首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differentiation and development of long bones were studied in European water frogs: Rana lessonae, R. ridibunda, and R. esculenta. The study included premetamorphic larvae (Gosner Stage 40) to frogs that were 5 years old. Femora, metatarsal bones, and proximal phalanges of the hindlimb exhibit the same pattern of periosteal bone differentiation and the same pattern of growth. Longitudinal and radial growth of these bones was studied by examination of the diaphyses and epiphyses, particularly where the edge of periosteal bone is inserted into the epiphysis. The periosteum seems to be responsible for both longitudinal and radial growth. Investigation of the formation, length, and arrangement of lines of arrested growth reveals that the first line is present only in the middle 25-35% of the length of the diaphysis of an adult bone; therefore, only the central portion of the diaphysis should be used for age estimation in skeletochronological studies. Comparison of the shapes and histological structures of epiphyses in the femur, metatarsal bones, and phalanges revealed that epiphyseal cartilages are composed of an inner and outer part. The inner metaphyseal cartilage has distinct zones and plugs the end of the periosteal bone cylinder; its role in longitudinal growth is questioned. The outer epiphyseal cartilage is composed of articular cartilages proper, in addition to lateral articular cartilages. Differences in the symmetry of the lateral articular cartilages of distal epiphyses of the femur and toes may reflect adaptations to different kinds of movements at the knee and in the foot.  相似文献   

2.
Surface areas of humeral and femoral heads scale largely as a function of body size. However, differences in the relative sizes of these articular surfaces are correlated with differential joint mobility and force transmission through fore- and hindlimbs. They can therefore assist interpretation of the positional behavior of extinct species. In this paper, we document variation in ratios of humeral head surface area to femoral head surface area among extant primates and other mammals. We then examine a group of extinct primates: the subfossil lemurs of Madagascar. Many Malagasy le murs, including some giant extinct species with very long forelimbs and short hindlimbs, have relatively small humeral heads and large femoral heads. We explore the adaptive implications of this pattern. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular) cartilage. This “lost anatomy” is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs) obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data suggest that large cartilaginous epiphyses were widely distributed among non-avian archosaurs and must be considered when making inferences about locomotor functional morphology in fossil taxa.  相似文献   

4.

Background

Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony) to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb.

Results

An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons) and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs.

Conclusion

Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this trait means that changes in chondrogenetic patterns may serve as useful phylogenetic characters at higher taxonomic levels in tetrapods. Our results highlight the more important role generally played by allometric heterochrony in this instance to shape adult morphology.  相似文献   

5.
The hindlimbs allow bats to attach to the mother from birth, and roost during independent life. Despite the great morphological diversity in Chiroptera, the hindlimbs morphology and its postnatal development have been poorly studied. Postnatal development of hindlimbs in Noctilio leporinus is described, further comparing the morphology of adults with that of Noctilio albiventris and previously reported species (Desmodus rotundus, Artibeus lituratus, Molossus molossus). The ossification ending sequence at autopodium elements of N. leporinus does not follow the distal to proximal directional sequence described for D. rotundus, exhibiting a heterochronic delayed ossification ending for the digits of N. leporinus regarding other hindlimb elements, associated with the bigger relative autopodium size of this fisher bat regarding other bat species. Noctilionid bats share the same adult hindlimb bone morphology, except for differences at hindlimb proportions and calcar ossification degree. There are differences in the number and position of bony processes, slots and sesamoids of adult noctilionid fisher bats regarding previously reported species; most differences are concentrated at the autopodium and are related to an increased surface for muscular insertion and the structural support of claws. These facts seem to be closely associated with functional demands of the feeding strategy of noctilionid fisher bats.  相似文献   

6.
Chronic juvenile arthritis (CJA) is the most common inflammatory disease of joints in children. There are numerous studies showing the limited informative value of X-ray in the evaluation of CJA progression. Contrast-enhanced magnetic resonance imaging (MRI) using intravenous gadolinium is currently in the foreground in diagnosing arthritis in children, in infants in particular. Knee joints are most frequently afflicted in CJA, showing significant manifestations of the disease. The purpose of the study was to describe the patterns of changes in the nonossified epiphyseal and articular cartilages in the distal epiphyses of femurs in the knee joints of patients with manifestations of chronic juvenile arthritis and to define the role of contrast-enhanced MRI in evaluating the epiphyseal changes in this disease. Sixty-nine patients aged 1.5-14 years who have clinical laboratory and ultrasound signs of CJA lasting 6 months to 5 years underwent contrast-enhanced MRI for the evaluation of changes in the articular and nonossified epiphyseal cartilages. Intravenous contrast enhancement identified several specific features and patterns of epiphyseal changes: subchondral hyperemia of epiphyses and recorded thickened epiphyseal chondral vascular channels, chondral and osteochondral erosions as manifestations of changes in the growing epiphyseal cartilage and articular one in children with chronic arthritis. Thus, contrast-enhanced MRI allows differentiation of different patterns of epiphyseal changes in CJA.  相似文献   

7.
Associated fore- and hindlimb parts of five individuals are known from the hominid Plio-Pleistocene fossil collections in Africa. Four of these have been classified as Australopithecus and show definite evidence that in comparison with humans, forelimbs were relatively large and hindlimbs were relatively small. The fourth individual, placed in the genus Homo, has human proportions. These findings do not necessarily imply locomotor differences: the forelimbs may have been relatively long in Australopithecus simply because they were as yet not completely reduced from their generalized hominoid ancestral state.  相似文献   

8.
The distribution of long‐labelling‐retaining cells, putative progenitor or stem cells, in the developing knees of embryo, juvenile and adult lizards has been analysed using H3‐thymidine autoradiography and 5BrdU immunohistochemistry. Proliferating cells are present in developing cartilaginous femur and tibia, especially in the epiphyses where a higher cell multiplication likely determines their typical enlarged shape in comparison with the diaphyses where chondroblast proliferation is low to absent. Sparse 5BrdU‐labelled cells remain in the articular and growth plate cartilages of the epiphyses in older stages of development and are still detected in developing epiphyses 13 days after injection of 5BrdU. This indicates they are slow‐cycling cells, a typical characteristic for progenitor or stem cells. Long retaining 5BrdU‐labelled cells remain in the articular surface also during adult life where they likely sustain the growth of long bones. Adult epiphyses show secondary ossification centres where the articular cartilage is partially or largely replaced by bone trabeculae. The damage in the epiphysis of lizards stimulates the proliferation of progenitor cells for the regeneration of new cartilaginous epiphyses. The localization of cells capable of proliferation in the epiphyses of adult femur and tibia pre‐adapts these lizards to cartilage regeneration in case of injury.  相似文献   

9.
Two different patterns of the condensation and chondrification of the limbs of tetrapods are known from extensive studies on their early skeletal development. These are on the one hand postaxial dominance in the sequential formation of skeletal elements in amniotes and anurans, and on the other, preaxial dominance in urodeles. The present study investigates the relative sequence of ossification in the fore‐ and hindlimbs of selected tetrapod taxa based on a literature survey in comparison to the patterns of early skeletal development, i.e. mesenchymal condensation and chondrification, representing essential steps in the late stages of tetrapod limb development. This reveals the degree of conservation and divergence of the ossification sequence from early morphogenetic events in the tetrapod limb skeleton. A step‐by‐step recapitulation of condensation and chondrification during the ossification of limbs can clearly be refuted. However, some of the deeper aspects of early skeletal patterning in the limbs, i.e. the general direction of development and sequence of digit formation are conserved, particularly in anamniotes. Amniotes show a weaker coupling of the ossification sequence in the limb skeleton with earlier condensation and chondrification events. The stronger correlation between the sequence of condensation/chondrification and ossification in the limbs of anamniotes may represent a plesiomorphic trait of tetrapods. The pattern of limb ossification across tetrapods also shows that some trends in the sequence of ossification of their limb skeleton are shared by major clades possibly representing phylogenetic signals. This review furthermore concerns the ossification sequence of the limbs of the Palaeozoic temnospondyl amphibian Apateon sp. For the first time this is described in detail and its patterns are compared with those observed in extant taxa. Apateon sp. shares preaxial dominance in limb development with extant salamanders and the specific order of ossification events in the fore‐ and hindlimb of this fossil dissorophoid is almost identical to that of some modern urodeles.  相似文献   

10.
For better understanding of the links between limb morphology and the metabolic cost of locomotion, we have characterized the relationships between limb length and shape and other functionally important variables in the straightened forelimbs and hindlimbs of a sample of 12 domestic dogs (Canis familiaris). Intra-animal comparisons show that forelimbs and hindlimbs are very similar (not significantly different) in natural pendular period (NPP), center-of-mass, and radius of gyration, even though they differ distinctly in mass, length, moment-of-inertia, and other limb proportions. The conservation of limb NPP, despite pronounced dissimilarity in other limb characteristics, appears to be the result of systematic differences in shape, forelimbs tending to be cylindrical and hindlimbs conical. Estimating limb NPP for other species from data in the literature on segment inertia and total limb length, we present evidence that the similarity between forelimbs and hindlimbs in NPP is generally true for mammals across a large size range. Limbs swinging with or near their natural pendular periods will maximize within-limb pendular exchange of potential and kinetic energy. As all four limbs of moderate- and large-size animals swing with the same period during walking, maximal advantage can be derived from the pendular exchange of energy only if forelimbs and hindlimbs are very similar in NPP. We hypothesize that an important constraint in the evolution of limb length and shape is the locomotor economy derived from forelimbs and hindlimbs of similar natural pendular period. J. Morphol. 234:183–196, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
S Fukuda  F Cho  S Honjo 《Jikken dobutsu》1978,27(4):387-397
The development of so-called long bones in the extremity has been studied roentgenographically in forty-seven males and fifty-one females cynomolgus monkeys bred and reared at the National Institute of Health. The age of the females ranged from five months to eight years and nine months, and that of the males was from four months to seven years. In addition, the fetuses of six to twenty weeks of gestation age were examined for the time of appearance of ossification centers. As the biological parameters concerning body growth, the body weight and the bone length were measured and the secondary ossification centers were scrutinized and assessed the maturity process on the basis of the criteria that divided the state into eleven stages. Also the allometric analyses of body weight against bone length was conducted. Most of the secondary ossification centers except the proximal fibulal epiphysis appeared during the period from the prenatal stage (15-20 weeks of gestationage) to the postnatal one (several months of age). From four to five months of age, many ossification centers had developed to some extent. But, the appearance of proximal fibulal epiphysis was delayed and often lacking until 10 months of age in female and one year and three months of age in male. The earliest epiphyseal fusion was observed at the distal humeral epiphysis in both sexes. The latest epiphyseal fusion was observed at the distal ulnal epiphysis in both sexes and at the distal ulnal and radial epiphyses in female. From this study, the time of fusion was at five and three guarters years of age in females and at six and a half years of age in males. As a result, it is suggested that the estimation of animal's age might be put to practical use by introducing the assessing method that the score was given from the observation of the secondary ossification center.  相似文献   

12.
The estuarine dolphin, Sotalia guianensis, is one of the most abundant cetacean species in Brazil. Determination of age and of aspects associated with the development of this species is significant new studies. Counts of growth layer groups in dentin are used to estimate age of these animals, though other ways to evaluate development are also adopted, like the measurement of total length (TL). This study presents a procedure to evaluate the development of the estuarine dolphin based on the ossification pattern of forelimbs. Thirty-seven estuarine dolphins found in the state of Espírito Santo, Brazil, were examined. Age was estimated, TL was measured and ossification of epiphyses was examined by radiography. We analyzed results using the Spearman correlation. Inspection of radiographs allowed evaluation of the significance of the correlation between age and development of the proximal (r = 0.9109) and distal (r = 0.9092) radial epiphyses, and of the distal ulnar epiphyses (r = 0.9055). Radiographic analysis of forelimbs proved to be an appropriate method to evaluate physical maturity, and may be a helpful tool to estimate age of these animals in ecological and population studies.  相似文献   

13.
It has been hypothesized that fluctuating asymmetry (FA) may provide an indication of the functional importance of structures within an organism, with structures that more strongly impact fitness being more symmetric. Based on this idea, we predicted that for tetrapods in which the forelimbs and hindlimbs play an unequal role in locomotion, the less functionally important limb set should display higher levels of FA. We conducted a multispecies test of this hypothesis in anurans (frogs and toads), whose saltatory locomotor mode is powered by the hindlimbs. We also tested whether FA in the forelimbs, which play a more important role during landing, differed between families that differ in the degree of forelimb use in locomotion (Bufonidae vs. Ranidae). We calculated FA from the lengths of humeri and femora measured from disarticulated skeletal specimens of four anuran taxa (Bufonidae: Anaxyrus americanus, Rhinella marina; Ranidae: Lithobates catesbeianus, Lithobates clamitans). Our findings were consistent with the hypothesis that natural selection for increased locomotor performance may influence patterns of FA seen in vertebrate limbs, with all species displaying lower mean FA in the hindlimbs. More subtle functional roles between the forelimbs of bufonids and ranids, however, did not elicit different levels of FA.  相似文献   

14.
The relationship between locomotor behavior and long bone structural proportions is examined in 179 individuals and 13 species of hominoids and cercopithecoids. Articular surface areas, estimated from linear caliper measurements, and diaphyseal section moduli (strengths), determined from CT scans, were obtained for the femur, tibia, humerus, radius, and ulna. Both within-bone (articular to shaft) and between-bone (forelimb to hindlimb) proportions were calculated and compared between taxa. It was hypothesized that: 1) species emphasizing slow, cautious movement and/or more varied limb positioning (i.e., greater joint excursion) would exhibit larger articular to cross-sectional shaft proportions, and 2) species with more forelimb suspensory behavior would have relatively stronger/larger forelimbs, while those with more leaping would have relatively stronger/larger hindlimbs. The results of the analysis generally confirm both hypotheses. Several partial exceptions can be explained on the basis of more detailed structural-functional considerations. Associations between locomotion and structural proportions can be demonstrated both across major groupings (hominoids and cercopithecoids) and between relatively closely related taxa, e.g., mountain and lowland gorillas, siamangs and gibbons, and Trachypithecus and other colobines. Furthermore, structure and function do not always covary with taxonomy. For example, compared to cercopithecoids, mountain gorillas have relatively larger joints, like other hominoids, but do not have relatively stronger forelimbs, unlike other hominoids. This is consistent with a locomotor repertoire emphasizing relatively slow movement but with very little forelimb suspension. Proportions of Proconsul nyanzae, Proconsul heseloni, Morotopithecus bishopi, and Theropithecus oswaldi are compared with modern distributions to illustrate the application of the techniques to fossil taxa.  相似文献   

15.
It is often claimed that the walking gaits of primates are unusual because, unlike most other mammals, primates appear to have higher vertical peak ground reaction forces on their hindlimbs than on their forelimbs. Many researchers have argued that this pattern of ground reaction force distribution is part of a general adaptation to arboreal locomotion. This argument is frequently used to support models of primate locomotor evolution. Unfortunately, little is known about the force distribution patterns of primates walking on arboreal supports, nor do we completely understand the mechanisms that regulate weight distribution in primates. We collected vertical peak force data for seven species of primates walking quadrupedally on instrumented terrestrial and arboreal supports. Our results show that, when walking on arboreal vs. terrestrial substrates, primates generally have lower vertical peak forces on both limbs but the difference is most extreme for the forelimb. We found that force reduction occurs primarily by decreasing forelimb and, to a lesser extent, hindlimb stiffness. As a result, on arboreal supports, primates experience significantly greater functional differentiation of the forelimb and hindlimb than on the ground. These data support long-standing theories that arboreal locomotion was a critical factor in the differentiation of the forelimbs and hindlimbs in primates. This change in functional role of the forelimb may have played a critical role in the origin of primates and facilitated the evolution of more specialized locomotor behaviors.  相似文献   

16.
How divergent genetic systems regulate a common pathway during the development of two serial structures, forelimbs and hindlimbs, is not well understood. Specifically, HAND2 has been shown to regulate Shh directly to initiate its expression in the posterior margin of the limb mesenchyme. Although the Hand2-Shh morphoregulatory system operates in both the forelimb and hindlimb bud, a recent analysis suggested that its upstream regulation is different in the forelimb and hindlimb bud. A combination of all four Hox9 genes is required for Hand2 expression in the forelimb-forming region; however, it remains elusive what genetic system regulates the Hand2-Shh pathway in the hindlimb-forming region. By conditional inactivation of Islet1 in the hindlimb-forming region using the Hoxb6Cre transgene, we show that Islet1 is required for establishing the posterior hindlimb field, but not the forelimb field, upstream of the Hand2-Shh pathway. Inactivation of Islet1 caused the loss of posterior structures in the distal and proximal regions, specifically in the hindlimb. We found that Hand2 expression was downregulated in the hindlimb field and that Shh expression was severely impaired in the hindlimb bud. In the Hoxb6Cre; Islet1 mutant pelvis, the proximal element that is formed in a Shh-independent manner, displayed complementary defects in comparison with Pitx1(-/-) hindlimbs. This suggests that Islet1 and Pitx1 function in parallel during girdle development in hindlimbs, which is in contrast with the known requirement for Tbx5 in girdle development in forelimbs. Our studies have identified a role for Islet1 in hindlimb-specific development and have revealed Islet1 functions in two distinct processes: regulation upstream of the Hand2-Shh pathway and contributions to girdle development.  相似文献   

17.
How reliable are reconstructions of body mass and joint function based on articular surface areas? While the dynamic relationship between mechanical loading and cross‐sectional geometry in long bones is well‐established, the effect of loading on the subchondral articular surface area of epiphyses (hereafter, articular surface area, or ASA) has not been experimentally tested. The degree to which ASA can change in size and shape is important, because articular dimensions are frequently used to estimate body mass and positional behavior in fossil species. This study tests the hypothesis that mechanical loading influences ASA by comparing epiphyses of exercised and sedentary sheep from three age categories: juvenile, subadult, and adult (n = 44). ASA was measured on latex molds of subchondral articular surfaces of 10 epiphyses from each sheep. Areas were standardized by body mass, and compared to diaphyseal cross‐sectional geometrical data. Nonparametric statistical comparisons of exercised and control individuals found no increases in ASA in response to mechanical loading in any age group. In contrast, significant differences in diaphyseal cross‐sectional geometry were detected between exercised and control groups, but mostly in juveniles. The conservatism of ASA supports the hypothesis that ASA is ontogenetically constrained, and related to locomotor behavior at the species level and to body mass at the individual level, while variations in diaphyseal cross‐sectional geometry are more appropriate proxies for individual variations in activity level. Am J Phys Anthropol 116:266–277, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

18.
It has been demonstrated in clinical and experimental studies that subarticular trabecular bone responds to mechanical loads transmitted across joints through changes in mass and structural organization. We investigated differences in mass, volume, and density of subarticular trabecular bone of the humeral and femoral head in Hylobates syndactylus, Colobus guereza, and Papio cynocephalus. Our hypothesis was that variations in trabecular properties between taxa may reflect differences in mechanical loading associated with different locomotor repertoires. A nondestructive method for measuring trabecular properties using optical luminance data measured from radiographs was developed. We also examined the relationship between internal trabecular properties and the external size and surface area of the humeral and femoral heads in these taxa. Our results suggest that internal and external articular structure are relatively independent of each other and may be adapted to different aspects of the mechanical environment. Differences in trabecular mass between taxa appear to correspond to differences in the magnitudes of mechanical loads borne by the joint, whereas aritcular volume and surface area are related primarily to differences in joint mobility. Because of the apparent physiological “de-coupling” of articular mass and volume, variations in articular density (mass/volume) are difficult to interpret in isolation. Comparisons of internal and external articular structure may provide new ways to reconstruct the locomotor/positional behavior of extinct taxa. © 1994 Wiley-Liss, Inc.  相似文献   

19.
20.
Quadrupedal locomotion was mechanically studied for four species of primates, the chimpanzee, the rhesus macaque, the tufted capuchin, and the ring-tailed lemur, from low to high speeds of about two to ten times the anterior trunk length per second. A wide variety of locomotor patterns was observed during the high-speed locomotion of these primates. Positive correlations were observed between the peak magnitude of foot force components and speed. The differentiation of the foot force between the forelimb and the hindlimb did not largely change with a change of speed for each species. The vertical component and the accelerating component for the rhesus macaque were relatively large in the forelimb from low- to high-speed locomotion. The rhesus macaque, which habitually locomotes on the ground, differed in the quadrupedal locomotion from the other relatively arboreal primates, for which the hindlimb was clearly dominant in their dynamic force-producing distribution between the forelimbs and the hindlimbs. The previously reported locomotor difference, which was indicated among primates from the foot force pattern between the forelimb and the hindlimb during walking, also applied to high-speed locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号