首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

2.
The regulatory role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ transport system of rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. The release of Ca2+ from the Ca2+-loaded nuclei was evoked progressively after Ca2+ uptake with 1.0 mM ATP addition, while it was only slightly in the case of 2.0 mM ATP addition, indicating that the consumption of ATP causes a leak of Ca2+ from the Ca2+-loaded nuclei. The presence of N-ethylmaleimide (NEM; 0.1 mM) caused an inhibition of nuclear Ca2+ uptake and induced a promotion of Ca2+ release from the Ca2+-loaded nuclei. NEM (0.1 and 0.2 mM) markedly inhibited nuclear Ca2+-ATPase activity. This inhibition was completely blocked by the presence of dithiothreitol (DTT; 0.1 and 0.5 mM). Also, DTT inhibited the effect of NEM (0.1 mM) on nuclear Ca2+ uptake and release. Meanwhile, verapamil and diltiazem (10 M), a blocker of Ca2+ channels, did not prevent the NAD+ (1.0 and 2.0 mM), zinc sulfate (1.0 and 2.5 M) and arachidonic acid (10 M)-induced increase in nuclear Ca2+ release, suggesting that Ca2+ channels do not involve on Ca2+ release from the nuclei. These results indicates that an inhibition of nuclear Ca2+-ATPase activity causes the decrease in nuclear Ca2+ uptake and the release of Ca2+ from the Ca2+-loaded nuclei. The present finding suggests that Ca2+-ATPase plays a critical role in the regulatory mechanism of Ca2+ uptake and release in rat liver nuclei.  相似文献   

3.
The channel of the glutamate N-methyl-d-aspartate receptor (NMDAR) transports Ca2+ approximately four times more efficiently than that of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPAR). To investigate the basis of this difference in these glutamate receptors (GluRs), we measured the ratio of Cs+ efflux and Ca2+ influx in recombinant NMDAR and Ca2+-permeable AMPAR channels expressed in human embryonic kidney 293 (HEK 293) cells over a wide voltage range. At any one potential, this biionic flux ratio was measured by quantifying the total charge and the charge carried by Ca2+ using whole-cell currents and fluorometric techniques (dye overload) with Cs+ internally and Ca2+ externally (1.8 or 10 mM) as the only permeant ions. In AMPAR channels, composed of either GluR-A(Q) or GluR-B(Q) subunits, the biionic flux ratio had a biionic flux-ratio exponent of 1, consistent with the prediction of the Goldman-Hodgkin-Katz current equation. In contrast, for NMDAR channels composed of NR1 and NR2A subunits, the biionic flux-ratio exponent was ∼2, indicating a deviation from Goldman-Hodgkin-Katz. Consistent with these results, in NMDAR channels under biionic conditions with high external Ca2+ and Cs+ as the reference ions, Ca2+ permeability (PCa/PCs) was concentration dependent, being highest around physiological concentrations (1–1.8 mM; PCa/PCs ≈ 6.1) and reduced at both higher (110 mM; PCa/PCs ≈ 2.6) and lower (0.18 mM; PCa/PCs ≈ 2.2) concentrations. PCa/PCs in AMPAR channels was not concentration dependent, being around 1.65 in 0.3–110 mM Ca2+. In AMPAR and NMDAR channels, the Q/R/N site is a critical determinant of Ca2+ permeability. However, mutant AMPAR channels, which had an asparagine substituted at the Q/R site, also showed a biionic flux-ratio exponent of 1 and concentration-independent permeability ratios, indicating that the difference in Ca2+ transport is not due to the amino acid residue located at the Q/R/N site. We suggest that the difference in Ca2+ transport properties between the glutamate receptor subtypes reflects that the pore of NMDAR channels has multiple sites for Ca2+, whereas that of AMPAR channels only a single site.  相似文献   

4.
Some aspects of Ca2+ channel modulation in hair cells isolated from semicircular canals of the frog (Rana esculenta) have been investigated using the whole-cell technique and intra and extracellular solutions designed to modify the basic properties of the Ca2+ macrocurrent. With 1 mM ATP in the pipette solution, about 60% of the recorded cells displayed a Ca2+ current constituted by a mix of an L and a drug-resistant (R2) component; the remaining 40% exhibited an additional drug-resistant fraction (R1), which inactivated in a Ca-dependent manner. If the pipette ATP was raised to 10 mM, cells exhibiting the R1 current fraction displayed an increase of both the R1 and L components by ∼280 and ∼70%, respectively, while cells initially lacking R1 showed a similar increase in the L component with R1 becoming apparent and raising up to a mean amplitude of ∼44 pA. In both cell types the R2 current fraction was negligibly affect by ATP. The current run-up was unaffected by cyclic nucleotides, and was not triggered by 10 mM ATPγS, ADP, AMP or GTP. Long-lasting depolarisations (>5 s) produced a progressive, reversible decay in the inward current despite the presence of intracellular ATP. Ca2+ channel blockade by Cd2+ unmasked a slowly activating outward Cs+ current flowing through a non-Ca2+ channel type, which became progressively unblocked by prolonged depolarisation even though Cs+ and TEA+ were present on both sides of the channel. The outward current waveform could be erroneously ascribed to a Ca- and/or voltage dependence of the Ca2+ macrocurrent. Proceedings of the XVIII Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Palermo, Sicily, September 2006.  相似文献   

5.
The Ca2+/Mg2+ ATPase of the rat heart sarcolemmal particles was solublized with Triton X-100 after treating the membranes with trypsin and purified by high speed centrifugation, ammonium sulfate fractionation, hydrophobic chromatography and gel filtration. The purified enzyme was seen as a single protein band in nondenaturing polyacrylamide gel electrophoresis and its molecular weight by gel filtration was found to be about 240000. The enzyme utilized Ca-ATP or Mg-ATP as a substrate with high affinity sites (Km = 0.12 – 0.16 mM) and low affinity sites (Km = 1 mM). The enzyme also utilized CTP, GTP, ITP, UTP and ADP as substrates but at a lower rate in comparison to ATP. The enzyme was activated by Ca2+ (Ka = 0.4 mM) and Mg2+ (Ka = 0.2 mM) as well as by other cations in the order Ca2– > Mg2+ > Mn2+ > Sr2+ > Ba2+ > Ni2+ > Cu2+. The ATPase activity in the presence of Ca2+ was markedly inhibited by Mg2+, Mn2+, Ni2+ and Cu2+ whereas the monovalent cations such as Na+ and K+ were without effect. The enzyme did not exhibit Ca2+ stimulated Mg2+ dependent ATPase activity and was insensitive to calmodulin, ouabain, verapamil, D-600, oligomycin, azide and vanadate. Optimum pH for Ca2+ or Mg2+ ATPase activity was 8.5 – 9.0. In view of the possible ectoenzyme nature of the ATPase, its role in adenine nucleotide and Ca2+ metabolism in the myocardium is discussed.  相似文献   

6.
7.
The thermodynamic efficiency of the Ca2+-Mg2+-ATPase of skeletal sarcoplasmic reticulum has been evaluated by comparing the Ca2+ gradient established with the ATP/(ADP*Pi) ratio. The evaluation was made at an external Ca2+ level (4.7 × 10–8 M) which is below theK m value of 7 × 10–8 M. The Mg-ATP and phosphate concentrations were held constant (0.1 mM) and the ADP concentration was varied. Maximal uptake to an internal free Ca2+ concentration of 17 mM was observed at infinite ATP/(ADP*Pi) ratio (absence of ADP). This corresponds to a [Ca2+]i/[Ca2+]0 gradient of 3.6 × 105. A Ca2+ gradient one-half as large was observed at an ATP/(ADP*Pi) ratio of 3.5 × 103 M–1. The square of the Ca2+ gradient is shown to be proportional to the ATP/(ADP*Pi) ratio, for finite values of the latter. The proportionality constant is identical to the equilibrium constant for hydrolysis of ATP (9.02 × 106 M) under these conditions (0.1 mM Mg2+, 30°C). The intrinsic thermodynamic efficiency of the pump is shown to be 100%, with a maximal uncertainty of 3%. The efficiency is lower under less optimal conditions, when the pump is inhibited and passive leak processes compete.Dedicated to Prof. Philip George, University of Pennsylvania, whose instruction, research, and example made this contribution possible.  相似文献   

8.
We have studied the activities of Ca2+-stimulated ATPase in rat heart sarcolemma upon modulating the redox state of membrane thiol groups with dithiothreitol (DTT). The suitability of alamethicin to unmask the latent activity of this enzyme was also investigated. The Ca2+-stimulated ATPase in sarcolemma exhibited two activation sites — one with low affinity (Km = 0.70 ± 0.2 mM; Vmax = 10.0 ± 2.2 mol Pi/mg/h) and the other with high affinity (Km = 0.16 ± 0.7 mM; Vmax = 4.6 ± 0.8 mol Pi/mg/h) for Mg2+ATP. Alamethicin at a ratio of 1:1 with the sarcolemmal protein caused a 3-fold activation of Ca2+-stimulated ATPase without affecting its sensitivity to Ca2+ or Mg2+ATP. Treatment of sarcolemma with deoxycholate or sodium dodecyl sulfate resulted in a total loss of the enzyme activity; high concentrations of alamethicin also showed a detergent-like action on the sarcolemmal vesicles. DTT at 5–10 mM concentrations caused a 4–5 fold activation of Ca2+-stimulated ATPase in sarcolemma and this effect was observed to be dependent on the concentration of Mg2+ATP. DTT increased the affinity of the enzyme to Mg2+ATP at the high affinity site and enhanced the Vmax at the low affinity site in addition to increasing the sensitivity of Ca2+-stimulated ATPase to Ca2+. DTT protected the Ca2+-stimulated ATPase against deterioration by detergents and restored the enzyme activity after treatment with N-ethylmaleimide. The mechanism of action of DTT on Ca2+-stimulated ATPase may involve the reduction of essential thiols at the active site of the enzyme or its interaction with specific DTT-dependent inhibitor protein. No changes in the sensitivity of sarcolemmal Ca2+-stimulated ATPase to orthovanadate was evident in the absence or presence of DTT and alamethicin. The results suggest the use of both DTT and alamethicin for the determination of Ca2+-stimulated ATPase activity in sarcolemmal preparations.  相似文献   

9.
The extent to which Ca2+-induced Ca2+ release (CICR) affects transmitter release is unknown. Continuous nerve stimulation (20–50 Hz) caused slow transient increases in miniature end-plate potential (MEPP) frequency (MEPP-hump) and intracellular free Ca2+ ([Ca2+]i) in presynaptic terminals (Ca2+-hump) in frog skeletal muscles over a period of minutes in a low Ca2+, high Mg2+ solution. Mn2+ quenched Indo-1 and Fura-2 fluorescence, thus indicating that stimulation was accompanied by opening of voltage-dependent Ca2+ channels. MEPP-hump depended on extracellular Ca2+ (0.05–0.2 mM) and stimulation frequency. Both the Ca2+- and MEPP-humps were blocked by 8-(N,N-diethylamino)octyl3,4,5-trimethoxybenzoate hydrochloride (TMB-8), ryanodine, and thapsigargin, but enhanced by CN. Thus, Ca2+-hump is generated by the activation of CICR via ryanodine receptors by Ca2+ entry, producing MEPP-hump. A short interruption of tetanus (<1 min) during MEPP-hump quickly reduced MEPP frequency to a level attained under the effect of TMB-8 or thapsigargin, while resuming tetanus swiftly raised MEPP frequency to the previous or higher level. Thus, the steady/equilibrium condition balancing CICR and Ca2+ clearance occurs in nerve terminals with slow changes toward a greater activation of CICR (priming) during the rising phase of MEPP-hump and toward a smaller activation during the decay phase. A short pause applied after the end of MEPP- or Ca2+-hump affected little MEPP frequency or [Ca2+]i, but caused a quick increase (faster than MEPP- or Ca2+-hump) after the pause, whose magnitude increased with an increase in pause duration (<1 min), suggesting that Ca2+ entry-dependent inactivation, but not depriming process, explains the decay of the humps. The depriming process was seen by giving a much longer pause (>1 min). Thus, ryanodine receptors in frog motor nerve terminals are endowed with Ca2+ entry-dependent slow priming and fast inactivation mechanisms, as well as Ca2+ entry-dependent activation, and involved in asynchronous exocytosis. Physiological significance of CICR in presynaptic terminals was discussed.  相似文献   

10.
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00 and 4.07 pA, respectively, and not significantly different. Currents recorded at 1-30 mM lumenal Ca2+ concentrations were attenuated by physiological [K+] (150 mM) and [Mg2+] (1 mM), in the same proportion (approximately 55%) in mammalian and amphibian channels. Two amplitudes, differing by approximately 35%, were found in amphibian channel studies, probably corresponding to alpha and beta RyR isoforms. In physiological [Mg2+], [K+], and lumenal [Ca2+] (1 mM), the Ca2+ current was just less than 0.5 pA. Comparison of this value with the Ca2+ flux underlying Ca2+ sparks suggests that sparks in mammalian cardiac and amphibian skeletal muscles are generated by opening of multiple RyR channels. Further, symmetric high concentrations of Mg2+ substantially reduced the current carried by 10 mM Ca2+ (approximately 40% at 10 mM Mg2+), suggesting that high Mg2+ may make sparks smaller by both inhibiting RyR gating and reducing unitary current.  相似文献   

11.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

12.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

13.
The activating mechanism of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase in the plasma membranes of rat liver was investigated. (Ca2+–Mg2+)-ATPase activity was markedly increased by a sulfhydryl (SH) group protecting reagent dithiothreitol (DTT; 2.5 and 5 mM as a final concentration), while the enzyme activity was significantly decreased by a SH group modifying reagent N-ethylmaleimide (NEM; 0.5–5 mM). The effect of DTT (5 mM) to increase the enzyme activity was clearly blocked by NEM (5 mM). Regucalcin (0.25–1.0 M) significantly increased (Ca2+-Mg2+)-ATPase activity. This increase was completely blocked by NEM (5 mM). Meanwhile, digitonin (0.04%), which can solubilize the membranous lipids, significantly decreased (Ca2+–Mg2+)-ATPase activity. Digitonin did not have an effect on the DTT (5 mM)-increased enzyme activity. However, the effect of regucalcin (0.25 M) increasing (Ca2+–Mg2+)-ATPase activity was entirely blocked by the presence of digitonin. The present results suggest that regucalcin activates (Ca2+–Mg2+)-ATPase by the binding to liver plasma membrane lipids, and that the activation is involved in the SH groups which are an active site of the enzyme.  相似文献   

14.
The thermodynamic efficiency of the calmodulin-activated form of the Ca2+-pumping ATPase of the bovine cardiac sarcolemma (SL) was evaluated in sealed vesicles under reversible conditions. The free internal Ca2+ concentration ([Ca2+]i) established in the SL vesicle lumen by action of the ATPase was determined as a function of the [ATP]/([ADP][Pi]) ratio for the following experimental conditions: 250mM sucrose, 100mM KCI, 0.1mM Mg2+, 25mM HEPES, 25mM Tris, pH 7.40, at 37°C, [Ca2+]o=50nM (1mM Ca/EGTA buffer), 0.75mM Mg-ATP, 0.1mM Pi, variable [ADP]. Under these conditions, with the pump working near itsK m of 64nM, the [Ca2+]i achieved was 18mM, decreasing with increasing [ADP] for [ADP] 0.84mM. A plot of the square of the [Ca2+]i/[Ca2+]o ratio against [ATP]/([ADP][Pi]) gave a straight line with a slope of 1.5×107M. This was in agreement, within the experimental error, with the equilibrium constant for ATP hydrolysis under these conditions (1.09×107M). These results demonstrate (1) tight coupling between Ca2+ transport and ATP hydrolysis with a stoichiometry of 2 Ca2+ moved per ATP split and (2) a low degree of passive leakage. Analysis at low [ADP] (<0.83mM) showed the unexpected result that ADP increases the rate of theforward reaction of the pump. The maximal effect on the initial rate is a 96±5% increase, with an EC50 of approximately 0.4mM (ADP). Similar but lesser stimulation was observed with CDP. The implications of the above results for the energetics of the pump and for its physiological function in the beating heart are discussed.  相似文献   

15.
Two non mitochondrial systems involved in ATP-dependent Ca2+ accumulation have been described and characterized in two membrane fractions from pea internodes purified on a metrizamide-sucrose discontinuous gradient. In the lighter membrane fraction an ATP-dependent Ca2+ accumulation system, which shows the characteristics of an ATP-dependent H+/Ca2+ antiport, predominates. This system is inhibited by FCCP and nigericin and stimulated by 50 mM KCl. It is saturated by 0.8–1.0 mM MgSO4-ATP, strictly requires ATP and is severely inhibited by an excess of free Mg2+ or Mn2+. A second system of ATP-dependent Ca2+ accumulation, recovered mainly in the heavier membrane fraction, is insensitive to FCCP, is saturated by 8–10 mM MgSO4-ATP, can utilize also ITP or other nucleoside triphosphates although at lower rate than ATP and is only scarcely affected by an excess of free Mg2+ or Mn2+. This system is interpreted as corresponding to the (Ca2+ + Mg2+)-ATPase described by Dieter, P. and Marmé, D. ((1980) Planta 150, 1–8).  相似文献   

16.
Summary The relationship between the external Ca2+ concentrations [Ca2+]0 and the electrical tolerance (breakdown) in theChara plasmalemma was investigated. When the membrane potential was negative beyond –350–400 mV (breakdown potential, BP), a marked inward current was observed, which corresponds to the so-called punch-through (H.G.L. Coster,Biophys. J. 5:669–686, 1965). The electrical tolerance of theChara plasmalemma depended highly on [Ca2+]0. Increasing [Ca2+]0 caused a more negative and decreasing it caused a more positive shift of BP. BP was at about –700 mV in 200 M La3+ solution. [Mg2+]0 depressed the membrane electrical tolerance which was supposed to be due to competition with Ca2+ at the Ca2+ binding site of the membrane. Such a depressive effect of Mg2+ was almost masked when the [Ca2+]0/[Mg2+]0 ratio was roughly beyond 2.  相似文献   

17.
The relationship between Ca2+ release (“Ca2+ sparks”) through ryanodine-sensitive Ca2+ release channels in the sarcoplasmic reticulum and KCa channels was examined in smooth muscle cells from rat cerebral arteries. Whole cell potassium currents at physiological membrane potentials (−40 mV) and intracellular Ca2+ were measured simultaneously, using the perforated patch clamp technique and a laser two-dimensional (x–y) scanning confocal microscope and the fluorescent Ca2+ indicator, fluo-3. Virtually all (96%) detectable Ca2+ sparks were associated with the activation of a spontaneous transient outward current (STOC) through KCa channels. A small number of sparks (5 of 128) were associated with currents smaller than 6 pA (mean amplitude, 4.7 pA, at −40 mV). Approximately 41% of STOCs occurred without a detectable Ca2+ spark. The amplitudes of the Ca2+ sparks correlated with the amplitudes of the STOCs (regression coefficient 0.8; P < 0.05). The half time of decay of Ca2+ sparks (56 ms) was longer than the associated STOCs (9 ms). The mean amplitude of the STOCs, which were associated with Ca2+ sparks, was 33 pA at −40 mV. The mean amplitude of the “sparkless” STOCs was smaller, 16 pA. The very significant increase in KCa channel open probability (>104-fold) during a Ca2+ spark is consistent with local Ca2+ during a spark being in the order of 1–100 μM. Therefore, the increase in fractional fluorescence (F/Fo) measured during a Ca2+ spark (mean 2.04 F/Fo or ∼310 nM Ca2+) appears to significantly underestimate the local Ca2+ that activates KCa channels. These results indicate that the majority of ryanodine receptors that cause Ca2+ sparks are functionally coupled to KCa channels in the surface membrane, providing direct support for the idea that Ca2+ sparks cause STOCs.  相似文献   

18.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

19.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

20.
Jing X  Chen L  Ren S  Luo D 《Cytotechnology》2011,63(1):81-88
Cells stimulated with physiological stimuli usually exhibit oscillations in cytosolic Ca2+ concentration ([Ca2+]i), a signal playing central roles in regulation of various cellular processes. For explicating their unknown mechanisms, studies are commonly conducted in single cells from several cell lines, in particular the human epithelial kidney (HEK293) cell line. However, [Ca2+]i oscillating responses to agonists in vitro are found difficult to be induced and varied with different types of cells and agonists. This study shows that treatment of the wild type HEK293 cells with low concentrations of carbachol (1–10 μM), an agonist of the muscarinic receptor, resulted in non-oscillated but sustained [Ca2+]i increase by loading the cells with 1 μM fura2/AM. However, repetitive and long lasting [Ca2+]i oscillations could be induced in 31.1% of the tested cells loaded with 0.1 μM fura2/AM. Additionally, the occurrence of the typical Ca2+ spikes further increased to 47.2% and 60.7% when the Ca2+ concentration in the bathing medium was decreased from 1.8 mM to 1.5 mM and the medium temperature was set to 35 ± 1°C from 22 ± 2°C. Therefore, this study provides a useful approach for measuring [Ca2+]i oscillatory response to relevant physiological stimulation in a wild type cell line through the adjustments of the concentrations adopted for the Ca2+ indicator and extracellular medium Ca2+ and of the temperature set for the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号