首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fos proteins have been implicated in control of tumorigenesis-related genetic programs including invasion, angiogenesis, cell proliferation and apoptosis. In this study, we demonstrate that c-Fos is able to induce mesenchymal transition in murine tumorigenic epithelial cell lines. Expression of c-Fos in MT1TC1 cells led to prominent alterations in cell morphology, increased expression of mesenchymal markers, vimentin and S100A4, DNA methylation-dependent down-regulation of E-cadherin and abrogation of cell-cell adhesion. In addition, c-Fos induced a strong beta-catenin-independent proliferative response in MT1TC1 cells and stimulated cell motility, invasion and adhesion to different extracellular matrix proteins. To explore whether loss of E-cadherin plays a role in c-Fos-mediated mesenchymal transition, we expressed wild-type E-cadherin and two different E-cadherin mutants in MT1TC1/c-fos cells. Expression of wild-type E-cadherin restored epithelioid morphology and enhanced cellular levels of catenins. However, exogenous E-cadherin did not influence expression of c-Fos-dependent genes, only partly suppressed growth of MT1TC1/c-fos cells and produced no effect on c-Fos-stimulated cell motility and invasion in matrigel. On the other hand, re-expression of E-cadherin specifically negated c-Fos-induced adhesion to collagen type I, but not to laminin or fibronectin. Of interest, mutant E-cadherin which lacks the ability to form functional adhesive complexes had an opposite, potentiating effect on cell adhesion to collagen I. These data suggest that cell adhesion to collagen I is regulated by the functional state of E-cadherin. Overall, our data demonstrate that, with the exception of adhesion to collagen I, c-Fos is dominant over E-cadherin in relation to the aspects of mesenchymal transition assayed in this study.  相似文献   

2.
3.
MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. beta-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced beta-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/beta-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/beta-catenin complex formation and restoring E-cadherin membrane localization.  相似文献   

4.
5.
Protein kinase D (PKD) has been implicated in many aspects of tumorigenesis and progression, and is an emerging molecular target for the development of anticancer therapy. Despite recent advancement in the development of potent and selective PKD small molecule inhibitors, the availability of in vivo active PKD inhibitors remains sparse. In this study, we describe the discovery of a novel PKD small molecule inhibitor, SD-208, from a targeted kinase inhibitor library screen, and the synthesis of a series of analogs to probe the structure-activity relationship (SAR) vs. PKD1. SD-208 displayed a narrow SAR profile, was an ATP-competitive pan-PKD inhibitor with low nanomolar potency and was cell active. Targeted inhibition of PKD by SD-208 resulted in potent inhibition of cell proliferation, an effect that could be reversed by overexpressed PKD1 or PKD3. SD-208 also blocked prostate cancer cell survival and invasion, and arrested cells in the G2/M phase of the cell cycle. Mechanistically, SD-208-induced G2/M arrest was accompanied by an increase in levels of p21 in DU145 and PC3 cells as well as elevated phosphorylation of Cdc2 and Cdc25C in DU145 cells. Most importantly, SD-208 given orally for 24 days significantly abrogated the growth of PC3 subcutaneous tumor xenografts in nude mice, which was accompanied by reduced proliferation and increased apoptosis and decreased expression of PKD biomarkers including survivin and Bcl-xL. Our study has identified SD-208 as a novel efficacious PKD small molecule inhibitor, demonstrating the therapeutic potential of targeted inhibition of PKD for prostate cancer treatment.  相似文献   

6.
7.
Protein kinase D1 (PKD1) is a serine-threonine kinase that regulates various functions within the cell, including cell proliferation, apoptosis, adhesion, and cell motility. In normal cells, this protein plays key roles in multiple signaling pathways by relaying information from the extracellular environment and/or upstream kinases and converting them into a regulated intracellular response. The aberrant expression of PKD1 is associated with enhanced cancer phenotypes, such as deregulated cell proliferation, survival, motility, and epithelial mesenchymal transition. In this review, we summarize the structural and functional aspects of PKD1 and highlight the pathobiological roles of this kinase in cancer.  相似文献   

8.
目的观察转化生长因子-β1(TGF-β1)对人胃癌细胞株AGS发生上皮-间充质转化(epithelial-mesenchymal transition,EMT)及体外侵袭的影响。方法将体外培养的AGS用TGF-β1干预后,倒置显微镜下观察细胞形态学的变化,MTT比色法检测TGF-β1对AGS增殖的影响,细胞划痕试验和Transwell侵袭试验检测细胞运动和侵袭力的改变;免疫荧光和Western blot检测snail、E-cadherin(上皮钙粘蛋白)、和N-cadherin(神经钙粘蛋白)表达的变化。结果TGF-β1诱导AGS向间充质细胞形态转化,低浓度促进细胞增殖,而高浓度时细胞增殖率逐步降低,且snail和间充质细胞表型N-cadherin表达上调,而上皮细胞表型E-cadherin表达下调,同时细胞运动和侵袭能力大大增强。结论TGF-β1可诱导AGS发生EMT,从而增加其侵袭、转移的能力。  相似文献   

9.
Colorectal cancer is often lethal when invasion and/or metastasis occur. Tumor progression to the metastatic phenotype is mainly dependent on tumor cell invasiveness. Secondary bile acids, particularly deoxycholic acid (DCA), are implicated in promoting colon cancer growth and progression. Whether DCA modulates beta-catenin and promotes colon cancer cell growth and invasiveness remains unknown. Because beta-catenin and its target genes urokinase-type plasminogen activator receptor (uPAR) and cyclin D1 are overexpressed in colon cancers, and are linked to cancer growth, invasion, and metastasis, we investigated whether DCA activates beta-catenin signaling and promotes colon cancer cell growth and invasiveness. Our results show that low concentrations of DCA (5 and 50 microM) significantly increase tyrosine phosphorylation of beta-catenin, induce urokinase-type plasminogen activator, uPAR, and cyclin D1 expression and enhance colon cancer cell proliferation and invasiveness. These events are associated with a substantial loss of E-cadherin binding to beta-catenin. Inhibition of beta-catenin with small interfering RNA significantly reduced DCA-induced uPAR and cyclin D1 expression. Blocking uPAR with a neutralizing antibody significantly suppressed DCA-induced colon cancer cell proliferation and invasiveness. These findings provide evidence for a novel mechanism underlying the oncogenic effects of secondary bile acids.  相似文献   

10.
11.
该文探讨了SIK1作为miR-93新的靶基因对前列腺癌细胞增殖、侵袭和迁移的抑制作用。采用重组质粒pcDNA3.1-SIK1上调前列腺癌细胞中SIK1的表达后,利用CCK8和克隆形成实验检测细胞增殖;利用细胞划痕和Transwell实验检测细胞侵袭和迁移;利用Western blot检测E-cadherin和Vimentin的蛋白表达。采用生物信息学方法预测靶向SIK1 mRNA的3’UTR的miRNAs并进行筛选;双荧光素酶报告实验和Western blot验证miR-93靶向调控SIK1。结果显示,上调SIK1的表达能抑制前列腺癌细胞的增殖、侵袭和迁移,并增加E-cadherin和减少Vimentin蛋白表达;miR-93能够靶向负调控SIK1。总之,SIK1可作为miR-93一个新的靶基因抑制前列腺癌细胞增殖、侵袭和迁移。  相似文献   

12.
Mutations and/or deletions of Pkd1 in mouse models resulted in attenuation of osteoblast function and defective bone formation; however, the function of PKD1 in human osteoblast and bone remains uncertain. In the current study, we used lentivirus-mediated shRNA technology to stably knock down PKD1 in the human osteoblastic MG-63 cell line and to investigate the role of PKD1 on human osteoblast function and molecular mechanisms. We found that a 53% reduction of PKD1 by PKD1 shRNA in stable, transfected MG-63 cells resulted in increased cell proliferation and impaired osteoblastic differentiation as reflected by increased BrdU incorporation, decreased alkaline phosphatase activity, and calcium deposition and by decreased expression of RUNX2 and OSTERIX compared to control shRNA MG-63 cells. In addition, knockdown of PKD1 mRNA caused enhanced adipogenesis in stable PKD1 shRNA MG-63 cells as evidenced by elevated lipid accumulation and increased expression of adipocyte-related markers such as PPARγ and aP2. The stable PKD1 shRNA MG-63 cells exhibited lower basal intracellular calcium, which led to attenuated cytosolic calcium signaling in response to fluid flow shear stress, as well as increased intracellular cAMP messages in response to forskolin (10 μM) stimulation. Moreover, increased cell proliferation, inhibited osteoblastic differentiation, and osteogenic and adipogenic gene markers were significantly reversed in stable PKD1 shRNA MG-63 cells when treated with H89 (1 μM), an inhibitor of PKA. These findings suggest that downregulation of PKD1 in human MG-63 cells resulted in defective osteoblast function via intracellular calcium-cAMP/PKA signaling pathway.  相似文献   

13.
Tumor progression is characterized by loss of cell adhesion and increase of invasion and metastasis. The cell adhesion molecule E-cadherin is frequently down-regulated or mutated in tumors. In addition to down-regulation of cell adhesion, degradation of the extracellular matrix by matrix metalloproteinases is necessary for tumor cell spread. To investigate a possible link between E-cadherin and matrix metalloproteinase 3 (MMP-3), we examined expression of MMP-3 in human MDA-MB-435S cells transfected with wild-type (wt) or three different tumor-associated mutant E-cadherin variants with alterations in exons 8 or 9, originally identified in gastric carcinoma patients. In the presence of wt E-cadherin, the MMP-3 protein level was decreased in cellular lysates and in the supernatant where a secreted form of the protein is detectable. Down-regulation of MMP-3 was not found in MDA-MB-435S transfectants expressing mutant E-cadherin variants which indicates that E-cadherin mutations interfere with the MMP-3 suppressing function of E-cadherin. The mechanism of regulation of MMP-3 by E-cadherin is presently not clear. We have previously found that cell motility is enhanced by expression of the mutant E-cadherin variants used in this study. Here, we found that application of the synthetic inhibitor of MMP-3 NNGH and small interfering RNA (siRNA) directed against MMP-3 reduce mutant E-cadherin-enhanced cell motility. Taken together, our results point to a functional link between MMP-3 and E-cadherin. MMP-3 is differentially regulated by expression of wt or mutant E-cadherin. On the other hand, MMP-3 plays a role in the enhancement of cell motility by mutant E-cadherin. Both observations may be highly relevant for tumor progression since they concern degradation of the extracellular matrix and tumor cell spread.  相似文献   

14.
Loss of E-cadherin in melanoma cells frees them from keratinocytes-mediated proliferation and phenotypic control, which can be restored by forced E-cadherin expression. In this study, E-cadherin and its derivatives were introduced into metastatic melanoma line 1205Lu. E-cadherin and E-cadherin-alpha-catenin fusion protein were functional in mediating cell adhesion, downregulating MCAM(4) in coculture, and inhibiting proliferation regardless of beta-catenin expression levels and activation status. In contrast, cytoplasmic domain-deleted (E-cadDeltaCYT) derivative was not able to reverse malignancy. The results indicate that E-cadherin-mediated cell adhesion is required for keratinocyte-mediated control of melanocytic cells, which can override proliferative activity of beta-catenin.  相似文献   

15.
In this study, we investigate the molecular mechanism by which histone deacetylase (HDAC) inhibitors exert anti-invasiveness effect against prostate cancer cells. We first evaluate the growth inhibition effect of HDAC inhibitors in prostate cancer cells, which is accompanied by induction of p21WAF1 expression and accumulation of acetylated histones. And we found that the migration and invasion of prostate cancer cells is strongly inhibited by treatment with HDAC inhibitors. In parallel, E-cadherin level is highly up-regulated in HDAC inhibitor-treated prostate cancer cells. And siRNA knockdown of E-cadherin significantly diminishes the anti-invasion effect of HDAC inhibitors, indicating that E-cadherin overexpression is one of possible mechanism for anti-invasion effect of HDAC inhibitors. Furthermore, specific downregulation of HDAC1, but not HDAC2, causes E-cadherin expression and subsequent inhibition of cell motility and invasion. Collectively, our data demonstrate that HDAC1 is a major repressive enzyme for E-cadherin expression as well as HDAC inhibitor-mediated anti-invasiveness.  相似文献   

16.
17.
The global gene regulator Special AT-rich sequence-binding protein-1 (SATB1) has been reported to induce EMT-like changes and be associated with poor clinical outcome in several cancers. This study aims to evaluate whether SATB1 affects the biological behaviors of bladder transitional cell carcinoma (BTCC) and further elucidate if this effect works through an epithelial-mesenchymal transition (EMT) pathway. The expression of SATB1, E-cadherin (epithelial markers), vimentin (mesenchymal markers) in BTCC tissues and adjacent noncancerous tissues, as well as in two cell lines of bladder cancer were investigated. Whether the SATB1 expression is associated with clinicopathological factors or not was statistically analyzed. Cell invasion and migration, cell cycle, cell proliferation and apoptosis were evaluated in SATB1 knockdown and overexpressed cell lines. Our results showed that the expression of SATB1 was remarkably up-regulated both in BTCC tissues and in bladder cancer cell lines with high potential of metastasis. The results were also associated with EMT markers and poor prognosis of BTCC patients. Moreover, SATB1 induced EMT processes through downregulation of E-cadherin, upregulation of E-cadherin repressors (Snail, Slug and vimentin). SATB1 also promoted cell cycle progression, cell proliferation, cell invasion and cell migration, but did not alter cell survival. In conclusion, our results suggest that SATB1 plays a crucial role in the progression of bladder cancer by regulating genes controlling EMT processes. Further, it may be a novel therapeutic target for aggressive bladder cancers.  相似文献   

18.
Intestinal trefoil factor (TFF3) is essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. We previously showed that TFF3 was overexpressed in gastric carcinoma. Whether TFF3 possesses malignant potential is not fully elucidated. We sought to investigate the effects of inducting TFF3 expression in a non-malignant rat fibroblast cell line (Rat-2) on the cell proliferation, invasion and the genes regulating cell invasion. Invasiveness and proliferation of transfected Rat-2 cell line were assessed using in vitro invasion chamber assay and colorimetric MTS assay. Differential mRNA expressions of invasion-related genes, namely, metalloproteinases (MMP-9), tissue inhibitors of metalloproteinases (TIMP-1), beta-catenin and E-cadherin, were determined by quantitative real-time polymerase chain reaction (PCR). We showed that TFF3 did not inhibit the proliferation of Rat-2 cells. We also demonstrated that transfection of TFF3 significantly promoted invasion of Rat-2 cells by 1.4- to 2.2-folds. There was an upregulation of beta-catenin (13.1-23.0%) and MMP-9 (43.4-92.2%) mRNA expression levels, and downregulation of E-cadherin (25.6-33.8%) and TIMP-1 (31.5-37.8%) in TFF3-transfected cells compared to controls during 48-h incubation. Our results suggested that TFF3 possesses malignant potential through promotion of cell invasiveness and alteration of invasion-related genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号