which the 46–59 segment was reported to aggregate to form amyloid-like fibrils. In this study, we demonstrated that a fragment peptide comprising the extreme N-terminal 1–43 residues strongly forms amyloid fibrils with a transition to β-sheet-rich structure, and that the G26R point mutation enhances the fibril formation of this segment. Our results suggest that in addition to the 46–59 segment, the extreme N-terminal region plays a crucial role in the development of amyloid fibrils by the N-terminal fragment of amyloidogenic apoA-I variants.  相似文献   

7.
Recent knowledge about the determinants of beta-sheet formation and stability has notably been improved by the structural analysis of model peptides with beta-hairpin structure in aqueous solution. Several experimental studies have shown that the turn region residues can not only determine the stability, but also the conformation of the beta-hairpin. Specific interstrand side-chain interactions, hydrophobic and polar, have been found to be important stabilizing interactions. The knowledge acquired in the recent years from peptide systems, together with the information gathered from mutants in proteins, and the analysis of known protein structures, has led to successful design of a folded three-stranded monomeric beta-sheet structure.  相似文献   

8.
Sodium dodecyl sulphate (SDS), a detergent that mimics some characteristics of biological membranes, has been found to affect significantly fibril formation by a peptide from human complement receptor 1. In aqueous solution the peptide is unfolded but slowly aggregates to form fibrils. In sub-micellar concentrations of SDS the peptide is initially alpha-helical but converts rapidly to a beta-sheet structure and large quantities of fibrils form. In SDS above the critical micellar concentration the peptide adopts a stable alpha-helical structure and no fibrils are observed. These findings demonstrate the sensitivity of fibril formation to solution conditions and suggest a possible role for membrane components in amyloid fibril formation in living systems.  相似文献   

9.
The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn(2+), which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into beta-sheet amyloid fibrils, whereas in the presence of Zn(2+) it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn(2+) does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an alpha-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn(2+) is to promote this local helical structure in B18 and to prevent its inactivation as beta-sheet fibrils.  相似文献   

10.
We recently described a new apolipoprotein A1 variant presenting a Leu174Ser replacement mutation that is associated with a familial form of systemic amyloidosis displaying predominant heart involvement. We have now identified a second unrelated patient with very similar clinical presentation and carrying the identical apolipoprotein A1 mutation. In this new patient the main protein constituent of the amyloid fibrils is the polypeptide derived from the first 93 residues of the protein, the identical fragment to that found in the patient previously described to carry this mutation. The X-ray fiber diffraction pattern obtained from preparations of partially aligned fibrils displays the cross-beta reflections characteristic of all amyloid fibrils. In addition to these cross-beta reflections, other reflections suggest the presence of well-defined coiled-coil helical structure arranged with a defined orientation within the fibrils. In both cases the fibrils contain a trace amount of full-length apolipoprotein A1 with an apparent prevalence of the wild-type species over the variant protein. We have found a ratio of full-length wild-type to mutant protein in plasma HDL of three to one. The polypeptide 1--93 purified from natural fibrils can be solubilized in aqueous solutions containing denaturants, and after removal of denaturants it acquires a monomeric state that, based on CD and NMR studies, has a predominantly random coil structure. The addition of phospholipids to the monomeric form induces the formation of some helical structure, thought most likely to occur at the C-terminal end of the polypeptide.  相似文献   

11.
We report the conformational and toxic properties of two novel fibril-forming prion amyloid sequences, GAVVGGLG (PrP(119-126)) and VVGGLGG (PrP(121-127)). The conformational preferences of these fragments were studied in differing microenvironments of TFE/water mixtures and SDS solution. Interestingly, with an increase in TFE concentration, PrP(119-126) showed a helical conformational propensity, whereas PrP(121-127) adopted a more random coil structure. In 5% SDS, PrP(119-126) showed more alpha-helical content than in TFE solution, and PrP(121-127) exhibited a predominantly random coil conformation. However, both peptides took a random coil conformation in water, and over time the random coil transformed into a beta-sheet structure with a significant percentage of helical conformation and beta-turn structure in PrP(119-126) and PrP(121-127), respectively, as observed with CD spectroscopy. The aged fibrils of PrP(119-126) were insoluble in SDS, and PrP(121-127) was extractable with SDS solution. These fibrils were characterized by transmission electron microscopy. Both PrP(119-126) and PrP(121-127) formed stable monolayer's consisting of multimeric assemblages at the air-water interface. Monomeric PrP(119-126) was more toxic to astrocytes than the control Abeta peptide; however, the fibrillar form of PrP(119-126) was less toxic to astrocytes. PrP(121-127) elicited moderate toxicity in both soluble and fibrillar forms on astrocytes. Furthermore, quenching experiments using acroyl-labeled PrP(119-126) and PrP(121-127) with eosin-labeled synaptosomal membrane revealed that these prion fragments bind to anion-exchange protein. The binding of PrP(119-126) and PrP(121-127) with a membrane microdomain (lipid raft) was also analyzed using pyrenated derivatives. We conclude that the formation of PrP(119-126) and PrP(121-127) fibrils is a concentration-dependent process that involves coil to sheet conversion with aging. PrP(119-126), the sequence with intrinsic helical propensity, is more toxic in monomer form, and the fibril formation in this case seems to be protective to cells. For PrP(121-127), the SDS-soluble fibrils are more cytotoxic, indicating that a higher order assemblage structure is required for cytotoxic activity of this peptide.  相似文献   

12.
Cottingham MG  Voskuil JL  Vaux DJ 《Biochemistry》2003,42(36):10863-10873
A 14-residue fragment of the C-terminal oligomerization domain, or T-peptide, of human acetylcholinesterase (AChE) shares sequence homology with the amyloid-beta peptide implicated in Alzheimer's disease and can spontaneously self-assemble into classical amyloid fibrils under physiological conditions [Greenfield, S. A., and Vaux, D. J. (2002) Neuroscience 113, 485-492; Cottingham, M. G., Hollinshead, M. S., and Vaux, D. J. (2002) Biochemistry 41, 13539-13547]. Here we demonstrate that the conformation of this AChE(586-599) peptide, both before and after fibril formation, is different from that of a longer peptide, T(40), corresponding to the entire 40-amino acid T-peptide (residues 575-614 of AChE). This peptide is prone to homomeric hydrophobic interactions, consistent with its role in AChE subunit assembly, and possesses an alpha-helical structure which protects against the development of the beta-sheet-rich amyloidogenic conformation favored by the shorter constituent AChE(586-599) fragment. Using a conformation-sensitive monoclonal antibody raised against the alpha-helical T(40) peptide, we demonstrate that the conformation of the T-peptide domain within intact AChE is antigenically indistinguishable from that of the synthetic T(40) peptide. A second monoclonal antibody raised against the fibrillogenic AChE(586-599) fragment recognizes not only beta-sheet amyloid aggregates but also SDS-resistant protofibrillar oligomers. A single-antibody sandwich ELISA confirms that such oligomers exist at micromolar peptide concentrations, well below that required for formation of classical amyloid fibrils. Epitope mapping with this monoclonal antibody identifies a region near the N-terminus of the peptide that remains accessible in oligomer and fibril alike, suggesting a model for the arrangement of subunits within AChE(586-599) protofibrils and fibrils.  相似文献   

13.
Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like alpha-helical structure. On heating to 70 degrees C, partial unfolding occurs and results initially in aggregates that are shown by CD and FT-IR spectra to retain a predominantly helical structure. Following this step, changes in the CD and FTIR spectra occur that are indicative of the extensive conversion of the molecular conformation from alpha-helical to beta-sheet structure. At later stages, EM shows the development of fibrils with well-defined repetitive morphologies including structures with a periodic helical twist of approximately 450 A. The results indicate that formation of fibrils by insulin requires substantial unfolding of the native protein, and that the most highly ordered structures result from a slow evolution of the morphology of the initially formed fibrillar species.  相似文献   

14.
The behavior of a number of 16 residue polypeptides with a sequence Acetyl-EACARXZAACEAAARQ-amide, where X = V or A and Z = A or Aib, is studied under aqueous conditions. It is shown that the substitution of a single alanine residue by alpha-aminoisobutyric acid (Aib) completely alters both the conformation and the aggregation properties of the peptides. The Ala-Ala (X,Z = A,A) peptide is shown by circular dichroism and FTIR methods to adopt a predominately beta-sheet conformation. Furthermore, the peptide has limited solubility and is shown to form fibrils by electron microscopy and thioflavin T binding assays. In contrast, a single substitution at the center of peptide of alanine to Aib (X,Z = A,Aib) completely abolishes fibril formation and alters the conformation to a mixture of random coil and alpha-helix. The results show that Aib is a strong beta-sheet disrupter that is also able to adopt a helical conformation. This is linked to its role in peptaibol antibiotics. Aib provides an attractive alternative to proline and other substitutions in producing peptide variants with a lower tendency to produce fibril aggregates.  相似文献   

15.
Recently, we described a new strategy for the delivery of proteins and peptides into mammalian cells, based on an amphipathic peptide of 21 residues, Pep-1, which was designed on the basis of a protein-interacting domain associated with a nuclear localization sequence and separated by a linker. This peptide carrier constitutes a powerful tool for the delivery of active proteins or peptides both in cultured cells and in vivo, without requiring any covalent coupling. We have examined the conformational states of Pep-1 in its free form and complexed with a cargo peptide and have investigated their ability to interact with phospholipids and the structural consequences of these interactions. From the conformational point of view, Pep-1 behaves significantly differently from other similarly designed cell-penetrating peptides. CD analysis revealed a transition from a nonstructured to a helical conformation upon increase of the concentration. Determination of the structure by NMR showed that in water, its alpha-helical domain extends from residues 4-13. CD and FTIR indicate that Pep-1 adopts a helical conformation in the presence of phospholipids. Adsorption measurements performed at the air-water interface are consistent with the helical form. Pep-1 does not undergo conformational changes upon formation of a particle with a cargo peptide. In contrast, we observe a partial conformational transition when the complex encounters phospholipids. We propose that the membrane crossing process involves formation of a transient transmembrane pore-like structure. Conformational change of Pep-1 is not associated with complexation with its cargo but is induced upon association with the cell membrane.  相似文献   

16.
Liu D  Xu Y  Feng Y  Liu H  Shen X  Chen K  Ma J  Jiang H 《Biochemistry》2006,45(36):10963-10972
Abeta peptides cleaved from the amyloid precursor protein are the main components of senile plaques in Alzheimer's disease. Abeta peptides adopt a conformation mixture of random coil, beta-sheet, and alpha-helix in solution, which makes it difficult to design inhibitors based on the 3D structures of Abeta peptides. By targeting the C-terminal beta-sheet region of an Abeta intermediate structure extracted from molecular dynamics simulations of Abeta conformational transition, a new inhibitor that abolishes Abeta fibrillation was discovered using virtual screening in conjunction with thioflavin T fluorescence assay and atomic force microscopy determination. Circular dichroism spectroscopy demonstrated that the binding of the inhibitor increased the beta-sheet content of Abeta peptides either by stabilizing the C-terminal beta-sheet conformation or by inducing the intermolecular beta-sheet formation. It was proposed that the inhibitor prevented fibrillation by blocking interstrand hydrogen bond formation of the pleated beta-sheet structure commonly found in amyloid fibrils. The study not only provided a strategy for inhibitor design based on the flexible structures of amyloid peptides but also revealed some clues to understanding the molecular events involved in Abeta aggregation.  相似文献   

17.
18.
The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a beta-helix conformational organization. Our new model can be described as a super-helical arrangement of flat beta-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in beta-helices (termed beta-bend), although it has not been identified so far. The motif is based on the alternation of beta-sheet and helical conformation as the protein sequence is followed from the N to the C termini (beta-alpha(R)-beta-polyPro-beta). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Abeta(1-40). The recurrence of the beta-bend suggests a general mode of connecting long parallel beta-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the beta-sheet segments in different folds rich in parallel beta-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.  相似文献   

19.
A fragment of barnase comprising amino acids 1 to 36 (B(1-36)) that encompasses the region containing the two large helices (residues 6-18 and 26-34) of the native protein has been obtained by cleavage of the barnase mutant Val36----Met with cyanogen bromide. The circular dichroism (c.d.) spectrum of B(1-36) in the far ultraviolet indicates that the fragment is only weakly structured in water at neutral pH. The two-dimensional 1H nuclear magnetic resonance spectrum of B(1-36) shows, however, that a fraction of the population does have helical structure, spanning amino acid residues 8 to 18. B(1-36) becomes more helical in 35% trifluoroethanol. This is indicated by the c.d. spectrum and the increase from 6.6 to 7.0 in the pKa of His18, which is known to interact with the dipole of helix 6-18 in native barnase. The helical region of B(1-36) in 35% trifluoroethanol extends to residue 6. It is calculated from extrapolation of a trifluoroethanol titration of the ellipticity at 222 nm that B(1-36) exhibits in water approximately 6% of helical structure, calculated for a 36 residue alpha-helical peptide. This corresponds to approximately 20% of that expected for an 11-residue alpha-helical region. In trifluoroethanol, c.d. measurements indicate that approximately 30% of the 36-residue peptide is helical. It has been shown from extensive studies of the refolding of barnase that there is a folding intermediate that contains residues 8 to 18 in a helical conformation and that residue 6 is mainly unfolded. The experiments on the conformation of B(1-36) show that a small, but significant fraction, of its population in water adopts the conformation of the major alpha-helix during the barnase folding pathway, in the absence of tertiary interactions. Thus, in the folding of native barnase, secondary structure formation can precede the docking of the major alpha-helix onto the beta-sheet.  相似文献   

20.
PURPOSE OF REVIEW: The purpose of this review is to highlight recent advances in mass spectrometry and its use for identifying the lipid-bound conformation of apolipoprotein A-I. Given the current interest in understanding the structure of HDL apolipoprotein A-I, this approach seems ideal in assessing its dual role as mediator of lipid efflux and modulator of cellular inflammation. RECENT FINDINGS: A large number of different technical approaches have been employed over the past 25 years in attempts to solve the lipid-bound conformation of apolipoprotein A-I. Since the X-ray crystal structure of lipid-free Delta43 apolipoprotein A-I was reported in 1997, a 'double belt' model describing lipid-bound apolipoprotein A-I conformation for recombinant HDL has prevailed. Recent studies have focused on determining the exact helix-helix registry and salt-bridging partners found on a two apolipoprotein A-I molecule disc as well as on spherical HDL particles. Investigations are all aimed at defining the conformation of lipid-bound apolipoprotein A-I which may provide an explanation for how specific domains of apolipoprotein A-I interact with important HDL-modifying proteins that ultimately determine the apolipoprotein's fate in circulation. SUMMARY: Recent advances in mass spectrometric sequencing of cross-linked peptides provide an excellent tool to help define protein tertiary structure. This approach has provided refined structural information on apolipoprotein A-I folding which had eluded all previous approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号