首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
K Takahashi  H Fukada 《Biochemistry》1985,24(2):297-300
The binding of Streptomyces subtilisin inhibitor (SSI) to subtilisin of Bacillus subtilis strain N' (subtilisin BPN', EC 3.4.21.14) was studied by isothermal calorimetry at pH 7.0 and at various temperatures ranging from 5 to 30 degrees C. Thermodynamic quantities for the binding reaction were derived as a function of temperature by combining the data reported for the dissociation constant with the present calorimetric results. At 25 degrees C, the values are delta G degrees = -57.9 kJ mol-1, delta H = -19.8 kJ mol-1, delta S degree = 0.13 kJ K-1 mol-1, and delta Cp = -1.02 kJ K-1 mol-1. The entropy and the heat capacity changes are discussed in terms of the contributions from the changes in vibrational modes and in hydrophobic interactions.  相似文献   

2.
The thermodynamics of the conversion of aqueous fumarate to L-(-)-malate has been investigated using both heat conduction microcalorimetry and a gas chromatographic method for determining equilibrium constants. The reaction was carried out in aqueous Tris-HCl buffer over the pH range 6.3-8.0, the temperature range 25-47 degrees C, and at ionic strengths varying from 0.0005 to 0.62 mol kg-1. Measured enthalpies and equilibrium ratios have been adjusted to zero ionic strength and corrected for ionization effects to obtain the following standard state values for the conversion of aqueous fumarate 2- to malate 2- at 25 degrees C: K = 4.20 +/- 0.05, delta G degrees = -3557 +/- 30 J mol-1, delta H degrees = -15670 +/- 150 J mol-1, and delta C degrees p = -36 +/- J mol-1 K-1. Equations are given which allow one to calculate the combined effects of pH and temperature on equilibrium constants and enthalpies of this reaction.  相似文献   

3.
The effect of temperature on the apparent equilibrium constant of creatine kinase (ATP:creatine N-phosphotransferase (EC 2.7.3.2)) was determined. At equilibrium the apparent K' for the biochemical reaction was defined as [formula: see text] The symbol sigma denotes the sum of all the ionic and metal complex species of the reactant components in M. The K' at pH 7.0, 1.0 mM free Mg2+, and ionic strength of 0.25 M at experimental conditions was 177 +/- 7.0, 217 +/- 11, 255 +/- 10, and 307 +/- 13 (n = 8) at 38, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy or heat of the reaction at the specified conditions (delta H' degree) was calculated from a van't Hoff plot of log10K' versus 1/T, and found to be -11.93 kJ mol-1 (-2852 cal mol-1) in the direction of ATP formation. The corresponding standard apparent entropy of the reaction (delta S' degree) was +4.70 J K-1 mol-1. The linear function (r2 = 0.99) between log10 K' and 1/K demonstrates that both delta H' degree and delta S' degree are independent of temperature for the creatine kinase reaction, and that delta Cp' degree, the standard apparent heat capacity of products minus reactants in their standard states, is negligible between 5 and 38 degrees C. We further show from our data that the sign and magnitude of the standard apparent Gibbs energy (delta G' degree) of the creatine kinase reaction was comprised mostly of the enthalpy of the reaction, with 11% coming from the entropy T delta S' degree term. The thermodynamic quantities for the following two reference reactions of creatine kinase were also determined. [formula: see text] The delta H degree for Reaction 2 was -16.73 kJ mol-1 (-3998 cal mol-1) and for Reaction 3 was -23.23 kJ mol-1 (-5552 cal mol-1) over the temperature range 5-38 degrees C. The corresponding delta S degree values for the reactions were +110.43 and +83.49 J K-1 mol-1, respectively. Using the delta H' degree of -11.93 kJ mol-1, and one K' value at one temperature, a second K' at a second temperature can be calculated, thus permitting bioenergetic investigations of organs and tissues using the creatine kinase equilibria over the entire physiological temperature range.  相似文献   

4.
Thermodynamics of the enzyme-catalyzed (alkaline phosphatase, EC 3.1.3.1) hydrolysis of glucose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, ribose 5-phosphate, and ribulose 5-phosphate have been investigated using microcalorimetry and, for the hydrolysis of fructose 6-phosphate, chemical equilibrium measurements. Results of these measurements for the processes sugar phosphate2- (aqueous) + H2O (liquid) = sugar (aqueous) + HPO2++-(4) (aqueous) at 25 degrees C follow: delta Ho = 0.91 +/- 0.35 kJ.mol-1 and delta Cop = -48 +/- 18 J.mol-1.K-1 for glucose 6-phosphate; delta Ho = 1.40 +/- 0.31 kJ.mol-1 and delta Cop = -46 +/- 11 J.mol-1.dK-1 for mannose 6-phosphate; delta Go = -13.70 +/- 0.28 kJ.mol-1, delta Ho = -7.61 +/- 0.68 kJ.mol-1, and delta Cop = -28 +/- 42 J.mol-1.K-1 for fructose 6-phosphate; delta Ho = -5.69 +/- 0.52 kJ.mol-1 and delta Cop = -63 +/- 37 J.mol-1.K-1 for ribose 5-phosphate; and delta Ho = -12.43 +/- 0.45 kJ.mol-1 and delta Cop = -84 +/- 30 J.mol-1.K-1 for the hydrolysis of ribulose 5-phosphate. The standard state is the hypothetical ideal solution of unit molality. Estimates are made for the equilibrium constants for the hydrolysis of ribose and ribulose 5-phosphates. The effects of pH, magnesium ion concentration, and ionic strength on the thermodynamics of these reactions are considered.  相似文献   

5.
The binding of Streptomyces subtilisin inhibitor (SSI) to alpha-chymotrypsin (CT) (EC 3.4.21.1) was studied by isothermal and differential scanning calorimetry at pH 7.0. Thermodynamic quantities for the binding of SSI to the enzyme were derived as functions of temperature from binding constants (S. Matsumori, B. Tonomura, and K. Hiromi, private communication) and isothermal calorimetric experiments at 5-30 degrees C. At 25 degrees C, the values are delta G degrees b = -29.9 kJ mol-1, delta Hb = +18.7 (+/- 1.3) kJ mol-1, delta S degrees b = +0.16 kJ K-1 mol-1, and delta C p,b = -1.08 (+/- 0.11) kJ mol-1. The binding of SSI to CT is weak compared with its binding to subtilisin [Uehara, Y., Tonomura, B., & Hiromi, K. (1978) J. Biochem. (Tokyo) 84, 1195-1202; Takahashi, K., & Fukada, H. (1985) Biochemistry 24, 297-300]. This difference is due primarily to a less favorable enthalpy change in the formation of the complex with CT. The hydrophobic effect is presumably the major source of the entropy and heat capacity changes which accompany the binding process. The unfolding temperature of the complex is about 7 degrees C higher than that of the free enzyme. The enthalpy and the heat capacity changes for the unfolding of CT were found to be 814 kJ mol-1 and 17.3 kJ K-1 mol-1 at 49 degrees C. The same quantities for the unfolding of the SSI-CT complex are 1183 kJ mol-1 and 39.2 kJ K-1 mol-1 at 57 degrees C.  相似文献   

6.
The interaction of myosin Subfragment 1 with ATP in 0.1 M KCl containing 0.01 M MgCl2 and 0.02 M Tris/HCl (pH 8.0) was studied by microcalorimetry at temperatures of 4, 12, and 23 degrees C so that values of the heat capacity change (delta Cp) could be obtained for intermediate steps of the ATPase cycle. The delta Cp values are large compared to the value for the overall cycle, indicating that large changes in the hydrophobic effect are involved in transitions between different intermediate states. However, the heat capacity changes themselves show peculiar temperature dependences. Thus bindings of ATP and ADP to Subfragment 1, both of which are strongly exothermic processes, take place with large negative delta Cp of about -3 kJK-1 mol-1 between 4 and 12 degrees C but with very small delta Cp of 0.3-0.4 kJ K-1 mol-1 between 12 and 23 degrees C. On the contrary, the delta Cp for the endothermic hydrolysis of ATP bound to Subfragment 1 is positive (congruent to kJK-1 mol-1) in the lower temperature range but strongly negative (congruent to -4 kJK-1 mol-1) in the higher temperature range. The magnitude of delta Cp for the slow Pi dissociation process is similar but its sign is just opposite to that for the hydrolysis. These anomalous changes in the heat capacity may be due to the temperature-induced changes in a balance between large opposing effects which result from distinct, local conformation changes within the Subfragment 1 molecule.  相似文献   

7.
The enthalpy of hydrolysis of the enzyme-catalyzed (heavy meromyosin) conversion of adenosine 5'-triphosphate (ATP) to adenosine 5'-diphosphate (ADP) and inorganic phosphate has been investigated using heat-conduction microcalorimetry. Enthalpies of reaction were measured as a function of ionic strength (0.05-0.66 mol kg-1), pH (6.4-8.8), and temperature (25-37 degrees C) in Tris/HCl buffer. The measured enthalpies were adjusted for the effects of proton ionization and metal ion binding, protonation and interaction with the Tris buffer, and ionic strength effects to obtain a value of delta H0 = -20.5 +/- 0.4 kJ mol-1 at 25 degrees C for the process, ATP4-(aq) + H2O(l) = ADP3-(aq) + HPO2-4(aq) + H+(aq) where aq is aqueous and l is liquid. Heat measurements carried out at different temperatures lead to a value of delta C0p = -237 +/- 30 J mol-1 K-1 for the above process.  相似文献   

8.
The enthalpy change for the hydrolysis of phosphorylcreatine (PCr) by hydrochloric acid or by alkaline phosphatase was observed at 0, 25, and 37 degrees C. The value for delta H is -44 kJ mol-1 under alkaline, Mg2+-free conditions and is almost independent of temperature, ionic strength, and concentration of reactants. In muscle the reaction is accompanied by a transfer of protons from the buffers (largely histidine) to orthophosphate, release of Mg2+ from PCr, and binding of Mg2+ to orthophosphate. Measurements are reported of the heats of these processes. The calculated value of the overall heat of hydrolysis of PCr (including these processes) at pH 7, pMg 3 is -35 kJ mol-1.  相似文献   

9.
M S Matta  M E Andracki 《Biochemistry》1988,27(21):8000-8007
The specificity ratios kc/Km = k for subtilisin A catalyzed hydrolysis of five aryl esters of N-(methoxycarbonyl)-L-Phe (McPhe) were determined at pH 7.03 and its pD equivalent. The ratios are independent of the electronic properties of the leaving group substituent. Kinetic solvent isotope effects, Dk, increase from about 0.9 to 1.3 as leaving group ability decreases from p-nitrophenolate to p-methoxyphenolate. The k of N-(methoxycarbonyl)-L-phenylalanine p-nitrophenyl ester (NPE) with native enzyme exhibits a strong temperature dependence; delta H* = 87 +/- 3 kJ mol-1 and delta S* = 148 +/- 14 J K-1 mol-1 at 25 degrees C (H2O). The Dk with this substrate is 1.36 at 13.6 degrees C, declines to 0.89 at 25 degrees C, and then increases to 1.04 at 39.4 degrees C. Above neutral pH(D), with McPhe NPE as substrate, the dependence of k is for the dissociated form of a single base of pKapp = 7.38 +/- 0.03 in H2O and 7.67 +/- 0.03 in D2O. The pKapp values are apparently those of the uncomplexed native protein. By contrast, k of 3-phenylpropanoic acid (Prop) p-nitrophenyl ester exhibits a weaker temperature dependence; delta H* = 20 kJ mol-1 and delta S* = -90 J K-1 mol-1 (H2O) at 25 degrees C. The Dk are larger than those for McPhe NPE, decreasing from 1.99 at 20.5 degrees C to 1.74 at 46.1 degrees C. These results, combined with those of previous studies, are consistent with limitation of k by at least two processes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

11.
Thermodynamics of the hydrolysis of sucrose   总被引:1,自引:0,他引:1  
A thermodynamic investigation of the hydrolysis of sucrose to fructose and glucose has been performed using microcalorimetry and high-pressure liquid chromatography. The calorimetric measurements were carried out over the temperature range 298-316 K and in sodium acetate buffer (0.1 M, pH 5.65). Enthalpy and heat capacity changes were obtained for the hydrolysis of aqueous sucrose (process A): sucrose(aq) + H2O(liq) = glucose(aq) + fructose (aq). The determination of the equilibrium constant required the use of a thermochemical cycle calculation involving the following processes: (B) glucose 1-phosphate2-(aq) = glucose 6-phosphate2-(aq); (C) sucrose(aq) + HPO4(2-)(aq) = glucose 1-phosphate2-(aq) + fructose(aq); and (D) glucose 6-phosphate2-(aq) + H2O(liq) = glucose(aq) + HPO4(2-)(aq). The equilibrium constants determined at 298.15 K for processes B and C are 17.1 +/- 1.0 and 32.4 +/- 3.0, respectively. Equilibrium data for process D was obtained from the literature, and in conjunction with the data for processes B and C, used to calculate a value of the equilibrium constant for the hydrolysis of aqueous sucrose. Thus, for process A, delta G0 = -26.53 +/- 0.30 kJ mol-1, K0 = (4.44 +/- 0.54) x 10(4), delta H0 = -14.93 +/- 0.16 kJ mol-1, delta So = 38.9 +/- 1.2 J mol-1 K-1, and delta CoP = 57 +/- 14 J mol-1 K-1 at 298.15 K. Additional thermochemical cycles that bear upon the accuracy of these results are examined.  相似文献   

12.
Binding of branched-chain 2-oxo acids to bovine serum albumin.   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Binding of branched-chain 2-oxo acids to defatted bovine serum albumin was shown by gel chromatography and equilibrium dialysis. 2. Equilibrium-dialysis data suggest a two-side model for binding in Krebs-Henseleit saline at 37 degrees C with n1 = 1 and n2 = 5. Site association constants were: 4-methyl-2-oxovalerate, k1 = 8.7 x 10(3) M-1, k2 = 0.09 x 10(3) M-1; 3-methyl-2-oxovalerate, k1 = 9.8 x 10(3) M-1, k2 = 0.08 x 10(3) M-1; 3-methyl-2-oxobutyrate, k1 = 1.27 x 10(3) M-1, k2 = less than 0.05 x 10(3) M-1. 3. Binding of 4-methyl-2-oxovalerate to defatted albumin in a phosphate-buffered saline, pH 7.4, gave the following thermodynamic parameters: primary site delta H0(1) = -28.6kJ . mol-1 and delta S0(1) = -15.2J . mol-1 . K-1 (delta G0(1) = -24.0kJ . mol-1 at 37 degrees C) and secondary sites delta H0(2) = -25.4kJ . mol-1 and delta S0(2) = -46.1J . mol-1 . K-1 (delta G0(1) = -11.2kJ . mol-1 at 37 degrees C). Thus binding at both sites is temperature-dependent and increases with decreasing temperature. 4. Inhibition studies suggest that 4-methyl-2-oxovalerate may associate with defatted albumin at a binding site for medium-chain fatty acids. 5. Binding of the 2-oxo acids in bovine, rat and human plasma follows a similar pattern to binding to defatted albumin. The proportion bound in bovine and human plasma is much higher than in rat plasma. 6. Binding to plasma protein, and not active transport, explains the high concentration of branched-chain 2-oxo acids leaving rat skeletal muscle relative to the concentration within the tissue, but does not explain the 2-oxo acid concentration gradient between plasma and liver.  相似文献   

13.
Thermodynamics of reversible monomer-dimer association of tubulin   总被引:1,自引:0,他引:1  
D L Sackett  R E Lippoldt 《Biochemistry》1991,30(14):3511-3517
The equilibrium between the rat brain tubulin alpha beta dimer and the dissociated alpha and beta monomers has been studied by analytical ultracentrifugation with use of a new method employing short solution columns, allowing rapid equilibration and hence short runs, minimizing tubulin decay. Simultaneous analysis of the equilibrium concentration distributions of three different initial concentrations of tubulin provides clear evidence of a single equilibrium characterized by an association constant, Ka, of 4.9 X 10(6) M-1 (Kd = 2 X 10(-7) M) at 5 degrees, corresponding to a standard free energy change on association delta G degrees = -8.5 kcal mol-1. Colchicine and GDP both stabilize the dimer against dissociation, increasing the Ka values (at 4.5 degrees C) to 20 X 10(6) and 16 X 10(6) M-1, respectively. Temperature dependence of association was examined with multiple three-concentration runs at temperatures from 2 to 30 degrees C. The van't Hoff plot was linear, yielding positive values for the enthalpy and entropy changes on association, delta S degrees = 38.1 +/- 2.4 cal deg-1 mol-1 and delta H degrees = 2.1 +/- 0.7 kcal mol-1, and a small or zero value for the heat capacity change on association, delta C p degrees. The entropically driven association of tubulin monomers is discussed in terms of the suggested importance of hydrophobic interactions to the stability of the monomer association and is compared to the thermodynamics of dimer polymerization.  相似文献   

14.
The thermodynamics of the enzymatic hydrolysis of cellobiose, gentiobiose, isomaltose, and maltose have been studied using both high pressure liquid chromatography and microcalorimetry. The hydrolysis reactions were carried out in aqueous sodium acetate buffer at a pH of 5.65 and over the temperature range of 286 to 316 K using the enzymes beta-glucosidase, isomaltase, and maltase. The thermodynamic parameters obtained for the hydrolysis reactions, disaccharide(aq) + H2O(liq) = 2 glucose(aq), at 298.15 K are: K greater than or equal to 155, delta G0 less than or equal to -12.5 kJ mol-1, and delta H0 = -2.43 +/- 0.31 kJ mol-1 for cellobiose; K = 17.9 +/- 0.7, delta G0 = -7.15 +/- 0.10 kJ mol-1 and delta H0 = 2.26 +/- 0.48 kJ mol-1 for gentiobiose; K = 17.25 +/- 0.7, delta G0 = -7.06 +/- 0.10 kJ mol-1, and delta H0 = 5.86 +/- 0.54 kJ mol-1 for isomaltose; and K greater than or equal to 513, delta G0 less than or equal to -15.5 kJ mol-1, and delta H0 = -4.02 +/- 0.15 kJ mol-1 for maltose. The standard state is the hypothetical ideal solution of unit molality. Due to enzymatic inhibition by glucose, it was not possible to obtain reliable values for the equilibrium constants for the hydrolysis of either cellobiose or maltose. The entropy changes for the hydrolysis reactions are in the range 32 to 43 J mol-1 K-1; the heat capacity changes are approximately equal to zero J mol-1 K-1. Additional pathways for calculating thermodynamic parameters for these hydrolysis reactions are discussed.  相似文献   

15.
D K Blumenthal  J T Stull 《Biochemistry》1982,21(10):2386-2391
The reversible association of Ca42+-calmodulin with the inactive catalytic subunit of myosin light chain kinase results in the formation of the catalytically active holoenzyme complex [Blumenthal, D. K., & Stull, J. T. (1980) Biochemistry 19, 5608--5614]. The present study was undertaken in order to determine the effects of pH, temperature, and ionic strength on the processes of activation and catalysis. The catalytic activity of myosin light chain kinase, when fully activated by calmodulin, exhibited a broad pH optimum (greater than 90% of maximal activity from pH 6.5 to pH 9.0), showed only a slight inhibition by moderate ionic strengths (less than 20% inhibition at mu = 0.22), and displayed a marked temperature dependence (Q10 congruent to 2; Ea = 10.4 kcal mol-1). Thermodynamic parameters calculated from Arrhenius plots indicate that the Gibb's energy barrier associated with the rate-limiting step of catalysis is primarily enthalpic. The process of kinase activation by calmodulin had a narrower pH optimum (pH 6.0--7.5) than did catalytic activity, was markedly inhibited by increasing ionic strength (greater than 70% inhibition at mu = 0.22), and exhibited nonlinear van't Hoff plots. Between 10 and 20 degrees C, activation was primarily entropically driven (delta S degrees congruent to 40 cal mol-1 deg-1; delta H degrees = -900 cal mol-1), but between 20 and 30 degrees C, enthalpic factors predominated in driving the activation process (delta S degrees congruent to 10 cal mol-1 deg-1; delta H degrees = -9980 cal mol-1). The apparent change in heat capacity (delta Cp) accompanying activation was estimated to be -910 cal mol-1 deg-1. On the basis of these data we propose that although hydrophobic interactions between calmodulin and the kinase are necessary for the activation of the enzyme, other types of interactions such as hydrogen bonding, ionic, and van der Waals interactions also make significant and probably obligatory contributions to the activation process.  相似文献   

16.
The temperature dependence of the pre-steady-state MgATP-dependent electron transfer from the MoFe protein to the Fe protein of the nitrogenase from Azotobacter vinelandii has been investigated between 6 degrees C and 31 degrees C by stopped-flow spectrophotometry. Below 14 degrees C, the data are consistent with a model in which interaction of MgATP with nitrogenase is fast and irreversible, and is followed by reversible electron transfer. From the extent and from the rate of the absorbance change, the rate constants for electron transfer from Fe protein to MoFe protein and of the reverse reaction were calculated. The direct rate constant increases with temperature (6-14 degrees C) from about 1 s-1 to about 26 s-1. The rate constant for the reverse reaction was found to be approximately 4 s-1 and invariant with the reaction temperature. Analysis of the data obtained in the temperature range between 6 degrees C and 12 degrees C within the framework of the transition-state theory show that electron transfer from the Fe protein to the MoFe protein occurs via a highly disordered transition state with activation parameters delta H(0) ++ = 289 kJ.mol-1 and delta S(0) ++ = 792 J.K-1.mol-1. The Eyring plot of the stopped-flow data displays an inflection point around 14 degrees C. From the stopped-flow data obtained between 18 degrees and 27 degrees C the activation parameters delta H(0) ++ and delta S(0) ++ for the reduction of the MoFe protein by Fe protein are calculated to be 90 kJ.mol-1 and 99 J.K-1.mol-1 respectively. A second inflection point in the Eyring plot could exist around 28 degrees C.  相似文献   

17.
The thermotropic properties of triolein-rich, low-cholesterol dipalmitoyl phosphatidylcholine (DPPC) emulsion particles with well-defined chemical compositions (approximately 88% triolein, 1% cholesterol, 11% diacyl phosphatidylcholine) and particle size distributions (mean diameter, approximately 1000-1100 A) were studied in the absence and presence of apolipoprotein-A1 by a combination of differential scanning and titration calorimetry. The results are compared to egg yolk PC emulsions of similar composition and size. Isothermal titration calorimetry at 30 degrees C was used to saturate the emulsion surface with apo-A1 and rapidly quantitate the binding constants (affinity Ka = 11.1 +/- 3.5 x 10(6) M-1 and capacity N = 1.0 +/- 0.09 apo-A1 per 1000 DPPC) and heats of binding (enthalpy H = -940 +/- 35 kcal mol-1 apo-A1 or -0.92 +/- 0.12 kcal mol-1 DPPC). The entropy of association is -3070 cal deg-1 mol-1 protein or -3 cal deg-1 mol-1 DPPC. Without protein on the surface, the differential scanning calorimetry heating curve of the emulsion showed three endothermic transitions at 24.3 degrees C, 33.0 degrees C, and 40.0 degrees C with a combined enthalpy of 1.53 +/- 0.2 kcal mol-1 DPPC. With apo-A1 on the surface, the heating curve showed the three transitions more clearly, in particular, the second transition became more prominent by significant increases in both the calorimetric and Van't Hoff enthalpies. The combined enthalpy was 2.70 +/- 0.12 kcal mol-1 DPPC and remained constant upon repeated heating and cooling. Indicating that the newly formed DPPC emulsion-Apo-A1 complex is thermally reversible during calorimetry. Thus there is an increase in delta H of 1.17 kcal mol-1 DPPC after apo-A1 is bound, which is roughly balanced by the heat released during binding (-0.92 kcal) of apo-A1. The melting entropy increase, +3.8 cal deg-1 mol-1 DPPC of the three transitions after apo-A1 binds, also roughly balances the entropy (-3 cal deg-1 mol-1 DPPC) of association of apo-A1. These changes indicate that apo-A1 increases the amount of ordered gel-like phase on the surface of DPPC emulsions when added at 30 degrees C. From the stoichiometry of the emulsions we calculate that the mean area of DPPC at the triolein/DPPC interface is 54.5 A2 at 41 degrees C and 54.2 A2 at 30 degrees C. The binding of apo-A1 at 30 degrees C to the emulsion reduces the surface area per DPPC molecule from 54.2 A2 to 50.8 A2. At 30 degrees apo-A1 binds with high affinity and low capacity to the surface of DPPC emulsions and increases the packing density of the lipid domain to which it binds. Apo-A1 was also titrated onto DPPC emulsions at 45 degrees C. This temperature is above the gel liquid crystal transition. No heat was released or adsorbed. Furthermore, egg yolk phosphatidylcholine emulsions of nearly identical composition were also titrated at 30 degrees C with apo-A1 and were euthermic. Association constants were previously measured using a classical centrifugation assay and were used to calculate the entropy of apo-A1 binding (+28 cal deg-1 mol-1 apo-A1). This value indicates that apo-A1 binding to a fluid surface like egg yolk phosphatidylcholine or probably DPPC at 45 degrees C is hydrophobic and is consistent with hydrocarbon lipid or protein moities coming together and excluding water. Thus the binding of apo-A1 to partly crystalline surfaces is entropically negative and increases the order of the already partly ordered phases, whereas binding to liquid surfaces is mainly an entropically driven hydrophobic process.  相似文献   

18.
The kinetics of the thermolysis of 5'-deoxyadenosylcobalamin (AdoCbl, coenzyme B12) in aqueous solution, pH 7.5, have been studied in the temperature range 30-85 degrees C using AdoCbl tritiated at the adenine C2 position and the method of initial rates. Combined with a careful analysis of the distribution of adenine-containing products, the results permit the dissection of the competing rate constants for carbon-cobalt bond homolysis and heterolysis. After correction for the temperature-dependent occurrence of the much less reactive base-off species of AdoCbl, the activation parameters for homolysis of the base-on species were found to be delta H++homo,on = 33.8 +/- 0.2 kcal mol-1 and delta S++homo,on = 13.5 +/- 0.7 cal mol-1 K-1, values not significantly different from those determined by Hay and Finke (J. Am. Chem. Soc. 108 (1986) 4820), in the temperature range 85-115 degrees C. In contrast, the heterolysis of base-on AdoCbl was characterized by a much smaller enthalpy of activation (delta H++het,on = 18.5 +/- 0.2 kcal mol-1) and a negative entropy of activation (delta S++het,on = -34.0 +/- 0.7 cal mol-1 K-1) so that heterolysis, which is minor pathway at elevated temperatures, is the dominant pathway for AdoCbl decomposition at physiological temperatures. Using literature values for the rate constant for the reverse reaction, the equilibrium constant for AdoCbl homolysis at 37 degrees C was calculated to be 7.9 x 10(-18). Comparison with the equilibrium constant for this homolysis at the active site of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii shows that the enzymes shifts the equilibrium constant towards homolysis products by a factor of 2.9 x 10(12) (17.7 kcal mol-1) by binding the thermolysis products with an equilibrium constant of 7.1 x 10(16) M-2, compared to the bonding constant for AdoCbl of 2.4 x 10(4) M-1.  相似文献   

19.
The temperature induced unfolding of barstar wild-type of bacillus amyloliquefaciens (90 residues) has been characterized by differential scanning microcalorimetry. The process has been found to be reversible in the pH range from 6.4 to 8.3 in the absence of oxygen. It has been clearly shown by a ratio of delta HvH/delta Hcal near 1 that denaturation follows a two-state mechanism. For comparison, the C82A mutant was also studied. This mutant exhibits similar reversibility, but has a slightly lower transition temperature. The transition enthalpy of barstar wt (303 kJ mol-1) exceeds that of the C82A mutant (276 kJ mol-1) by approximately 10%. The heat capacity changes show a similar difference, delta Cp being 5.3 +/- 1 kJ mol-1 K-1 for the wild-type and 3.6 +/- 1 kJ mol-1 K-1 for the C82A mutant. The extrapolated stability parameters at 25 degrees C are delta G0 = 23.5 +/- 2 kJ mol-1 for barstar wt and delta G0 = 25.5 +/- 2 kJ mol-1 for the C82A mutant.  相似文献   

20.
A Blume  J Tuchtenhagen 《Biochemistry》1992,31(19):4636-4642
The heat of dissociation of the second proton of 1,2-dimyristoylphosphatidic acid (DMPA) was studied as a function of temperature using titration calorimetry. The dissociation of the second proton of DMPA was induced by addition of NaOH. From the calorimetric titration experiment, the intrinsic pK0 for the dissociation reaction could be determined by applying the Gouy-Chapman theory. pK0 decreases with temperature from ca. 6.2 at 11 degrees C to 5.4 at 54 degrees C. From the total heat of reaction, the dissociation enthalpy, delta Hdiss, was determined by subtracting the heat of neutralization of water and the heat of dilution of NaOH. In the temperature range between 2 and 23 degrees C, delta Hdiss is endothermic with an average value of ca. 2.5 kcal.mol-1 and shows no clear-cut temperature dependence. In the temperature range between 23 and 52 degrees C, delta Hdiss calculated after subtraction of the heat of neutralization and dilution is not the true dissociation enthalpy but includes contributions from the phase transition enthalpy, delta Htrans, as the pH jump induces a transition from the gel to the liquid-crystalline phase. The delta Cp for the reaction enthalpy observed in this temperature range is positive. Above 53 degrees C, the pH jump induces again only the dissociation of the second proton, and the bilayers stay in the liquid-crystalline phase. In this temperature range, delta Hdiss seems to decrease with temperature. The thermodynamic data from titration calorimetry and differential scanning calorimetry as a function of pH can be combined to construct a complete enthalpy-temperature diagram of DMPA in its two ionization states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号