首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Apparent ileal digestibility (AID) of energy, dry matter (DM), nitrogen (N) and amino acids and standardized ileal digestibility (SID) of amino acids in low quality soybean meals with different CP concentration (SBM 44% CP and SBM 48% CP) with or without 400 U β-mannanase/kg supplementation were evaluated in 20 cannulated barrows ((Landrace×Yorkshire)×Duroc) with an average BW of 25.08±3.42 kg. A N-free diet was used to determine basal endogenous losses of amino acids. The supplementation of β-mannanase improved (P<0.05) AID of DM compared with non-supplemented diet. However, enzyme supplementation did not improve (P>0.05) AID of N and energy. The type of SBM (SBM 44% CP v. SBM 48% CP) had no effect on AID of DM, N and energy. β-mannanase improved (P<0.05) AID of sum of essential amino acids, arginine, histidine, lysine, valine and glycine. The SID of lysine was higher (P<0.05) in enzyme supplemented than in non-supplemented diets. Larger AID and SID of threonine and proline (P<0.05) were observed in SBM 48% CP than in SBM 44% CP. In conclusion, the supplementation of enzyme improved AID of arginine, histidine, lysine, valine and glycine, but it did not cause marked difference in SID of these amino acids except for lysine. The low nutrient digestibility of the SBM sources used in the present experiment might have favoured the positive effect of β-mannanase supplementation.  相似文献   

2.
Broiler litter was deep stacked and ensiled with water to achieved 40% moisture before being added, with or without 5% sugarcane molasses or with rumen contents, to a basal diet. The influence of stacking and ensiling of broiler litter on the numbers of Salmonella, Shigella, Proteus and total number of colony forming units (CFU) was investigated. Nutritive value of broiler litter processed by deep stacking and ensiling was evaluated in a digestibility trial. The experiment was conducted with 30 wethers allotted to five diets. A basal diet (20% corn grain, 23% wheat bran, 37% cotton seed cake, 18% wheat straw and 2% dicalcium phosphate) was given alone (1) or with broiler litter processed by deep stacking (2), ensiling (3), ensiling with 5% added molasses (4), or ensiling with rumen contents (1:1, wet basis) (5). For Diets 2–5, the ratio of basal diet to silage was 1:1, dry basis. For the digestion trial, diets were given at 20 g dry matter (DM) kg−1 body weight per day. Initial samples of broiler litter showed 2.5 × 108 CFU and Salmonella, Shigella and Proteus were present. The processes of deep stacking and ensiling were equally effective in achieving a complete elimination of all the pathogens. Apparent digestibilities of organic matter (OM) and crude protein (CP) (559.1 g kg−1 and 608.7 g kg−1 DM) were lower (P < 0.05) for diet 2 (deep stacked litter) than for the other waste-containing diets (OM: 578.7 g kg−1, 582.9 g kg−1, 594.1 g kg−1; CP: 688.6 g kg−1, 675.8 g kg−1, 709.0 g kg−1 DM, for Diets 3, 4 and 5, respectively). Among the waste-containing diets, cellulose digestibility (398.7 g kg−1 DM) was higher (P < 0.05) for Diet 5 (ensiled litter-rumen contents). The results indicate that deep stacking and ensiling are equally feasible and effective for eliminating the pathogens and processed broiler litter can be incorporated in the diet of ruminants at levels of up to 50% without any adverse effect on the health of the animals.  相似文献   

3.
Two experiments were conducted to determine the effect of enzyme supplementation on the nitrogen-corrected apparent metabolisable energy (AMEn) and apparent nutrient digestibilities in ileum and excreta from male broiler chickens fed diets containing high amounts of wheat (>80%). Four different enzyme preparations were added to the wheat-based diets in varying levels and combinations. The difference between Experiments 1 and 2 consisted in the addition of different enzymes and enzyme levels. Excreta and ileal content were collected from broiler chickens at 3 and 6 weeks of age. At 3 weeks of age enzyme supplementation increased (P<0.0001) the AMEn from an average value of 13.86 MJ kg−1 dry matter (DM) to an average of 14.60 MJ kg−1 DM in the two experiments. The apparent digestibility of protein (APD) and fat (AFD) were improved significantly as a result of enzyme addition in both experiments. At 3 weeks of age, improvements (P<0.05) in the ileal AFD and APD were on average 13% and 6%, respectively. The effect of enzyme supplementation on AFD measured in excreta from broiler chickens showed the same pattern. The positive effect of enzyme addition on the overall nutrient digestibility and AMEn was reflected in weight gain and feed conversion efficiency (FCE). Significant improvements in AMEn, APD, and AFD were still present in most of the groups fed with enzyme-supplemented diets at 6 weeks of age. The effect of enzyme addition, however, was less pronounced, especially in Experiment 1 where the ileal APD of broiler chickens did not differ significantly from the control group. Apparent starch digestibility (ASD), measured in Experiment 2, was very high in all groups, including the control; however, enzyme supplementation increased ASD (P<0.001) in ileum and excreta at both 3 and 6 weeks of age. The digestibility of total non-starch polysaccharides (NSP) in excreta was improved significantly (P<0.01) as a result of enzyme supplementation (Experiment 2). In addition, pH of caeca content decreased (P<0.02) in broiler chickens fed with enzyme-supplemented diets when compared with the control group. Decreased pH could indicate microbial fermentation of unabsorbed NSP residues and nitrogenous compounds. Overall, the results demonstrated that the nutritive value of wheat-based diets to broiler chickens improve enzyme supplementation. The apparent digestibility of total NSP and of arabinose and xylose residues improved (P<0.02) in the enzyme-supplemented diets indicating that the enzymes were able to break down the cell wall NSP to a certain extent.  相似文献   

4.
The objective of this meta-analysis was to develop empirical equations predicting growth responses of growing cattle to protein intake. Overall, the data set comprised 199 diets in 80 studies. The diets were mainly based on grass silage or grass silage partly or completely replaced by whole-crop silages or straw. The concentrate feeds consisted of cereal grains, fibrous by-products and protein supplements. The analyses were conducted both comprehensively for all studies and also separately for studies in which soybean meal (SBM; n=71 diets/28 studies), fish meal (FM; 27/12) and rapeseed meal (RSM; 74/35) were used as a protein supplement. Increasing dietary CP concentration increased (P<0.01) BW gain (BWG), but the responses were quantitatively small (1.4 g per 1 g/kg dry matter (DM) increase in dietary CP concentration). The BWG responses were not different for bulls v. steers and heifers (1.4 v. 1.3 g per 1 g/kg DM increase in dietary CP concentration) and for dairy v. beef breeds (1.2 v. 1.7 g per 1 g/kg, respectively). The effect of increased CP concentration declined (P<0.01) with increasing mean BW of the animals and with improved BWG of the control animals (the lowest CP diet in each study). The BWG responses to protein supplementation were not related to the CP concentration in the control diet. The BWG responses increased (P<0.05) with increased ammonia N concentration in silage N and declined marginally (P>0.10) with increasing proportion of concentrate in the diet. All protein supplements had a significant effect on BWG, but the effects were greater for RSM (P<0.01) and FM (P<0.05) than for SBM. Increasing dietary CP concentration improved (P<0.01) feed efficiency when expressed as BWG/kg DM intake, but decreased markedly when expressed as BWG/kg CP intake. Assuming CP concentration of 170 g/kg BW marginal efficiency of the utilisation of incremental CP intake was only 0.05. Increasing dietary CP concentration had no effects on carcass weight, dressing proportion or conformation score, but it increased (P<0.01) fat score. Owing to limited production responses, higher prices of protein supplements compared with cereal grains and possible increases the N and P emissions, there is generally no benefit from using protein supplementation for growing cattle fed grass silage-based diets, provided that the supply of rumen-degradable protein is not limiting digestion in the rumen.  相似文献   

5.
Flax seed meal (FSM) is rich in various nutrients, especially CP and energy, and can be used as animal protein feed. In animal husbandry production, it is a long-term goal to replace soybean meal (SBM) in animal feed with other plant protein feed. However, studies on the effects of replacing SBM with FSM in fattening sheep are limited. The aim of this experiment was to study the effects of replacing a portion of SBM with FSM on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Thirty-six Dorper × Small Thin-Tailed crossbred rams (BW = 40.4 ± 1.73 kg, mean ± SD) were randomly assigned into four groups. The dietary treatments (forage/concentrate, 45 : 55) were isocaloric according to the nutrient requirements of rams. Soybean meal was replaced with FSM at different levels (DM basis): (1) 18% SBM (18SBM), (2) 12% SBM and 6% FSM (6FSM), (3) 6% SBM and 12% FSM (12FSM) and (4) 18% FSM (18FSM). The rams were fed in individual pens for 60 days, with the first 10 days for adaptation to diets, and then the digestibility of nutrients was determined. There was no significant difference in DM intake, but quadratic (P < 0.001) effects on the average daily gain and feed efficiency were detected, with the highest values in the 6FSM and 12FSM groups. For DM and NDF digestibility, quadratic effects were observed with the higher values in the 6FSM and 12FSM groups, but the digestibility of CP linearly decreased with the increase in FSM in the diet (P = 0.043). There was a quadratic (P < 0.001) effect of FSM inclusion rate on the estimated microbial CP yield. However, the values of intestinally absorbable dietary protein decreased linearly (P < 0.001). For the supply of metabolisable protein, both the linear (P = 0.001) and quadratic (P = 0.044) effects were observed with the lowest value in the 18FSM group. Overall, the results indicated that SBM can be effectively replaced by FSM in the diets of fattening sheep and the optimal proportion was 12.0% under the conditions of this experiment.  相似文献   

6.
Digestibility trials of 23 pelleted diets, with one or two ingredients and having 8.7–53.5% acid detergent fibre (ADF) on a dry matter (DM) basis, were carried out in adult rabbits fed ad libitum. Using a step-wise linear regression approach, the relationship between the digestible energy content (DE) or the coefficient of digestibility of gross energy (dGE) and the chemical composition of diets was established. Excluding beet pulp, with a very high crude fibre digestibility (54.8%), the prediction equations obtained were: DE (MJ kg−1 DM) = 14.2 − 0.205 ADF + 0.218 EE + 0.057 CP (R2 = 0.965, RSD = 0.494) and dGE (%) = 83.2 − 1.07 ADF (R2 = 0.951, RSD = 3.15) where ADF, ether extract (EE) and crude protein (CP) are expressed as a percentage on a DM basis. When diets with level of EE or CP higher than 6% or 18% respectively (grape marc, olive oil cake, brewer's grains, sunflower meal) were also removed, the prediction equations became: DE = 15.9 − 0.219 ADF (R2 = 0.974, RSD = 0.391) and dGE = 85.6 − 1.20 ADF (R2 = 0.977, RSD = 2.02). The contents in DE, digestible crude protein and undigestible crude fibre of 21 ingredients are presented and discussed in comparison with other studies.  相似文献   

7.
Dehydrated lucerne of low (L: 0.53), normal (N: 0.55) and high (H: 0.73) in vivo dry matter (DM) digestibility were treated with ammonia or urea to study the effects on in situ and pepsin-cellulase DM digestibilities, water solubility and nitrogen content (Experiments 1, 2, 4) and on cell wall composition and degradability (Experiment 3). (1) N lucerne was treated with 30 g NH3 kg−1 DM for 1 to 12 weeks at 30°C and 2 to 6 days at 80°C; (2) L, N and H lucerne were treated with increasing ammonia levels: 15 to 100 g kg−1 DM for 3 weeks at 30°C and 4 days at 80°C; (3) L, N and H lucerne were treated with 60 g NH3 kg−1 DM for 3 weeks at 30°C and 4 days at 80°C; (4) L, N and H lucerne were treated with 60 g urea kg−1 DM without addition of urease for 3 and 6 weeks at 30°C. All treatments were carried out at 40% humidity.In situ and pepsin-cellulase DM digestibilities increased significantly (P < 0.05) with the duration of treatment (up to 3 weeks at 30°C and 4 days at 80°C) and with the level of ammonia (P < 0.01) (up to 30 g kg−1 DM). The greatest improvements (similar at both temperatures) were for L, N and H of 7.3, 7.2 and 3.9 points for in situ and of 10.6, 11.3 and 6.3 points for cellulase digestibilities, respectively. Water solubility also increased with duration of treatment and level of ammonia (P < 0.01) and was greater at 80°C than at 30°C. Urea treatment significantly improved (P < 0.01) digestibilities and water solubility but the doubling of treatment duration had no influence. The degree of ureolysis was only 50 to 60%. Ammonia and urea treatments considerably increased (P < 0.01) nitrogen content.Treatment with 60 g NH3 kg−1 DM induced a decrease in ethanol insoluble residue content, which was significant (P < 0.01 for L and N, P < 0.05 for H) at 80°C but not at 30°C, and was greater for L and N than for H (about 12 and 5 points, respectively). This decrease was essentially due to solubilisation of hemicelluloses (− 15%) and uronic acids (− 26%). Thus, at 30°C, the chemical solubility of the cell wall was lower than at 80°C for the same total increase in microbial degradation. This result indicates that other phenomena are involved, such as an increase in cell wall porosity and consequently improved accessibility of cell wall polysaccharides to glycolytic enzymes.  相似文献   

8.
Cashew nut meal (CNM) is widely used in tropical countries due to the high protein and energy levels; therefore, it has potential to be an alternative feed supplementation for livestock. Our objective was to evaluate the use of CNM as feed supplement for lambs. Twenty-four lambs were divided into a randomized block design with four treatments, starting with a diet control of Tifton 85 (Cynodon spp.) hay and CNM as a supplement at three different levels representing 6, 12, and 18% of the total mixed ration (TMR) provided. There were evaluated intake (g/day and g/kgBW0.75); the digestibility of DM and nutrients; nitrogen balance; and ingestive behavior. The CP and ether extract (EE) intake (g/day) as well as DM, and organic matter (OM) intake (g/kgBW0.75) were influenced by supplementation with CNM in a positive linear increase (P < 0.05). The digestibility of DM, OM and NDF increased according to the levels of CNM up to 12% and markedly decreased at the higher level (P < 0.05). The EE and CP digestibility raised according to the CNM levels (P < 0.05) and consequently increased the nitrogen retention resulting in a positive nitrogen balance. The protein and energetic characteristics of CNM show that it can be used as an alternative supplementation to low-quality forages for lambs. However, its use as a single supplement ingredient above 7% on total mixed ration may reduce fiber digestibility.  相似文献   

9.
The impact of fibre level and fibre source on digestibility, gastrointestinal tract (GIT) development, total tract mean retention time (MRT) and growth performance was studied in indigenous Mong Cai (MC) and exotic Landrace × Yorkshire (LY) pigs. The diets were based on maize, rice bran, soyabean meal, fish meal and soyabean oil, and cassava residue (CR) or brewer's grain (BG) as fibrous ingredient sources in the high-fibre diets (HF) and were fed ad libitum. A low-fibre diet (LF), containing around 200 g NDF/kg dry matter (DM), was formulated without CR and BG as feed ingredients. The HF diets (HF-CR and HF-BG) were formulated to contain around 270 g NDF/kg DM. The experiment was arranged as a 2 × 3 factorial completely randomized design with six replications, and lasted 27 days. Increased dietary fibre level resulted in a reduction (P < 0.05) in average daily gain, digestibility of organic matter (OM), CP and gross energy (GE) at the ileum and in the total tract, and in MRT, and an increase (P < 0.05) in the feed conversion ratio and in the weight of the GIT (except for small intestine and caecum). The coefficients of total tract digestibility of fibre fractions were higher in HF diets than in the LF diet, with highest values for diet HF-CR, which had a high proportion of soluble non-starch polysaccharides. MC pigs had longer MRT of digesta than LY pigs (P < 0.05), resulting in higher digestibility at the ileum and in the total tract. Across diets and breeds, the total tract apparent digestibility of OM, CP and GE was positively related (R2 = 0.80 to 0.84) to the MRT of solids, whereas the MRT was negatively related to the DM intake (R2 = 0.60).  相似文献   

10.
The responses of 144 Large White × Landrace pigs (72 castrated males and 72 females; mean initial liveweight approximately 23 kg) to graded additions of L-lysine monohydrochloride to a basal diet containing yellow maize and groundnut meal and 180 g crude protein per kg were studied. Total dietary lysine levels ranged from 5–12 g kg?1. All diets contained digestible energy of 15.44–16.02 MJ kg?1 DM. The pigs were individually fed from 23 to 33, 47 or 62 kg liveweight. Growth performance, carcass characteristics, nitrogen retention and plasma urea concentration were employed as response criteria. Influence of sex on lysine requirements for optimum growth, nitrogen retention and efficiency of essential amino acids utilization measured by minimum plasma urea concentration was also investigated.Supplementing the basal diet with L-lysine monohydrochloride significantly (P < 0.001) improved growth performance. Castrated male pigs grew faster and responded better to dietary lysine supplementation than gilts. No apparent decline in lysine requirements for optimum growth performance was observed for the two sexes of pigs as they got older. Optimum growth performance in castrated males was obtained with 9, 8 and 8 g lysine kg?1 diets for the liveweight ranges 23–33, 23–47 and 23–62 kg, respectively. Optimum growth performance of the gilts for all three liveweight ranges was obtained at an estimated dietary lysine concentration of 11 g kg?1.Optimum lean deposition, carcass leanness and other carcass measurements were obtained at 8 g lysine kg?1 diet. Carcass data were not analysed for influence of sex.Plasma urea concentration showed further evidence of a quicker and cheaper indirect index of dietary amino acid adequacy in pigs. Minimal plasma urea concentration was obtained at 7–8 g lysine kg?1 diet for the three liveweight ranges investigated.In a humid tropical environment, such as Ibadan, the dietary lysine requirement of Large White × Landrace pigs of 23–62 kg is about 9 g lysine kg?1 diet for optimum growth performance and carcass quality, but nitrogen metabolism and plasma urea data suggest a lower level of to 7–9 g lysine kg?1 diet.  相似文献   

11.
The influence of enzyme supplementation on performance and intestinal viscosity of male broiler chickens fed with diets containing high amount of wheat was examined in three experiments. In the first experiment, addition with an enzyme preparation including different cell wall degrading enzymes to diets containing 63 g kg−1 and 72 g kg−1 of wheat improved (P<0.05) feed conversion efficiency in the 72 g kg−1 wheat diet. In addition, intestinal viscosity of chickens fed with the 72 g kg−1 wheat diet was reduced (P<0.05). Weight gain and feed intake were not influenced by enzyme addition. In Experiments 2 and 3, the inclusion level of wheat in the diets was more than 80 g kg−1 and four different enzyme preparations were used (two xylanase preparations, two mixed preparations). Overall, a significant effect on performance and intestinal viscosity of chickens was obtained as a result of enzyme supplementation in both experiments. In the first 21 days, improvements (P<0.05) in weight gain and feed conversion efficiency were found to be on average 5% and 6% in Experiment 2 and 7% and 8% in Experiment 3, respectively. When weight gain and feed conversion efficiency were examined on a weekly basis it was shown that the significant response of enzyme addition was confined to the first 4 weeks. However, the effect of enzyme supplementation was still significant in the whole period from 21–42 days. Feed intake was not influenced by enzyme addition. The viscosity of intestinal content in both the jejunum and ileum was in general reduced (P<0.05) with enzyme supplementation, the xylanase preparations proving to be the most efficient. It was concluded that enzyme supplementation of wheat-based diets resulted in improved performance of broiler chickens, which was related to a concomitant reduction in intestinal viscosity. However, the response of enzyme supplementation was most pronounced in diets with a wheat content higher than 80 g kg−1.  相似文献   

12.
Four silages were harvested at approximately 1-week intervals from the same timothy-meadow fescue sward and studied in a 4 × 4 Latin square experiment with four ruminally and duodenally cannulated young cattle. The diets comprised silage and concentrate (7:3 dry matter (DM) basis) and were fed at a rate of 70 g DM kg−0.75 liveweight in two equal meals per day.Neutral detergent fibre (NDF) digestibility was 0.757, 0.765, 0.692 and 0.686 on diets based on the four silages in order of harvest date. Increasing maturity of grass ensiled showed linear (PL < 0.001) and cubic (PC < 0.01) trends. NDF was separated into digestible (DNDF) and indigestible (INDF) fractions, which differed clearly in their rate of passage from the rumen (on average 0.0141 vs. 0.0258 h−1). The rate of digestion (kd) of DNDF was on average 0.076 h−1 when derived from the rumen evacuations but only 0.036 h−1 when calculated from the disappearance from nylon bags incubated in the rumen. Both methods detected decreased kd of NDF with increasing maturity of grass ensiled.Rate of passage from the rumen increased with increasing maturity of grass both when determined for NDF with rumen evacuation technique and from the faecal excretion of ytterbium calculated with a two-pool model. Mean retention time (MRT) in the non-escapable pool of particles increased (PL < 0.01) with increasing grass maturity, the opposite being true for the escapable pool (PL < 0.05), resulting in no change in the total ruminal MRT. Pool sizes of ruminal DM PL < 0.01) and NDF (PL < 0.001) increased with increasing maturity of grass. Ruminal NDF digestibility was calculated by different methods. When digestion kinetic parameters were derived from rumen evacuations and two-pool models used for passage kinetics, estimated digestibilities were very close to the observed ones.  相似文献   

13.
This study tested the effect of calcium oxide (CaO), sodium hydroxide (NaOH) and NaOH plus hydrogen peroxide (H2O2; AHP) on cell wall composition, digestion and fermentation of wheat straw (straw) in sheep. Treated straws were prepared by mixing straw either with water followed by dusting with CaO at 160 g kg−1 DM or with a NaOH solution alone at 3 l kg−1 DM to supply 80 g NaOH kg−1 DM (Na) or pre-soaked with Na exactly as in the previous treatment for 27 h followed by mixing with 130 g H2O2 kg−1 DM (AHP) for 6 h. After 14 days of storage, the treated straws and an untreated straw (U) were fed automatically every 2 h to four individually housed sheep together with a supplement in a 4×4 latin square experiment. Each kilogram supplement DM contained 422 g CP and 10.8 MJ ME. NDF (p<0.001) and hemicellulose (p<0.01) contents were significantly reduced whereas cellulose was increased (p<0.001) in treated compared to untreated straw. ADL was reduced in Ca (p<0.05) but increased (p<0.05) in Na and AHP compared with U. The rumen and total tract digestibility were significantly (p<0.001) greater in sheep fed treated compared with untreated straw. Significant differences (p<0.05) between treatments for pH, NH3 and VFA were also observed. All treatments improved the nutritive value of straws compared with untreated through modification of cell wall with a subsequent increase in digestibility by sheep. Although the digestibility for Ca was lower than that for Na despite reduction in cell wall, its use to treat straws may be more safe and cost effective than Na. AHP was the most effective and could also improve the energy value of other low quality forages for ruminants. However, the need of AHP for a large amount of NaOH to achieve highly alkaline pH limits its farm scale application. Therefore, further studies should either consider reducing the amount of NaOH or finding alternative alkalis that are cost effective and user-friendly.  相似文献   

14.
It is well known that energy plays an important role in sow growth and development. Increasing the utilization of lipids will be beneficial to sows. Emulsifiers are substances which stabilize mixtures and prevent oil and water from separating, thereby enhancing the digestion of lipids. This study was conducted to evaluate the effect of dietary emulsifier (lysophospholipids (LPL)) supplementation in diets differing in fat contents on growth performance, nutrient digestibility and milk composition in lactating sows, as well as performance and fecal score in piglets. A total of 32 multiparous sows (Landrace×Yorkshire) were used in a 21-day experiment. On day 110 of gestation, sows were weighed and moved into the farrowing facility, randomly assigned in a 2×2 factorial arrangement according to their BW with two levels of LPL (0 and 30 mg/kg) and two levels of fat (4.75% and 2.38% fat; 13.66 and 13.24 MJ/kg). BW loss and backfat thickness loss were decreased (P<0.05) by LPL supplementation. Backfat thickness at weaning was higher (P<0.05) in sows fed LPL supplementation diets. The apparent total tract digestibility of dry matter, nitrogen, gross energy and crude fat in sows fed LPL diets was increased (P<0.05) compared with those fed non-LPL diets. Sows fed the high-fat diets had higher (P<0.05) milk fat on day 10 and milk lactose on day 20 than those fed the low-fat diets. Milk fat and lactose concentrations in LPL supplementation treatments was increased (P<0.05) compared with non-LPL treatments on day 10 and day 20, respectively. Positive interaction effects (P<0.05) between fat and LPL were observed for milk fat concentration on day 10. In conclusion, LPL addition decreased BW loss and backfat thickness loss, improved nutrient digestibility and milk fat as well as milk lactose concentrations. In addition, there was a complementary positive effect of dietary fat and LPL supplementation on milk fat concentration in lactating sows.  相似文献   

15.
Sixteen growing castrated lambs (37.0 ± 3.31 kg) were used in two 5 × 5 and one 6 × 6 Latin squares to measure the intake and digestibility of: (1) urea—molasses-treated straw, or mixtures containing (2) 25; (3) 50; or (4) 75% dried grass; and (5) grass alone. The dry matter intake was 40, 50, 69, 84 and 90 g day?1 per kg of metabolic live weight (P<0.001), and digestibility was 470, 489, 591, 671 and 735 g kg?1, respectively, for the above treatments. The dry matter intake of lambs offered diets 2, 3 and 4 as complete diets was 47, 56 and 66 g day?1 kg of metabolic live weight, and digestibility was 513, 621 and 673 g kg?1, respectively. When the feeds were offered separately, dry matter intake was 54, 63 and 78 g day?1 per kg of metabolic live weight and digestibility was 541, 582 and 662 g kg?1, respectively. Dry matter intake for mixed diets was higher (P<0.01) than for feeds given separately.  相似文献   

16.
Four silages were harvested at approximately one-week intervals from the same timothymeadow fescue sward. Advanced maturity of the herbage was evidenced by increased neutral detergent fibre [409, 497, 579 and 623 g in 1 kg dry matter (DM)] and decreased nitrogen (N; 29.9, using four ruminally and duodenally cannulated young cattle in a 4 × 4 Latin square experiment. On DM basis (g kg−1), the diet comprised grass silage (700), rolled barley (240) and rapeseed meal (60) and it was given at a rate of 70 g DM (kg live weight)−0.75 per day.Organic matter digestibility decreased in a curvilinear manner (PLINEAR (L) < 0.001, PCUBIC (C) < 0.01) the values being 0.821, 0.816, 0.758 and 0.747 for the diets based on the four silages in the order of harvest date. Rumen pH increased linearly (PL < 0.05) and ammonia N concentration decreased curvilinearly (PL < 0.01, PC < 0.05) as the grass matured. The molar proportion of acetate in the rumen VFA increased (PL < 0.001) and the proportion of butyrate decreased (PL < 0.001) with increased grass maturity. The silage harvest date did not affect the proportion of propionate. The changes in rumen fermentation pattern were associated with a decrease (PL < 0.05) in rumen protozoal number with increasing maturity of grass.N intake decreased significantly (PL < 0.001, PC < 0.01) with the maturity of grass from 167.5 to 118.0 g per day, but duodenal non-ammonia N decreased only from 111.3 to 97.3 g per day indicating greater N losses from the rumen with early-cut silages. The efficiency of microbial protein synthesis in the rumen was not affected by the maturity of grass ensiled. Apparent digestibility of N decreased (PL < 0.001, PC < 0.01) and the degradability of N in the rumen decreased (PL < 0.05) as the grass matured.  相似文献   

17.
The purpose of this study was to evaluate the effects of various N sources in concentrates containing high levels of cassava chips, with rice straw as the basal forage, on rumen ecology, rumen microbial counts, microbial crude (CP) protein synthesis, and digestibility of nutrients. Four ruminally fistulated crossbred (Brahman × native) beef steers with initial body weight (BW) of 400 ± 40.2 kg were randomly assigned according to a 4 × 4 Latin square design. The dietary treatments were different sources of N in the concentrates and were: T1 = urea (control; urea); T2 = soybean meal (SBM); T3 = urea CaCl2 mixture (U-Cal); T4 = urea CaSO4 mixture (U-Cas). All steers were kept in individual pens and supplemented with concentrate at 5 g/kg of BW daily. The experiment was 4 periods, and each lasted 21 d. During the first 14 d, all steers were fed their respective diets ad libitum and for during the last 7 d, they were moved to metabolism crates for total urine and fecal collection. Dry matter intake ranged from 9.8 to 10.5 kg daily and was not altered by diet, while digestibility of NDF differed among treatments and was highest with U-Cas supplementation (P<0.05). Ruminal NH3 N and plasma urea N with U-Cal, U-Cas, and SBM diets were lower compared with the urea supplemented group (P<0.05). Ruminal volatile fatty acid concentrations were not altered by treatments. Total viable, and cellulolytic bacteria, differed among treatments and were highest with U-Cas (9.1 × 1011, and 4.0 × 109 cfu/mL, respectively). In addition, efficiency of rumen microbial CP synthesis based on organic matter (OM) truly digested in the rumen was increased by SBM or U-Cal supplementation, and was highest with U-Cas supplementation (18.2 g of N/kg of OM truly digested in the rumen). Supplementation of U-Cas to a concentrate containing a high level of cassava chips improved rumen ecology and microbial CP synthesis in beef cattle, suggesting that urea calcium mixtures can replace soybean meal or urea in beef cattle diets without adverse affects on rumen fermentation and other rumen parameters.  相似文献   

18.
Feed form is well recognized to improve broiler performance, specially by increasing feed intake (FI). However, when different diet energy levels are used, the results differ in the literature. Therefore, this experiment was conducted to evaluate the influence of feed form and dietary metabolizable energy (ME) levels on broiler performance, carcass yield and on the digestibility of DM, CP, starch and gross energy. In total, 1152 male Cobb 500 broilers were evaluated between 35 and 47 days. The birds were distributed according to a completely randomized design in a 2 × 4 factorial arrangement, consisting of two feed forms (mash or pellet) and four ME levels (12.73, 13.06, 13.40 or 13.73 MJ/kg), totaling eight treatments with eight replicates of 18 birds. Broilers fed the lowest ME level presented the lowest weight gain (WG) and worst feed per unit gain (P < 0.01). Metabolizable energy intake increased (P < 0.01) with progressive increments of ME, which, however, did not affect caloric conversion (CC, P > 0.05). Pelleted diets promoted higher FI, WG, ME intake (P < 0.01) and better feed per unit gain and CC (P < 0.05) compared with mash. In mash diets, increasing dietary ME levels promoted a linear increase in WG (P < 0.01) and reduced feed per unit gain (P ≤ 0.05), but did not affect FI (P > 0.05). In pelleted diets, on the other hand, increasing ME levels linearly reduced FI (P < 0.05) and feed per unit gain (P < 0.01). Broilers fed pelleted diets presented higher abdominal fat deposition than those fed mash (P < 0.05). Increasing ME levels reduced the coefficients of ileal apparent digestibility of DM (P < 0.01) and total starch (P < 0.05) but did not affect the digestibility of other evaluated nutrients. The digestibility of all nutrients was lower when pelleted diets were fed compared with mash. Increasing inert material inclusion in the diets at the expense of soybean oil to reduce dietary ME levels promoted higher pellet durability index values (P < 0.05) and the percentage of fines (P < 0.01). Overall, the results suggest that pelleted diets promote better broiler performance because they increase FI, since the digestibility of dietary fractions is reduced. Chickens consuming low-energy pelleted diets may increase FI to compensate for energy deficit. In contrast, broilers fed mash diets may have reached their maximum intake capacity and did not regulate FI by changing feed energy density. When feeding pelleted diets, dietary energy reduction should be considered to reduce feed costs and to improve the carcass quality of broilers.  相似文献   

19.
The objective of this study was to evaluate the effect of supplementing a CP-reduced diet with rumen-protected methionine on growth performance of Fleckvieh bulls. A total of 69 bulls (367 ± 25 kg BW) were assigned to three feeding groups (n = 23 per group). The control (CON) diet contained 13.7% CP and 2.11 g methionine/kg diet (both DM basis) and was set as positive control. The diet reduced in CP (nitrogen) (RED) diet as negative control and the experimental RED + rumen-protected methionine (MET) diet were characterised by deficient CP concentrations (both 9.04% CP). The RED + MET diet differed from the RED diet in methionine concentration (2.54 g/kg DM vs. 1.56 g/kg DM, respectively) due to supplementation of rumen-protected methionine. Rumen-protected lysine was added to both RED and RED + MET at 2.7 g/kg DM to ensure a sufficient lysine supply relative to total and metabolisable protein intake. Metabolisable energy (ME) and nutrient composition were similar for CON, RED, and RED + MET. Bulls were fed for 105 days (d) on average. Individual feed intake was recorded daily; individual BW was recorded at the beginning of the experiment, once per month, and directly before slaughter. At slaughter, blood samples were collected and carcass traits were assessed. Reduction in dietary CP concentration reduced feed intake, and in combination with lower dietary CP concentration, daily intake of CP for RED and RED + MET was lower compared with CON (P < 0.01). Daily ME intake was reduced in RED and RED + MET compared with CON (P < 0.01). Consequently growth performance and carcass weights were reduced (both P < 0.01) in both RED and RED + MET compared with CON. Supplemental rumen-protected methionine was reflected in increased serum methionine concentration in RED + MET (P < 0.05) as compared to RED but it did not affect growth performance, carcass traits and serum amino acid (AA) concentrations, except for lysine which was reduced (P < 0.01) compared to CON and RED. In conclusion, bulls fed RED or RED + MET diets were exposed to a ruminal CP deficit and subsequently a deficit of prececal digestible protein, but methionine did not appear to be the first-limiting essential AA for growth under the respective experimental conditions.  相似文献   

20.
The aim of this study was to evaluate the effect of nano-selenium (NS) and yeast?Cselenium (YS) supplementation on feed digestibility, rumen fermentation, and urinary purine derivatives in sheep. Six male ruminally cannulated sheep, average 43.32?±?4.8?kg of BW, were used in a replicated 3?×?3 Latin square experiment. The treatments were control (without NS and YS), NS with 4?g nano-Se (provide 4?mg Se), and YS with 4?g Se-yeast (provide 4?mg Se) per kilogram of diet dry matter (DM), respectively. Experimental periods were 25?days with 15?days of adaptation and 10?days of sampling. Ruminal pH, ammonia N concentration, molar proportion of propionate, and ratio of acetate to propionate were decreased (P?<?0.01), and total ruminal VFA concentration was increased with NS and YS supplementation (P?<?0.01). In situ ruminal neutral detergent fiber (aNDF) degradation of Leymus chinensis (P?<?0.01) and crude protein (CP) of soybean meal (P?<?0.01) were significantly improved by Se supplementation. Digestibilities of DM, organic matter, crude protein, ether extract, aNDF, and ADF in the total tract and urinary excretion of purine derivatives were also affected by feeding Se supplementation diets (P?<?0.01). Ruminal fermentation was improved by feeding NS, and feed conversion efficiency was also increased compared with YS (P?<?0.01). We concluded that nano-Se can be used as a preferentially available selenium source in ruminant nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号