首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Gene》1997,191(1):31-37
Inhibitors (PLIs) against snake venom gland phospholipases A2 (PLA2s) have been found in their sera. A cDNA encoding a PLI from Trimeresurus flavoviridis (Tf, habu snake, Crotalinae) serum, cPLI-A, was isolated from the Tf liver cDNA library and sequenced. Northern blot analysis with cPLI-A showed that PLIs are expressed only in liver. Genes for PLIs, gPLI-A and gPLI-B, were isolated from the Tf genomic DNA library and their nucleotide (nt) sequences were determined. The genes consisted of four exons and three introns, and exon 4 encoded the carbohydrate recognition domain (CRD)-like motif. Comparison of the nt sequences between gPLI-A and gPLI-B showed that these genes are highly homologous, including introns, except that exon 3 is rich in nonsynonymous nt substitutions which are almost four times as frequent as synonymous nt substitutions. This evolutionary feature of PLI genes is different from that of venom gland PLA2 isozyme genes in which nonsynonymous nt substitutions are spread over the entire mature protein-coding region.  相似文献   

2.
The nucleotide sequences of 13 cDNAs encoding group II phospholipases A2 (PLA2 S), which are from viperidae snake venoms and from mammalian sources, were aligned and analyzed by phylogenetic trees constructed using various components of the sequences. The evolutionary trees derived from the combined sequences of the untranslated (5 and 3) region and the signal peptide region of cDNAs were in accord with the consequences from taxonomy. In contrast, the evolutionary trees from the mature protein-coding region sequences of cDNAs and from the amino acid sequences showed random patterns. These observations indicated that the mature protein-coding region has evolved through a process differently from the untranslated and signal peptide regions. The trees built from the nucleotide differences at each of three positions of codons in the mature protein-coding region suggested that snakevenom-gland PLA2 genes have evolved via a process different from mammalian PLA2 genes. The occurrence of accelerated evolution has been recently discovered in Trimeresurus flavoviridis venom-gland group II PLA2 isozyme genes (Nakashima et al. 1993, Proc Natl Acad Sci USA 90:5964–5968), so the present phylogenetic analysis together with the estimation of nucleotide divergence of cDNAs provides further evidence that snakevenom-group II PLA2 isozyme genes have evolved by accelerated evolution to gain diverse physiological activities. Correspondence to: M. Ohno  相似文献   

3.
Abstract Trimeresurus flavoviridis snakes inhabit the southwestern islands of Japan. A phospholipase A2 (PLA2), named PL-Y, was isolated from Okinawa T. flavoviridis venom and its amino acid sequence was determined from both protein and cDNA. PL-Y was unable to induce edema. In contrast, PLA-B, a PLA2 from Tokunoshima T. flavoviridis venom, which is different at only three positions from PL-Y, is known to induce edema. A new PLA2, named PLA-B′, which is similar to PLA-B, was cloned from Amami-Oshima T. flavoviridis venom gland. Three T. flavoviridis venom basic [Asp49]PLA2 isozymes, PL-Y (Okinawa), PLA-B (Tokunoshima), and PLA-B′ (Amami-Oshima), are identical in the N-terminal half but have one to four amino acid substitutions in the β1-sheet and its vicinity. Such interisland sequence diversities among them are due to isolation in the different environments over 1 to 2 million years and appear to have been brought about by natural selection for point mutation in their genes. Otherwise, a major PLA2, named PLA2, ubiquitously exists in the venoms of T. flavoviridis snakes from the three islands with one to three synonymous substitutions in their cDNAs. It is assumed that the PLA2 gene is a prototype among T. flavoviridis venom PLA2 isozyme genes and has hardly undergone nonsynonymous mutation as a principal toxic component. Phylogenetic analysis based on the amino acid sequences revealed that T. flavoviridis PLA2 isozymes are clearly separated into three groups, PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Basic [Asp49]PLA2-type isozymes may manifest their own particular toxic functions different from those of the isozymes of the PLA2 type and [Lys49]PLA2 type.  相似文献   

4.
Multiple phospholipase A2 (PLA2) isoenzymes found in a single snake venom induce a variety of pharmacological effects. These multiple forms are formed by gene duplication and accelerated evolution of exons. We examined the amino acid sequences of 127 snake venom PLA2 enzymes and their homologues to study in which location most natural substitutions occur. Our data show that hot spots of amino acid substitutions in this group of proteins occur mostly on the surface. A logistic model correlating the substitution rates of each amino acid residue with their surface accessibility indicates that the probability of natural substitutions occurring in the fully exposed residue is 2.6–3.5 times greater than that of substitutions occurring in buried residues. These surface substitutions play a significant role in the evolution of new PLA2 isoenzymes by altering the specificity of targeting to various tissues or cells, resulting in distinct pharmacological effects. Thus natural substitutions in PLA2 enzymes, in contrast to popular belief, are not random substitutions but appear to be directed toward modifying the molecular surface. Received: 11 May 1998 / Accepted: 29 June 1998  相似文献   

5.
The cDNAs encoding venom phospholipase A2 (PLA2) inhibitors (PLIs), named Protobothrops elegans (Pe)γPLI-A, PeγPLI-B, PeαPLI-A, and PeαPLI-B, were cloned from the P. elegans liver cDNA library. They were further divided into several constituents due to nucleotide substitutions in their open reading frames. For PeαPLI-A, two constituents, PeαPLI-Aa and PeαPLI-Ab, were identified due to three nonsynonymous substitutions in exon 3. Far-western blot and mass-spectrometry analysis of the P. elegans serum proteins showed the presence of γPLIs, and αPLIs, which can bind venom PLA2s. In αPLIs from Protobothrops sera, A or B subtype-specific amino acid substitutions are concentrated only in exon 3. A comparison of γPLIs showed that γPLI-As are conserved and γPLI-Bs diversified. Mathematical analysis of the nucleotide sequences of Protobothrops γPLI-B cDNAs revealed that the particular loops in the three-finger motifs diversified by accelerated evolution. Such evolutionary features should have made serum PLIs acquire their respective inhibitory activities to adapt to venom PLA2 isozymes.  相似文献   

6.
Trimeresurus flavoviridis venom gland phospholipase A2 (PLA2) genes pgPLA 1a and pgPLA 2a encode Asp-49-PLA2 and genes pgPLA lb and pgPLA 2b encode an isozyme of Asp-49-PLA2. Polymorphisms were found in pairs of pgPLA la and pgPLA 2a and of pgPLA lb and pgPLA 2b for individuals of T. flavoviridis. The occurrence of both homozygotes and heterozygotes was demonstrated.  相似文献   

7.
Phospholipase A2 (PLA2) is one of the main components of bee venom. Here, we identify a venom PLA2 from the bumblebee, Bombus ignitus. Bumblebee venom PLA2 (Bi-PLA2) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA2 gene. Bi-PLA2 is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA2 (136 amino acids) possesses features consistent with other bee PLA2s, including ten conserved cysteine residues, as well as a highly conserved Ca2+-binding site and active site. Phylogenetic analysis of bee PLA2s separated the bumblebee and honeybee PLA2 proteins into two groups. The mature Bi-PLA2 purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA2. Immunofluorescence staining of Bi-PLA2-treated insect Sf9 cells revealed that Bi-PLA2 binds at the cell membrane and induces apoptotic cell death.  相似文献   

8.
Summary The amino acid sequences of 40 secreted phospholipase A2's (PLA2) were aligned and a phylogenetic tree derived that has three main branches corresponding to elapid (group I), viperid (group II), and insect venom types of PLA2. The human pancreatic and recently determined nonpancreatic sequences in the comparison align with the elapid and viperid categories, repectively, indicating that at least two PLA2 genes existed in the vertebrate line before the divergence of reptiles and mammals about 200–300 million years ago. This allows resolution for the first time of major genetic events in the evolution of current PLA2's and the relationship of human PLA2's to those of snake venom, many of which are potent toxins. Implications for possible mechanisms of regulation of mammalian intra- and extracellular PLA2's are discussed, as well as issues relating to the search for the controlling enzymes in arachidonic acid release, prostaglandin generation, and signal transduction.  相似文献   

9.
10.
The sequence coding for a snake venom phospholipase A2 (PLA2), BJUPLA2, has been cloned from a Bothrops jararacussu venom gland cDNA library. The cDNA sequence predicts a precursor containing a 16-residue signal peptide followed by a molecule of 122 amino acid residues with a strong sequence similarity to group II snake venom PLA2's. A striking feature of the cDNA is the high sequence conservation of the 5 and 3 untranslated regions in cDNAs coding for PLA2's from a number of viper species. The greatest sequence variation was observed between the regions coding for the mature proteins, with most substitutions occurring in nonsynonymous sites. The phylogenetic tree constructed by alignment of the amino acid sequence of BJUPLA2 with group II PLA2's in general groups them according to current taxonomical divisions and/or functional activity. It also suggests that gene duplications may have occurred at a number of different points during the evolution of snake venom group II PLA2's.The nucleotide sequence reported in this paper has been submitted to the GenBank/EMBL Data Bank with accession number X76289.Correspondence to: A.M. Moura-da-Silva  相似文献   

11.
Genes that have experienced accelerated evolutionary rates on the human lineage during recent evolution are candidates for involvement in human-specific adaptations. To determine the forces that cause increased evolutionary rates in certain genes, we analyzed alignments of 10,238 human genes to their orthologues in chimpanzee and macaque. Using a likelihood ratio test, we identified protein-coding sequences with an accelerated rate of base substitutions along the human lineage. Exons evolving at a fast rate in humans have a significant tendency to contain clusters of AT-to-GC (weak-to-strong) biased substitutions. This pattern is also observed in noncoding sequence flanking rapidly evolving exons. Accelerated exons occur in regions with elevated male recombination rates and exhibit an excess of nonsynonymous substitutions relative to the genomic average. We next analyzed genes with significantly elevated ratios of nonsynonymous to synonymous rates of base substitution (dN/dS) along the human lineage, and those with an excess of amino acid replacement substitutions relative to human polymorphism. These genes also show evidence of clusters of weak-to-strong biased substitutions. These findings indicate that a recombination-associated process, such as biased gene conversion (BGC), is driving fixation of GC alleles in the human genome. This process can lead to accelerated evolution in coding sequences and excess amino acid replacement substitutions, thereby generating significant results for tests of positive selection.  相似文献   

12.
Trimeresurus flavoviridis (Crotalinae) snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima, and Okinawa. Affinity and conventional chromatographies of Amami-Oshima T. flavoviridis venom led to isolation of a novel phospholipase A2 (PLA2). This protein was highly homologous (91%) in sequence to trimucrotoxin, a neurotoxic PLA2, which had been isolated from T. mucrosquamatus (Taiwan) venom, and exhibited weak neurotoxicity. This protein was named PLA-N. Its LD50 for mice was 1.34 µg/g, which is comparable to that of trimucrotoxin. The cDNA encoding PLA-N was isolated from both the Amami-Oshima and the Tokunoshima T. flavoviridis venom-gland cDNA libraries. Screening of the Okinawa T. flavoviridis venom-gland cDNA library with PLA-N cDNA led to isolation of the cDNA encoding one amino acid-substituted PLA-N homologue, named PLA-N(O), suggesting that interisland mutation occurred and that Okinawa island was separated from a former island prior to dissociation of Amami-Oshima and Tokunoshima islands. Construction of a phylogenetic tree of Crotalinae venom group II PLA2s based on the amino acid sequences revealed that neurotoxic PLA2s including PLA-N and PLA-N(O) form an independent cluster which is distant from other PLA2 groups such as PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Comparison of the nucleotide sequence of PLA-N cDNA with those of the cDNAs encoding other T. flavoviridis venom PLA2s showed that they have evolved in an accelerated manner. However, when comparison was made within the cDNAs encoding Crotalinae venom neurotoxic PLA2s, their evolutionary rates appear to be reduced to a level between accelerated evolution and neutral evolution. It is likely that ancestral genes of neurotoxic PLA2s evolved in an accelerated manner until they had acquired neurotoxic function and since then they have evolved with less frequent mutation, possibly for functional conservation. The nucleotide sequences reported in this paper are available from the GenBank/EMBL/DDBJ databases under accession numbers AB102728 and AB102729.  相似文献   

13.
Venomous snakes such as Gloydius brevicaudus have three distinct types of phospholipase A2 inhibitors (PLIα, PLIβ, and PLIγ) in their blood so as to protect themselves from their own venom phospholipases A2 (PLA2s). Expressions of these PLIs in G. brevicaudus liver were found to be enhanced by the intramuscular injection of its own venom. The enhancement of gene expressions of PLIα and PLIβ in the liver was also found to be induced by acidic PLA2 contained in this venom. Furthermore, these effects of acidic PLA2 on gene expression of PLIs were shown to be unrelated to its enzymatic activity. These results suggest that these venomous snakes have developed the self-protective system against their own venom, by which the venom components up-regulate the expression of anti-venom proteins in their liver.  相似文献   

14.
A novel phospholipase A2 (PLA2) with Asn at its site 49 was purified from the snake venom of Protobothrops mucrosquamatus by using SP-Sephadex C25, Superdex 75, Heparin-Sepharose (FF) and HPLC reverse-phage C18 chromatography and designated as TM-N49. It showed a molecular mass of 13.875 kDa on MALDI-TOF. TM-N49 does not possess enzymatic, hemolytic and hemorrhagic activities. It fails to induce platelet aggregation by itself, and does not inhibit the platelet aggregation induced by ADP. However, it exhibits potent myotoxic activity causing inflammatory cell infiltration, severe myoedema, myonecrosis and myolysis in the gastrocnemius muscles of BALB/c mice. Phylogenetic analysis found that that TM-N49 combined with two phospholipase A2s from Trimeresurus stejnegeri, TsR6 and CTs-R6 cluster into one group. Structural and functional analysis indicated that these phospholipase A2s are distinct from the other subgroups (D49 PLA2, S49 PLA2 and K49 PLA2) and represent a unique subgroup of snake venom group II PLA2, named N49 PLA2 subgroup.  相似文献   

15.
Phospholipases A2 (PLA2s) are the most abundant family of snake venom proteins and play a significant role in prey envenomation. Their content in venoms is rather high. PLA2s not only have enzyme activity but exhibit other types of biological activities including neurotoxicity. We have earlier shown that a protein bitanarin from the venom of the puff adder Bitis arietans is capable to block the responses of Lymnaea stagnalis neurons to acetylcholine and represents an active PLA2 at the same time. Further investigation of PLA2s isolated from the venoms of snakes of two families revealed their capability to interact with nicotinic acetylcholine receptors (nAChRs): PLA2 from Vipera ursinii (Viperidae family), Naja kaouthia, and Bungarus fasciatus (Elapidae family) suppressed acetylcholine-induced current in identified neurons of L. staganlis. The effect was evident at PLA2 concentration in the range of tens micromoles. The data obtained suggest the presence in a PLA2 molecule of a site interacting with nAChR and a possible involvement of nAChR block in toxic action of PLA2s.  相似文献   

16.
Rapid evolution of snake venom genes by positive selection has been reported previously but key features of this process such as the targets of selection, rates of gene turnover, and functional diversity of toxins generated remain unclear. This is especially true for closely related species with divergent diets. We describe the evolution of PLA2 gene sequences isolated from genomic DNA from four taxa of Sistrurus rattlesnakes which feed on different prey. We identified four to seven distinct PLA2 sequences in each taxon and phylogenetic analyses suggest that these sequences represent a rapidly evolving gene family consisting of both paralogous and homologous loci with high rates of gene gain and loss. Strong positive selection was implicated as a driving force in the evolution of these protein coding sequences. Exons coding for amino acids that make up mature proteins have levels of variation two to three times greater than those of the surrounding noncoding intronic sequences. Maximum likelihood models of coding sequence evolution reveal that a high proportion (∼30%) of all codons in the mature protein fall into a class of codons with an estimated d N /d S (ω) ratio of at least 2.8. An analysis of selection on individual codons identified nine residues as being under strong (p < 0.01) positive selection, with a disproportionately high proportion of these residues found in two functional regions of the PLA2 protein (surface residues and putative anticoagulant region). This is direct evidence that diversifying selection has led to high levels of functional diversity due to structural differences in proteins among these snakes. Overall, our results demonstrate that both gene gain and loss and protein sequence evolution via positive selection are important evolutionary forces driving adaptive divergence in venom proteins in closely related species of venomous snakes.  相似文献   

17.
Two basic phospholipase A2 (PLA2) isoforms were isolated from Lachesis muta muta snake venom and partially characterized. The venom was fractionated by molecular exclusion chromatography in ammonium bicarbonate buffer followed by reverse-phase HPLC on a C-18 μ-Bondapack column and RP-HPLC on a C-8 column. From liquid chromatography-electrospray ionization/mass spectrometry, the molecular mass of the two isoforms LmTX-I and LmTX-II was respectively measured as 14,245.4 and 14,186.2 Da. The pI was respectively estimated to be 8.7 and 8.6 for LmTX-I and LmTX-II, as determined by two-dimensional electrophoresis. The two proteins were sequenced and differentiated from each other by a single amino acid substitution, Arg65 (LmTX-I)  Pro65 (LmTX-II). The amino acid sequence showed a high degree of homology between PLA2 isoforms from Lachesis muta muta and other PLA2 snake venoms. LmTX-I and LmTX-II had PLA2 activity in the presence of a synthetic substrate and showed a minimum sigmoidal behaviour; with maximal activity at pH 8.0 and 35–45 °C. Full PLA2 activity required Ca2+ and was respectively inhibited by Cu2+ and Zn2+ in the presence and absence of Ca2+. Crotapotin from Crotalus durissus cascavella rattlesnake venom significantly inhibited (P < 0.05) the enzymatic activity of LmTX-I, suggesting that the binding site for crotapotin in this PLA2 was similar to another in the basic PLA2 of the crotoxin complex from C. durissus cascavella venom.  相似文献   

18.
《FEBS letters》2014,588(24):4604-4612
Phospholipase A2 (PLA2) is an important component in snake venoms. Here, an acidic PLA2, designated PA2-Vb was isolated from the Trimeresurus stejnegeri snake venom. PA2-Vb acts on a protease-activated receptor (PAR-1) to evoke Ca2+ release through the inositol 1,4,5-trisphosphate receptor (IP3R) and induces mouse aorta contraction. PAR-1, phospholipase C and IP3R inhibitors suppressed PA2-Vb-induced aorta contraction. The crystal structure reveals that PA2-Vb has the typical fold of most snake venom PLA2. Several PEG molecules bond to a positively charged pocket. The finding offers a novel pharmacological basis of the structure for investigating the PAR-1 receptor and suggests potential applications for PA2-Vb in the vascular system.  相似文献   

19.
MP-III 4R PLA2 was purified from the venom of Bothrops pirajai venom (Bahia's jararacussu) after three chromatographic steps which started with RP-HPLC. The complete amino acid sequence of MP-III 4R PLA2 from Bothrops pirajai was determined by amino acid sequencing of reduced and carboxymethylated MP-III 4R and the isolated peptides from clostripain and protease V8 digestion. MP-III 4R is a D49 PLA2 with 121 amino acid residues and has a molecular weight estimated at 13,800 Da, with 14 half-cysteines. This protein showed moderate PLA2 and anticoagulant activity. This PLA2 does not have a high degree of homology with other bothropic PLA2-like myotoxins (~75%) and nonbothropic myotoxins (~60%). MP-III 4R is a new PLA2, which was isolated using exclusively analytical and preparative HPLC methods. Based on the N-terminal sequence and biological activities, MP-III 4R was identified as similar to piratoxin-III (PrTX-III), which was isolated by conventional chromatography based on molecular exclusion ion exchange chromatography. Clinical manifestations indicate that at the site of toxin injection, there may be pain of variable intensity, because animals continue to lick the limb. No clinical sign indicating general toxicity was noticed. Myotoxicity was observed in gastrocnemius muscle cells after exposure to MP-III 4R, with a high frequency (70%) of affected muscle fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号