首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five popularly grown mulberry cultivars (K-2, MR-2, TR-10, BC2-59 and S-13) were subjected to drought stress by withholding irrigation, to obtain leaf water potentials (Ψw) ranging from −0.75, −1.50 and −2.25 MPa. Accumulation of proline, glycine betaine and abscisic acid (ABA) were quantified in control and water stressed mulberry leaves. The activities of enzymes involved in proline accumulation including glutamate dehydrogenase (EC1.4.1.2-4), pyrroline-5-carboxylate synthetase (EC 1.2.1.41), pyrroline-5-carboxylate reductase (EC1.5.1.2), ornithine transaminase (EC 2.6.1.13) were significantly enhanced in the leaves of all the cultivars with decreasing leaf water potentials, while the activities of proline dehydrogenase (EC 1.5.1.2) were reduced with progressive increase in water stress. Accumulation of proline, glycine betaine and abscisic acid was relatively higher in S-13 and BC2-59 compared to K-2, MR-2 and TR-10 under water deficit conditions. Our results demonstrate that S-13 and BC2-59 have superior osmoprotectant mechanisms under water-limited growth regimes.  相似文献   

2.
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.  相似文献   

3.
Proline is synthesized either from glutamate or from ornithine in plants. Relatively little is known about the contribution of the pathway from ornithine to proline biosynthesis. In this paper we investigated the contribution of ornithine--aminotransterase (OAT), an enzyme responsible for ornithine pathway, to proline accumulation in water-stressed detached rice leaves. Although OAT activity increased with the increase of water stress duration, a pattern similar to that obtained for proline accumulation, the ornithine pathway in rice leaves seems to contribute little, if any, to proline accumulation under water stress condition. This conclusion was based on the observations that (a) gabaculine (50 M), an inhibitor of OAT, inhibited about 75% OAT activity caused by water stress but reduced only 20% of proline content and (b) cycloheximide, a protein synthesis inhibitor, had no effect on OAT activity induced by water stress but significantly reduced proline accumulation.  相似文献   

4.
Water stress resulted in a specific response leading to a large and significant increase (80-fold) in free proline content of ragi (Eleusine coracana leaves and seedlings. L-Proline protected ornithine aminotransferase, an enzyme in the pathway for proline biosynthesis, isolated from normal and stressed ragi leaves against heat inactivation and denaturation by urea and guanidinium chloride. The protection of the stressed enzyme by L-proline was much more complete than that of the enzyme isolated from normal leaves. While L-ornithine, one of the substrates, protected the stressed enzyme against inactivation, it enhanced the rate of inactivation of the normal enzyme. α-Ketoglutarate protected both the normal and stressed enzyme against inactivation and denaturation. These results support the suggestion that ornithine aminotransferase has undergone a structural alteration during water stress. In view of the causal relationship between elevated temperature and water stress of plants under natural conditions, the protection afforded by proline against inactivation and denaturation of the enzyme from stressed leaves assumes significance. These results provide an explanation for a possible functional importance of proline accumulation during water stress.  相似文献   

5.
The relative water content (RWC), free proline levels and the activities of enzymes involved in proline metabolism were studied in drought tolerant (Ca/H 680) and drought sensitive (Ca/H 148) genotypes of cotton (Gossypium hirsutum L.) during induction of water stress and posterior recovery. Water stress caused a significant increase in proline levels and P5CS activity in leaves of both tolerant and sensitive genotypes, whereas the activity of P5CR increased minimally and the activity of OAT remains unchanged. The activity of PDH decreased under drought stress in both the genotypes. The leaf of tolerant genotype maintained higher RWC, photosynthetic activity and proline levels, as well as higher P5CS and P5CR activities under water stress than that of drought sensitive genotype. The drought induced proline levels and activities of P5CS and P5CR declined and tend to be equal to their respective controls, during recovery, whereas the PDH activity tends to increase. These results indicate that induction of proline levels by up regulation of P5CS and down regulation of PDH may be involved in the development of drought tolerance in cotton.  相似文献   

6.
Brassica juncea (drought susceptible) and B. campestris (drought tolerant) were germinated under simulated water stress created by polyethylene glycol (MW 6000). The two species showed characteristic differences in dry weight, nitrate reductase, aspartate amino transferase, alanine aminotransferase, glutamate dehydrogenase and free proline accumulation in the embryo axis under water stress. Stress resulted in the decreased activities of these enzymes and the decrease was more in B. juncea than in B. campestris. In both species, protein content was higher under stress. In B. juncea, a 12-fold increase in free proline occurred as compared to a 7-fold increase in B. campestris at ?6 atm osmotic potential.  相似文献   

7.
Hydroponically grown wheat seedlings of two prominent Bulgarian cultivars (Katya and Prelom) were subjected to 48 h osmotic stress with PEG 8000 and were then rehydrated. The degree of stress was evaluated by monitoring relative water content, lipid peroxidation level, and accumulation of free proline and hydrogen peroxide in the leaves. Anatomy and ultrastructure of leaf tissue were observed under light microscopy. After imposition of stress, drought tolerant cultivar Katya displayed higher free proline content and significantly lower malondialdehyde and peroxide concentration in leaves than in the leaves of susceptible cultivar Prelom. After 24 h of rehydration Katya showed better ability to restore leaf water status and an apparent tendency towards recovery, whereas Prelom sustained higher levels of hydrogen peroxide, lipid peroxidation products and free proline and markedly low relative water content. Here, we have uncovered some of the characteristics displayed by cultivar Katya that enable it to survive and recover from severe osmotic stress. Interestingly, there was congruence between our results and the high level of cultivar Katya drought tolerance observed in the field.  相似文献   

8.
The present study investigated drought-induced responses of non-enzymatic antioxidants in four diverse mulberry genotypes (Morus indica L. S-36, M-5, MR-2 and V-1). Inside the glasshouse, potted plants were subjected to four water regimes for 75 days: (a) control: pots maintained at 100% pot water holding capacity (PC) (b) low water stress: 75% PC (c) medium water stress: 50% PC and (d) high water stress: 25% PC. Photosynthetic leaf gas exchange and non-enzymatic antioxidants including α-tocopherol, ascorbic acid (AA), glutathione, proline and total carotenoids were measured in leaves at regular intervals. Amongst all, V-1 was relatively drought tolerant and showed exceeded accumulation of α-tocopherol and AA-glutathione pool in association with higher carotenoids and proline contents. Susceptible S-36, M-5 and MR-2 could not induce any significant up-regulation in AA-glutathione pool leading to endogenous loss of α-tocopherol and more lipid peroxidation. Reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide (O2 · ?) showed apparent accumulation in water-stressed leaves and significantly contributed to lipid peroxidation in susceptible genotypes when compared to V-1. Our study demonstrated that proline, AA and glutathione were the major non-enzymatic antioxidants in mulberry with α-tocopherol and carotenoids as good additional indicators for drought stress tolerance. These non-enzymatic antioxidants can cumulatively render effective protection against oxidative damage and can be considered as reliable markers for screening drought-tolerant mulberry genotypes.  相似文献   

9.
NaCl effects on proline metabolism in rice (Oryza sativa) seedlings   总被引:10,自引:0,他引:10  
Salt-stress effects on osmotic adjustment, ion and proline concentrations as well as proline metabolizing enzyme activities were studied in two rice ( Oryza sativa L.) cultivars differing in salinity resistance: I Kong Pao (IKP; salt-sensitive) and Nona Bokra (salt-resistant). The salt-sensitive cultivar exposed to 50 and 100 m M NaCl in nutritive solution for 3 and 10 days accumulated higher levels of sodium and proline than the salt-resistant cultivar and displayed lower levels of osmotic adjustment. Proline accumulation was not related to proteolysis and could not be explained by stress-induced modifications in Δ1-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2) or proline dehydrogenase (PDH; EC 1.5.1.2) activities recorded in vitro. The extracted ornithine Δ -aminotransferase (OAT; EC 2.6.1.13) activity was increased by salt stress in the salt-sensitive cultivar only. In both genotypes, salt stress induced an increase in the aminating activity of root glutamate dehydrogenase (GDH; EC 1.4.1.2) while deaminating activity was reduced in the leaves of the salt-sensitive cultivar. The total extracted glutamine synthetase activity (GS; EC 6.3.1.2) was reduced in response to salinity but NaCl had contrasting effects on GS1 and GS2 isoforms in salt-sensitive IKP. Salinity increased the activity of ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) extracted from leaves of both genotypes and increased the activity of NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in the salt-sensitive cultivar. It is suggested that proline accumulation is a symptom of salt-stress injury in rice and that its accumulation in salt-sensitive plants results from an increase in OAT activity and an increase in the endogenous pool of its precursor glutamate. The physiological significance of the recorded changes are analyzed in relation to the functions of these enzymes in plant metabolism.  相似文献   

10.
Fluctuation in proline content is a widespread phenomenon among plants in response to heavy metal stress. To distinguish between the participation of water deficit and copper on changes in proline metabolism, potted plants and floating leaf discs of tobacco were subjected to CuSO4 treatments. The application of copper increased the proline content in the leaves concomitantly with decreased leaf relative water content and increased abscisic acid (ABA) content in the potted plant. Excess copper increased the expression of two proline synthesis genes, pyrroline-5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT) and suppressed proline catabolism gene, proline dehydrogenase (PDH). However, in the experiment with tobacco leaf discs floating on CuSO4 solutions, the excess copper decreased proline content and suppressed the expression of the P5CS, OAT and PDH genes. Therefore, proline accumulation in the potted tobacco plants treated with excess Cu treatment might not be the consequence of the increased copper content in tobacco leaves but rather by the accompanied decrease in water content and/or increased ABA content.  相似文献   

11.
Potato plants ( Solanum tuberosum L. cvs 'Up-to-Date', 'Desiree', 'Alpha', 'Spunta', 'Elvira' and 'Troubadour') were exposed to cycles of water stress and relief during growth. Severe water deficit induced increased proline content 6- to 7-fold in nonturgid leaves which just started to wilt, and 8- to 27-fold in fully wilted leaves of potatoes. However, proline content was not affected during the early stages of stress development over a range of osmotic potentials in the leaves. The rising proline content was related to turgor loss of leaves independent of changes in the osmotic potentials, which indicates that proline involvement in osmoregulation of potato leaves is unlikely.
Repeated cycles of water stress and relief resulted in increased proline and α-amino nitrogen content in the tuber tissue of some of the cultivars. The smallest increase in proline content was obtained in 'Alpha' tubers and the content of α-amino nitrogen remained unaffected by the water stress. Concomitantly, 'Alpha' was the most drought-tolerant cultivar, as determined by its capacity to accumulate dry matter in tubers under stress conditions. On the other hand, in tubers of cultivars which were more susceptible to drought, a marked increase in proline and α-amino nitrogen was observed in response to water stress. The possible association of these findings with tolerance of potatoes to repeated short periods of drought is discussed.  相似文献   

12.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

13.
Contents of ethylene, osmoprotectants, levels and forms of polyamines (PAs) and activities of antioxidant enzymes in the leaves and roots were investigated for five wheat cultivar seedlings (differing in drought tolerance) exposed to osmotic stress (?1.5 MPa). Stress was induced by 2-day-long treatment of plants with polyethylene glycol 6000 (PEG) or NaCl added to hydroponic cultures. Nawra, Parabola and Manu cv. (drought tolerant) showed a marked increase in osmoprotectors (proline and soluble carbohydrates, mainly glucose, saccharose and maltose), free PAs (putrescine Put, spermidine Spd and spermine Spm) and Spd-conjugated levels, in both leaves and roots, after PEG-treatments. Radunia and Raweta (drought sensitive) exhibited smaller changes in the content of these substances. The analysis of enzymes involved in proline metabolism revealed the glutamate as a precursor of proline synthesis in PEG-induced stress conditions. The increase in the activity of antioxidative enzymes, especially catalase and peroxidases, was characteristic for tolerant wheat plants, but for sensitive ones, a decrease in superoxide dismutase and an increase in mainly glutathione reductase activities were observed. After NaCl-treatment smaller changes of all biochemical parameters were registered in comparison with PEG-induced stress. Exceptions were the higher values of ethylene content and a significant increase in saccharose, raffinose and maltose levels (only in stress sensitive plants). The proline synthesis pathway was stimulated from both glutamate and ornithine precursors. These results suggest that the accumulation of inorganic ions in NaCl-stressed plants may be involved in protective mechanisms as an additional osmoregultor. Thus, a weaker stressogenic effect as determined as water deficit by leaf relative water content and relative dry weight increase rate and differences in metabolite synthesis in comparison with PEG stress was observed. Proline seems to be the most important osmo-protector in osmotic stress initiated by both PEG and NaCl. The synthesis of sugars and PAs may be stimulated in a stronger stress conditions (PEG).  相似文献   

14.
Proline and quaternary ammonium compounds (QAC), in addition to being N-rich, are known to accumulate in plants under different environmental stress conditions. The accumulation of N-rich compounds in plants has been shown to confer stress resistance. The aim of our work is two-fold: first, to study the influence of temperature on proline, QAC, and choline metabolism in tomato leaves; and second, to investigate the relationship between N source applied (NO3- or NH4+) and thermal stress resistance in these plants. To do this, experiments were conducted at three different temperatures (10 degrees C, 25 degrees C, 35 degrees C); at each temperature half of the plants received NO3-, and the other half received NH4+. At 35 degrees C the plants had the lowest biomass production with respect to 25 degrees C (optimal temperature) and 10 degrees C (cold stress), suggesting that tomato plants were most affected by heat stress. At 35 degrees C, there were also high levels of choline and proline due to the activation of Delta1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT), and simultaneous inhibition of proline dehydrogenase (PDH) and proline oxidase (PO). However, plants with NH4+ as the N source exhibited reduced growth with respect to the plants fed with NO3-. This is interesting because, under heat stress (35 degrees C), biomass production, as well as proline and choline accumulation, in NH4+ fed plants was higher than in NO3- fed plants. From this, we concluded that tomato plants fed with NH4+ as the N source show higher tolerance to heat stress (35 degrees C) than plants fed with NO3-.  相似文献   

15.
Six lines of sorghum ( Sorghum bicolor L. Moench) with differing drought resistance (IS 22380, ICSV 213, IS 13441 and SPH 263, resistant and IS 12739 and IS 12744, susceptible) were grown under field conditions in the semi-arid tropics and analysed for proline and nitrate reductase activity (NRA; EC 1.6.6.1) during a mid-season drought. The resistant lines accumulated high levels of proline, while the susceptible lines showed no significant proline accumulation. Most of the proline was accumulated after growth of the plants had ceased. In a separate greenhouse experiment, most of the proline was found in the green rather than the fired portions of leaves. The levels returned to that of irrigated controls within 5 days of rewatering. Proline levels increased as leaf water potential and relative water content fell, and there was no apparent difference among the different sorghum lines with change in plant water status. Susceptible lines accumulated less proline than resistant lines as leaf death occurred at higher water potentials. Proline accumulation may, however, contribute to the immediate recovery of plants from drought. Leaf NRA reached high levels at about 35 days after sowing in both the stressed and irrigated plants, after which it declined. The decline in NRA was more pronounced in the stressed than in the irrigated plants and closely followed changes in the growth rate. Upon rewatering, NRA increased several-fold in all the lines and, in contrast to proline accumulation, genotypic differences in NRA were small, both during stress and upon rewatering. The high sensitivity of NRA to mild drought stress was reflected in the rapid decline of activity with small changes in leaf water potential and relative water content. The results are discussed in the light of a possible role for proline during recovery from drought, and the maintenance of NRA during stress and its recovery upon rewatering.  相似文献   

16.
Germination/growth of wheat (Triticum aestivum L., cv. Zimai 1) seeds and changes in the levels of proline and protein as well as in activities of key enzymes involved in proline metabolism in response to salinity-, heat-stresses and their cross-stress were studied. With decreasing water potential caused by increasing concentrations of NaCl, germination percentage, fresh weight of seedlings and protein amount markedly decreased, whereas proline amount slightly increased. The activities of pyrroline-5-carboxylate synthetase (P5CS), ornithine aminotransferase (OAT), and proline dehydrogenase (PDH) peaked at ?0.2 MPa water potential. Germination percentage and amounts of proline and protein increased as germination temperature elevated to 25°C from 15°C, and decreased above 25°C; fresh weight of seedlings increased to 30°C from 15°C, and decreased above 30°C. However, the activities of P5CS, OAT and PDH gradually decreased with elevaing temperature. Seeds pretreated at 33°C or in ?0.8 MPa NaCl solution for various time length increased tolerance to subsequent salt + water stress or heat stress, as measured by germination percentage and fresh weight of seedlings 5 days after beginning of experiment. The acquisition of cross-tolerance resulting in limitation of negative stress effects does not relate directly to proline level and activities of P5CS, OAT and PDH involved in proline metabolism. Proline amount as measured four days or later after stress imposition cannot be considered a symptom of salt-, water- and heat-stress injury or an indicator of the resistance.  相似文献   

17.
Changes in the concentrations of free amino acids and specific organic acids were analysed during the induction of drought stress in Brassica napus . Most of the amino acids showed a characteristic linear increase with the induction of drought stress in Brassica leaves, increasing an average of 5.9-fold over control levels, followed by a reduction in concentration upon rehydration of the plants. Pyruvate concentrations doubled after 4 days of drought stress whereas 2-oxoglutarate concentrations remained relatively constant. The activities of two of the enzymes involved in amino acid biosynthesis, alanine aminotransferase (EC 2.6.1.2) and aspartate aminotransferase (EC 2.6.1.1), were also measured. Neither enzyme showed any increase in activity, except when the plants were rehydrated. This suggests that the increase in both alanine and aspartate levels results from the increase in their precursors pyruvate and glutamate and may not require increased enzyme activity. The effect of drought stress upon changes in protein synthesis was analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We found that there was an overall decrease in protein synthesis with the induction of drought stress, followed by a resumption of synthesis upon rehydration. In addition, the synthesis of a number of specific polypeptides was found to decrease upon water loss in the leaves.  相似文献   

18.
Polyamine synthesis from proline in the developing porcine placenta   总被引:1,自引:0,他引:1  
Polyamines (putrescine, spermidine, and spermine) are essential for placental growth and angiogenesis. However, little is known about polyamine synthesis in the porcine placenta during conceptus development. The present study was conducted to test the hypothesis that arginine and proline are the major sources of ornithine for placental polyamine production in pigs. Placentae, amniotic fluid, and allantoic fluid were obtained from gilts on Days 20, 30, 35, 40, 45, 50, 60, 90, and 110 of the 114-day gestation (n = 6 per day). Placentae as well as amniotic and allantoic fluids were analyzed for arginase, proline oxidase, ornithine aminotransferase (OAT), ornithine decarboxylase (ODC), proline transport, concentrations of amino acids and polyamines, and polyamine synthesis using established radiochemical and chromatographic methods. Neither arginase activity nor conversion of arginine into polyamines was detected in the porcine placenta. In contrast, both proline and ornithine were converted into putrescine, spermidine, and spermine in placental tissue throughout pregnancy. The activities of proline oxidase, OAT, and ODC as well as proline transport, polyamine synthesis from proline, and polyamine concentrations increased markedly between Days 20 and 40 of gestation, declined between Days 40 and 90 of gestation, and remained at the reduced level through Day 110 of gestation. Proline oxidase and OAT, but not arginase, were present in allantoic and amniotic fluids for the production of ornithine (the immediate substrate for polyamine synthesis). The activities of these two enzymes as well as the concentrations of ornithine and total polyamines in fetal fluids were highest at Day 40 but lowest at Days 20, 90, and 110 of gestation. These results indicate that proline is the major amino acid for polyamine synthesis in the porcine placenta and that the activity of this synthetic pathway is maximal during early pregnancy, when placental growth is most rapid. Our novel findings provide a new base of information for future studies to define the role of proline in fetoplacental growth and development.  相似文献   

19.
To investigate the effects of water stress on glycolate metabolism, seedlings of a drought-tolerant cultivar (N-22) and a susceptible cultivar (Jaya) of Oryza sativa L. were subjected to water stress for 5, 8 or 10 days. Increasing the duration of water-deficit-stress produced a proportional decrease in relative water content and leaf water potential, reduced glycolate content and catalase (EC 1.11.1.6) activity, but increased glycolate oxidase (EC 1.1.3.1) activity, hydrogen peroxide and glyoxylate contents in the leaves of both cultivars. In a radiotracer experiment, with increasing duration of water stress, the proportion of label increased in 3-phosphoglycerate, glycolate, glycine and serine. The drought-tolerant cultivar (N-22) was affected less than the susceptible cultivar (Jaya). The glycolate pathway metabolism is discussed in relation to photorespiration and the effects of water stress.  相似文献   

20.
Green house study was aimed to investigate the effect of seed biopriming with drought tolerant isolates of Trichoderma harzianum, viz. Th 56, 69, 75, 82 and 89 on growth of wheat under drought stress and to explore the mechanism underlying plant water stress resilience in response to Trichoderma inoculation. Measurements of relative water content, osmotic potential, osmotic adjustment, leaf gas exchange, chlorophyll fluorescence and membrane stability index were performed. In addition, analysis of the phenolics, proline, lipid peroxidation and measurements of phenylalanine ammonia‐lyase activity were carried out. Seed biopriming enhanced drought tolerance of wheat as drought induced changes like stomatal conductance, net photosynthesis and chlorophyll fluorescence were delayed. Drought stress from 4 to 13 days of withholding water induced an increase in the concentration of stress induced metabolites in leaves, while Trichoderma colonisation caused decrease in proline, malondialdehyde (MDA) and hydrogen peroxide (H2O2), and an increase in total phenolics. A common factor that negatively affects plants under drought stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that seed biopriming reduced damages resulting from accumulation of ROS in stressed plants. The enhanced redox state of colonised plants could be explained by higher l ‐phenylalanine ammonia‐lyase (PAL) activity in leaves after 13 days of drought stress in Trichoderma treated plants. Similar activity was induced in untreated plants in response to drought stress but to a lower extent in comparison to treated plants. Our results support the hypothesis that seed biopriming in wheat with drought tolerant T. harzianum strains increased root vigour besides performing the process of osmoregulation. It ameliorates drought stress by inducing physiological protection in plants against oxidative damage, due to enhanced capacity to scavenge ROS and increased level of PAL, a mechanism that is expected to augment tolerance to abiotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号