首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N‐terminal region of agrin binds tightly to basal lamina, while the C‐terminal region interacts with a muscle‐specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase‐3 (MMP‐3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP‐3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP‐3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP‐3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP‐3 treatment does not alter anti‐laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP‐3 at the neuromuscular junction and that MMP‐3 specifically removes agrin from synaptic basal lamina. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 140–149, 2000  相似文献   

3.
Matrix metalloproteinase-3 removes agrin from synaptic basal lamina   总被引:4,自引:0,他引:4  
Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N-terminal region of agrin binds tightly to basal lamina, while the C-terminal region interacts with a muscle-specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase-3 (MMP-3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP-3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP-3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP-3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP-3 treatment does not alter anti-laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP-3 at the neuromuscular junction and that MMP-3 specifically removes agrin from synaptic basal lamina.  相似文献   

4.
Summary. The frog neuromuscular junction is sensitive to nitric oxide (NO), since exogenously applied NO reduces the release of transmitter by presynaptic terminals and the size of ATP-induced Ca2+ responses in perisynaptic Schwann cells. This study aimed at determining whether an NO synthase (NOS) is present at the neuromuscular junction, notably in perisynaptic Schwann cells, the glial cells at this synapse. The NADPH-diaphorase (NADPH-d) histochemical technique revealed the presence of NOS in cell bodies and presumed processes of perisynaptic Schwann cells. Incubation with NOS inhibitors, NG-nitro-L-arginine methyl ester or NG-monomethyl-L-arginine-acetate, abolished the NADPH-d staining. Moreover, L-arginine, the precursor of NO, impeded the blockade by NOS inhibitors, establishing the NOS specificity of NADPH-d staining in frog tissue. The pattern of labelling with a polyclonal antibody against the neuronal form of NOS was similar to the NADPH-d staining, also suggesting the presence of a neuronal NOS in perisynaptic Schwann cells. Using electron microscopy, the NOS immunostaining was found at the membrane and occasionally in the cytoplasm of perisynaptic Schwann cells and was not detected in the nerve terminal or muscle. There was no enzymatic or immunocytochemical labelling of NOS 6 days after denervation. It is concluded that NOS is present in frog perisynaptic Schwann cells. The presence of this endogenous NOS suggests that NO may act as a diffusible glial messenger to modulate synaptic activity and synapse formation at the neuromuscular junction.  相似文献   

5.
Abstract: Agrin is a synapse-organizing molecule that mediates the nerve-induced aggregation of acetylcholine receptors (AChRs) and other postsynaptic components at the developing and regenerating vertebrate neuromuscular junctions. At the neuromuscular junction, three different cell types can express agrin, i.e., neuron, muscle, and Schwann cell. Several lines of evidence suggested that neuron-derived agrin is the AChR-aggregating factor, but the possible roles of muscle-derived agrin in the formation of AChR aggregate are not known. By using the recombinant DNA method, a clonal stable C2C12 cell line transfected with antisense agrin cDNA was created. RNA dot blot and western blot analysis indicated that the expression of agrin in the transfected cell was abolished by DNA transfection. When the agrin-deficient C2C12 cells were induced to form myotubes and subsequently cocultured with agrin cDNA transfected fibroblasts, AChR aggregates were formed in the cocultures. In addition, acetylcholinesterase (AChE) aggregates in agrin-deficient myotubes were also induced by exogenous agrin and the AChE aggregates were colocalized with the AChR aggregates. The agrin-deficient myotubes could also respond to neuron-induced AChR aggregation after coculturing with neuroblastoma cells. Thus, the agrin-deficient myotubes retain their ability to exhibit the agrin- or neuron-induced AChR aggregation. This result suggests that the formation of postsynaptic specializations during development and regeneration is mediated by neuron-derived agrin but not the agrin from muscle.  相似文献   

6.
《The Journal of cell biology》1987,105(6):2457-2469
Several lines of evidence have led to the hypothesis that agrin, a protein extracted from the electric organ of Torpedo, is similar to the molecules in the synaptic cleft basal lamina at the neuromuscular junction that direct the formation of acetylcholine receptor and acetylcholinesterase aggregates on regenerating myofibers. One such finding is that monoclonal antibodies against agrin stain molecules concentrated in the synaptic cleft of neuromuscular junctions in rays. In the studies described here we made additional monoclonal antibodies against agrin and used them to extend our knowledge of agrin-like molecules at the neuromuscular junction. We found that anti-agrin antibodies intensely stained the synaptic cleft of frog and chicken as well as that of rays, that denervation of frog muscle resulted in a reduction in staining at the neuromuscular junction, and that the synaptic basal lamina in frog could be stained weeks after degeneration of all cellular components of the neuromuscular junction. We also describe anti-agrin staining in nonjunctional regions of muscle. We conclude the following: (a) agrin-like molecules are likely to be common to all vertebrate neuromuscular junctions; (b) the long-term maintenance of such molecules at the junction is nerve dependent; (c) the molecules are, indeed, a component of the synaptic basal lamina; and (d) they, like the molecules that direct the formation of receptor and esterase aggregates on regenerating myofibers, remain associated with the synaptic basal lamina after muscle damage.  相似文献   

7.
The extracellular matrix surrounding the neuromuscular junction is a highly specialized and dynamic structure. Matrix Metalloproteinases are enzymes that sculpt the extracellular matrix. Since synaptic activity is critical to the structure and function of this synapse, we investigated whether changes in synaptic activity levels could alter the activity of Matrix Metalloproteinases at the neuromuscular junction. In particular, we focused on Matrix Metalloproteinase 3 (MMP3), since antibodies to MMP3 recognize molecules at the frog neuromuscular junction, and MMP3 cleaves a number of synaptic basal lamina molecules, including agrin. Here we show that the fluorogenic compound (M2300) can be used to perform in vivo proteolytic imaging of the frog neuromuscular junction to directly measure the activity state of MMP3. Application of this compound reveals that active MMP3 is concentrated at the normal frog neuromuscular junction, and is tightly associated with the terminal Schwann cell. Blocking presynaptic activity via denervation, or TTX nerve blockade, results in a decreased level of active MMP3 at the neuromuscular junction. The loss of active MMP3 at the neuromuscular junction in denervated muscles can result from decreased activation of pro-MMP3, or it could result from increased inhibition of MMP3. These results support the hypothesis that changes in synaptic activity can alter the level of active MMP3 at the neuromuscular junction.  相似文献   

8.
9.
The neuromuscular junction is a plastic structure and is constantly undergoing changes as the nerve terminals that innervate the muscle fiber extend and retract their processes. In vivo observations on developing mouse neuromuscular junctions revealed that prior to the retraction of a nerve terminal the acetylcholine receptors (AChRs) under that nerve terminal disperse. Agrin is a protein released by nerve terminals that binds to synaptic basal lamina and directs the aggregation of AChRs and acetylcholinesterase (AChE) in and on the surface of the myotube. Thus, if the AChRs under a nerve terminal disperse, then the cellular signaling mechanism by which agrin maintains the aggregation of those AChRs must have been disrupted. Two possibilities that could lead to the disruption of the agrin induced aggregation are that agrin is present at the synaptic basal lamina but is unable to direct the aggregation of AChRs, or that agrin has been removed from the synaptic basal lamina. Thus, if agrin were blocked, one would expect to see anti-agrin staining at abandoned synaptic sites; whereas if agrin were removed, anti-agrin staining would be absent at abandoned synaptic sites. We find that anti-agrin staining and α-bungarotoxin staining are absent at abandoned synaptic sites. Further, in vivo observations of retracting nerve terminals confirm that agrin is removed from the synaptic basal lamina within 7 days. Thus, while agrin will remain bound to synaptic basal lamina for months following denervation, it is removed within days following synaptic retraction. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
This study aimed to generate a probe for perisynaptic Schwann cells (PSCs) to investigate the emerging role of these synapse-associated glial cells in the formation and maintenance of the neuromuscular junction (NMJ). We have obtained a novel monoclonal antibody, 2A12, which labels the external surface of PSC membranes at the frog NMJ. The antibody reveals PSC fine processes or “fingers” that are interposed between nerve terminal and muscle membrane, interdigitating with bands of acetylcholine receptors. This antibody also labels PSCs at the avian neuromuscular junction and recognizes a 200 kDa protein in Torpedo electric organs. In frog muscles, axotomy induces sprouting of PSC processes beyond clusters of acetylcholine receptors and acetylcholinesterase at denervated junctional branches. PSC branches often extend across several muscle fibers. At some junctions, PSC sprouts join the tips of neighboring branches. The average length of PSC sprouts is approximately 156 µ at 3-week denervated NMJs. PSC sprouting is accompanied by a significant increase in the number of Schwann cell bodies per NMJ. Following nerve regeneration, nerve terminals reinnervate the junction along the PSC processes. In vivo observations of normal frog muscles also show PSC processes longer than nerve terminals at some junctional branches. The results suggest that nerve injury induces profuse PSC sprouting that may play a role in guiding nerve terminal regeneration at frog NMJs. In addition, antibody 2A12 reveals the fine morphology of PSCs in relation to other synaptic elements and is a useful probe in elucidating the function of these synapse-associated glial cells in vivo.  相似文献   

11.
Matrix metalloproteinases are important regulators of extracellular matrix molecules and cell-cell signaling. Antibodies to matrix metalloproteinase 3 (MMP3) recognize molecules at the frog neuromuscular junction, and MMP3 can remove agrin from synaptic basal lamina (VanSaun & Werle, 2000). To gain insight into the possible roles of MMP3 at the neuromuscular junction, detailed observations were made on the structure and function of the neuromuscular junctions in MMP3 null mutant mice. Striking differences were found in the appearance of the postsynaptic apparatus of MMP3 null mutant mice. Endplates had an increased volume of AChR stained regions within the endplate structure, leaving only small regions devoid of AChRs. Individual postsynaptic gutters were wider, containing prominent lines that represent the AChRs concentrated at the tops of the junctional folds. Electron microscopy revealed a dramatic increase in the number and size of the junctional folds, in addition to ectopically located junctional folds. Electrophysiological recordings revealed no change in quantal content or MEPP frequency, but there was an increase in MEPP rise time in a subset of endplates. No differences were observed in the rate or extent of developmental synapse elimination. In vitro cleavage experiments revealed that MMP3 directly cleaves agrin. Increased agrin immunofluorescence was observed at the neuromuscular junctions of MMP3 null mutant mice. These results provide strong evidence that MMP3 is involved in the control of synaptic structure at the neuromuscular junction and they support the hypothesis that MMP3 is involved in the regulation of agrin at the neuromuscular junction.  相似文献   

12.
We isolated two cDNAs that encode isoforms of agrin, the basal lamina protein that mediates the motor neuron-induced aggregation of acetylcholine receptors on muscle fibers at the neuromuscular junction. Both proteins are the result of alternative splicing of the product of the agrin gene, but unlike agrin, they are inactive in standard acetylcholine receptor aggregation assays. They lack one (agrin-related protein 1) or two (agrin-related protein 2) regions in agrin that are required for its activity. Expression studies provide evidence that both proteins are present in the nervous system and muscle and that, in muscle, myofibers and Schwann cells synthesize the agrin-related proteins while the axon terminals of motor neurons are the sole source of agrin.  相似文献   

13.
Although the role of agrin in the formation of the neuromuscular junction is well established, other functions for agrin have remained elusive. The present study was undertaken to assess the role of agrin in neurite outgrowth mediated by the heparin‐binding growth factor basic fibroblast growth factor (FGF‐2), which we have shown previously to bind to agrin with high affinity and that has been shown to mediate neurite outgrowth from a number of neuronal cell types. Using both an established neuronal cell line, PC12 cells, and primary chick retina neuronal cultures, we find that agrin potentiates the ability of FGF‐2 to stimulate neurite outgrowth. In PC12 cells and retinal neurons agrin increases the efficacy of FGF‐2 stimulation of neurite outgrowth mediated by the FGF receptor, as an inhibitor of the FGF receptor abolished neurite outgrowth in the presence of agrin and FGF‐2. We also examined possible mechanisms by which agrin may modulate neurite outgrowth, analyzing ERK phosphorylation and c‐fos phosphorylation. These studies indicate that agrin augments a transient early phosphorylation of ERK in the presence of FGF‐2, and augments and sustains FGF‐2 mediated increases in c‐fos phosphorylation. These data are consistent with established mechanisms where heparan sulfate proteoglycans such as agrin may increase the affinity between FGF‐2 and the FGF receptor. In summary, our studies suggest that neural agrin contributes to the establishment of axon pathways by modulating the function of neurite promoting molecules such as FGF‐2. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 261–277, 2003  相似文献   

14.
Summary The morphogenesis of the neuromuscular junction was examined at the ultrastructural level in the skeletal muscle of the lower limb of the chick. The fine structure of the neuromuscular junction of the adult fowl was essentially the same as that in other vertebrates; the junction consists of the axon terminal, the Schwann cell, and the muscle fiber. The first visible sign of neuromuscular junction formation, in embryos of 13 days in ovo, was the membrane thickening of the sarcolemma which develops into the postsynaptic membrane. The axons approaching the muscle fibers were incompletely ensheathed by a Schwann cell and contained vesicles. The subsequent differentiation of the junctional sarcoplasm, the axoplasm, and the Schwann cell cytoplasm takes place from 13 to 18 days in ovo and the junction nearly reaches maturity at around 20 days in ovo. The formation of complicated anastomoses and branching of the junctional infoldings seems to occur after hatching. These ultrastructural observations are in good agreement with histochemical findings (cholinesterase method) in terms of the chronology of the morphogenesis of the junction.This investigation was supported in part by U. S. Public Health Service Grant MH 12269-01, administered by Dr. Kazuo Ogawa. It was initiated on the suggestion of Prof. J. Nakai, Department of Anatomy, Faculty of Medicine, Tokyo University, and a part of it was performed in his laboratory. The author is greatly indebted to Prof. K. Ogawa, Department of Anatomy, Kansai Medical School, for his guidance and encouragement, and to Dr. S. Igarashi, Department of Anatomy, Tokyo University, for some technical advice.  相似文献   

15.
Molecules localized to the synapse are potential contributors to processes unique to this specialized region, such as synapse formation and maintenance and synaptic transmission. We used an immunohistochemical strategy to uncover such molecules by generating antibodies that selectively stain synaptic regions and then using the antibodies to analyse their antigens. In this study, we utilized a monoclonal antibody, mAb 6D7, to identify and characterize an antigen concentrated at frog neuromuscular junctions and in peripheral nerves. In adult muscle, immunoelectron microscopy indicates that the antigen is located in the extracellular matrix around perisynaptic Schwann cells at the neuromuscular junction and in association with myelinated and nonmyelinated axons in peripheral nerves. The maintenance of the mAb 6D7 epitope is innervation-dependent but is muscle-independent; it disappears from the synaptic region within 2 weeks after denervation, but persists after muscle damage when the nerve is left intact. mAb 6D7 immunolabelling is also detected at the neuromuscular junction in developing tadpoles. Biochemical analyses of nerve extracts indicate that mAb 6D7 recognizes a glycoprotein of 127 kDa with both N- and O-linked carbohydrate moieties. Taken together, the results suggest that the antigen recognized by mAb 6D7 may be a novel component of the synaptic extracellular matrix overlying the terminal Schwann cell. The innervation-sensitivity of the epitope at the neuromuscular junction suggests a function in the interactions between nerves and Schwann cells.  相似文献   

16.
The neural cell adhesion molecule (N-CAM) is a membrane glycoprotein involved in neuron-neuron and neuron-muscle adhesion. It can be synthesized in various forms by both nerve and muscle and it becomes concentrated at the motor endplate. Biochemical analysis of a frog muscle extract enriched in basal lamina revealed the presence of a polydisperse, polysialylated form of N-CAM with an average Mr of approximately 160,000 as determined by SDS-PAGE, which was converted to a form of 125,000 Mr by treatment with neuraminidase. To define further the role of N-CAM in neuromuscular junction organization, we studied the distribution of N-CAM in an in vivo preparation of frog basal lamina sheaths obtained by inducing the degeneration of both nerve and muscle fibers. Immunoreactive material could be readily detected by anti-N-CAM antibodies in such basal lamina sheaths. Ultrastructural analysis using immunogold techniques revealed N-CAM in close association with the basal lamina sheaths, present in dense accumulation at places that presumably correspond to synaptic regions. N-CAM epitopes were also associated with collagen fibrils in the extracellular matrix. The ability of anti-N-CAM antibodies to perturb nerve regeneration and reinnervation of the remaining basal lamina sheaths was then examined. In control animals, myelinating Schwann cells wrapped around the regenerated axon and reinnervation occurred only at the old synaptic areas; new contacts between nerve and basal lamina had a terminal Schwann cell capping the nerve terminal. In the presence of anti-N-CAM antibodies, three major abnormalities were observed in the regeneration and reinnervation processes: (a) regenerated axons in nerve trunks that had grown back into the old Schwann cell basal lamina were rarely associated with myelinating Schwann cell processes, (b) ectopic synapses were often present, and (c) many of the axon terminals lacked a terminal Schwann cell capping the nerve-basal lamina contact area. These results suggest that N-CAM may play an important role not only in the determination of synaptic areas but also in Schwann cell-axon interactions during nerve regeneration.  相似文献   

17.
Changes in the distribution of agrin and acetylcholine receptors (AChRs) were examined during reinnervation and following permanent denervation as a means of understanding mechanisms controlling the distribution of these molecules. Following nerve damage in the peripheral nervous system, regenerating nerve terminals preferentially return to previous synaptic sites leading to the restoration of synaptic activity. However, not all portions of original synaptic sites are reoccupied: Some of the synaptic sites are abandoned by both the nerve terminal and the Schwann cell. Abandoned synaptic sites contain agrin, AChRs, and acetylcholinesterase (AChE) without an overlying nerve terminal or Schwann cell providing a unique location to observe changes in the distribution of these synapse-specific molecules. The distribution of anti-agrin and AChR staining at abandoned synaptic sites was altered during the process of reinnervation, changing from a dense, wide distribution to a punctate, pale pattern, and finally becoming entirely absent. Agrin and AChRs were removed from abandoned synaptic sites in reinnervated frog neuromuscular junctions, while in contralateral muscles which were permanently denervated, anti-agrin and AChR staining remained at abandoned synaptic sites. Decreasing synaptic activity during reinnervation delayed the removal of agrin and AChRs from abandoned synaptic sites. Altogether, these results support the hypothesis that synaptic activity controls a cellular mechanism that directs the removal of agrin from synaptic basal lamina and the loss of agrin leads to the dispersal of AChRs. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 999–1018, 1997  相似文献   

18.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron–neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin‐deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin‐deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma‐aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age‐matched wild‐type neurons during the first 3 weeks in culture. These results demonstrate that neuron‐specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 547–557, 1999  相似文献   

19.
At developing neuromuscular junctions (NMJs), muscles initially contact motor axons by microprocesses, or myopodia, which are induced by nerves and nerve‐secreted agrin, but it is unclear how myopodia are assembled and how they influence synaptic differentiation at the NMJ. Here, we report that treatment of cultured muscle cells with agrin transiently depleted p120 catenin (p120ctn) from cadherin junctions in situ, and increased the tyrosine phosphorylation and decreased the cadherin‐association of p120ctn in cell extracts. Whereas ectopic expression of wild‐type p120ctn in muscle generated myopodia in the absence of agrin, expression of a specific dominant‐negative mutant form of p120ctn, which blocks filopodial assembly in nonmuscle cells, suppressed nerve‐ and agrin‐induction of myopodia. Significantly, approaching neurites triggered reduced acetylcholine receptor (AChR) clustering along the edges of muscle cells expressing mutant p120ctn than of control cells, although the ability of the mutant cells to cluster AChRs was itself normal. Our results indicate a novel role of p120ctn in agrin‐induced myopodial assembly and suggest that myopodia increase muscle–nerve contacts and muscle's access to neural agrin to promote NMJ formation. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

20.
1. The aggregation of acetylcholine receptors at the developing neuromuscular junction is critical to the development and function of this synapse. In vitro studies have shown that receptor aggregation can be induced by the finding of agrin to the muscle cell surface and by the electric field-induced concentration of a (nonreceptor) molecule at the cathodal cell pole.2. We report here on the interaction between agrin binding and electric fields with respect to the distribution of receptors and agrin binding sites.3. (a) Pretreatment of cells with agrin completely blocks the development of field-induced receptor clusters. (b) Field-induced aggregation of receptors precedes the field-induced aggregation of agrin binding sites by approximately 30min. (c) Electric fields prevent agrin-induced receptor clustering despite the presence of agrin binding sites and freely diffusing receptors.4. These results indicate that another membrane component—but not the agrin binding site and not the receptor—is required for agrin-induced receptor clustering. They also suggest that electric fields and agrin cause receptor clustering via common molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号