首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of this project was to develop an animal exposure system for the biological effect studies of radio frequency fields from handheld wireless telephones, with energy deposition in animal brains comparable to those in humans. The finite‐difference time‐domain (FDTD) method was initially used to compute specific absorption rate (SAR) in an ellipsoidal rat model exposed with various size loop antennas at different distances from the model. A 3 × 1 cm rectangular loop produced acceptable SAR patterns. A numerical rat model based on CT images was developed by curve‐fitting Hounsfield Units of CT image pixels to tissue dielectric properties and densities. To design a loop for operating at high power levels, energy coupling and impedance matching were optimized using capacitively coupled feed lines embedded in a Teflon rod. Sprague Dawley rats were exposed with the 3 × 1 cm loop antennas, tuned to 837 or 1957 MHz for thermographically determined SAR distributions. Point SARs in brains of restrained rats were also determined thermometrically using fiberoptic probes. Calculated and measured SAR patterns and results from the various exposure configurations are in general agreement. The FDTD computed average brain SAR and ratio of head to whole body absorption were 23.8 W/kg/W and 62% at 837 MHz, and 22.6 W/kg/W and 89% at 1957 MHz. The average brain to whole body SAR ratio was 20 to 1 for both frequencies. At 837 MHz, the maximum measured SAR in the restrained rat brains was 51 W/kg/W in the cerebellum and 40 W/kg/W at the top of the cerebrum. An exposure system operating at 837 MHz is ready for in vivo biological effect studies of radio frequency fields from portable cellular telephones. Two‐tenths of a watt input power to the loop antenna will produce 10 W/kg maximum SAR, and an estimated 4.8 W/kg average brain SAR in a 300 g medium size rat. Bioelectromagnetics 20:75–92, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
An exposure system, consisting of four identical cylindrical waveguide chambers, was developed for studying the effects of radiofrequency (RF) energy on laboratory mice at a frequency of 1.9 GHz. The chamber was characterized for RF dose rate as a function of animal body mass and dose rate variations due to animal movement in the cage. Dose rates were quantified in terms of whole‐body average (WBA) specific absorption rate (SAR), brain average (BA) SAR and peak spatial‐average (PSA) SAR using measurement and computational methods. Measurements were conducted on mouse cadavers in a multitude of possible postures and positions to evaluate the variations of WBA‐SAR and its upper and lower bounds, while computations utilizing the finite‐difference time‐domain method together with a heterogeneous mouse model were performed to determine variations in BA‐SAR and the ratio of PSA‐SAR to WBA‐SAR. Measured WBA‐SAR variations were found to be within the ranges of 9–23.5 W/kg and 5.2–13.8 W/kg per 1 W incident power for 20 and 40 g mice, respectively. Computed BA‐SAR variations were within the ranges of 3.2–10.1 W/kg and 3.3–9.2 W/kg per 1 W incident power for 25 and 30 g mouse models, respectively. Ratios of PSA‐SAR to WBA‐SAR, averaged over 0.5 mg and 5 mg tissue volumes, were observed to be within the ranges of 6–15 and 4–10, respectively. Bioelectromagnetics 33:575–584, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
In this article, personal electromagnetic field measurements are converted into whole‐body specific absorption rates for exposure of the general public. Whole‐body SAR values calculated from personal exposure meter data are compared for different human spheroid phantoms: the highest SAR values (at 950 MHz) are obtained for the 1‐year‐old child (99th percentile of 17.9 µW/kg for electric field strength of 0.36 V/m), followed by the 5‐year‐old child, 10‐year‐old child, average woman, and average man. For the 1‐year‐old child, whole‐body SAR values due to 9 different radiofrequency sources (FM, DAB, TETRA, TV, GSM900 DL, GSM1800 DL, DECT, UMTS DL, WiFi) are determined for 15 different scenarios. An SAR matrix for 15 different exposure scenarios and 9 sources is provided with the personal field exposure matrix. Highest 95th percentiles of the whole‐body SAR are equal to 7.9 µW/kg (0.36 V/m, GSM900 DL), 5.8 µW/kg (0.26 V/m, DAB/TV), and 7.1 µW/kg (0.41 V/m, DECT) for the 1‐year‐old child, with a maximal total whole‐body SAR of 11.5 µW/kg (0.48 V/m) due to all 9 sources. All values are below the basic restriction of 0.08 W/kg for the general public. 95th percentiles of whole‐body SAR per V/m are equal to 60.1, 87.9, and 42.7 µW/kg for GSM900, DAB/TV, and DECT sources, respectively. Functions of the SAR versus measured electric fields are provided for the different phantoms and frequencies, enabling epidemiological and dosimetric studies to make an analysis in combination with both electric field and actual whole‐body SAR. Bioelectromagnetics 31:286–295, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
This study was designed to determine whether chronic exposure to radiofrequency (RF) radiation from cellular phones increased the incidence of spontaneous tumors in F344 rats. Eighty male and 80 female rats were randomly placed in each of three irradiation groups. The sham group received no irradiation; the Frequency Division Multiple Access (FDMA) group was exposed to 835.62 MHz FDMA RF radiation; and the Code Division Multiple Access (CDMA) group was exposed to 847.74 MHz CDMA RF radiation. Rats were irradiated 4 h per day, 5 days per week over 2 years. The nominal time-averaged specific absorption rate (SAR) in the brain for the irradiated animals was 0.85 +/- 0.34 W/kg (mean +/- SD) per time-averaged watt of antenna power. Antennas were driven with a time-averaged power of 1.50 +/- 0.25 W (range). That is, the nominal time-averaged brain SAR was 1.3 +/- 0.5 W/kg (mean +/- SD). This number was an average from several measurement locations inside the brain, and it takes into account changes in animal weight and head position during irradiation. All major organs were evaluated grossly and histologically. The number of tumors, tumor types and incidence of hyperplasia for each organ were recorded. There were no significant differences among final body weights or survival days for either males or females in any group. No significant differences were found between treated and sham-exposed animals for any tumor in any organ. We conclude that chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA RF radiation had no significant effect on the incidence of spontaneous tumors in F344 rats.  相似文献   

5.
A four-antenna collinear array in an electromagnetically shielded chamber was designed and constructed to preferentially irradiate the brains of a large number of small mammals using cellular telephony microwave signals. Ten animals in special restrainers were positioned symmetrically around a centrally located antenna. These restrainers are resting on a circular structure made of acrylic plastic called a "carousel." Four carousels are stacked vertically, forming the array, inside a microwave anechoic chamber called a "chamberette." (Details of the design of this irradiator and of a 12-chamberette irradiation facility are given in a previous article.) In this article, the dosimetry on rats is reported. Both thermometric and thermographic measurements were performed. The average specific absorption rate (SAR) in brain tissue measured thermometrically was 0.85+/-0.34 W/kg per watt of net input power into the radiating antenna. This range agrees with the SAR levels reported in the literature for cellular telephones. Thermographic evaluation using splittable phantoms showed that most of the energy absorbed by the rats is concentrated in and around the brain. Moreover, it was found that the SAR in brain tissue can vary considerably for rats of similar weights, depending on position of the rats' heads inside the restrainers, and that there exists a significant dependence of SAR on animal weight. These variations may be of importance in the interpretation of results of lifelong studies. The data presented clearly show that the chamberette is, dosimetrically, a suitable irradiation system for electromagnetic bioeffects studies in the cellular communication frequency range, especially when a large number of laboratory animals is required.  相似文献   

6.
Numerical and experimental methods were employed to assess the individual and collective dosimetry of mice used in a bioassay on the exposure to pulsed radiofrequency energy at 900 MHz in the Ferris-wheel exposure system (Utteridge et al., Radiat. Res. 158, 357-364, 2002). Twin-well calorimetry was employed to measure the whole-body specific absorption rate (SAR) of mice for three body masses (23 g, 32 g and 36 g) to determine the lifetime exposure history of the mice used in the bioassay. Calorimetric measurements showed about 95% exposure efficiency and lifetime average whole-body SARs of 0.21, 0.86, 1.7 and 3.4 W kg(-1) for the four exposure groups. A larger statistical variation in SAR was observed in the smallest mice because they had the largest variation in posture inside the plastic restrainers. Infrared thermography provided SAR distributions over the sagittal plane of mouse cadavers. Thermograms typically showed SAR peaks in the abdomen, neck and head. The peak local SAR at these locations, determined by thermometric measurements, showed peak-to-average SAR ratios below 6:1, with typical values around 3:1. Results indicate that the Ferris wheel fulfills the requirement of providing a robust exposure setup, allowing uniform collective lifetime exposure of mice.  相似文献   

7.
This study sought to clarify the effects of exposure to electromagnetic waves (EMW) used in cellular phones on learning and memory processes. Sprague-Dawley rats were exposed for either 1 h daily for 4 days or for 4 weeks to a pulsed 1439 MHz time division multiple access (TDMA) field in a carousel type exposure system. At the brain, average specific absorption rate (SAR) was 7.5 W/kg, and the whole body average SAR was 1.7 W/kg. Other subjects were exposed at the brain average SAR of 25 W/kg and the whole body average SAR of 5.7 W/kg for 45 min daily for 4 days. Learning and memory were evaluated by reversal learning in a food rewarded T-maze, in which rats learned the location of food (right or left) by using environmental cues. The animals exposed to EMW with the brain average SAR of 25 W/kg for 4 days showed statistically significant decreases in the transition in number of correct choices in the reversal task, compared to sham exposed or cage control animals. However, rats exposed to the brain average SAR of 7.5 W/kg for either 4 days or for 4 weeks showed no T-maze performance impairments. Intraperitoneal temperatures, as measured by a fiber optic thermometer, increased in the rats exposed to the brain average SAR of 25 W/kg but remained the same for the brain average SAR of 7.5 W/kg. The SAR of a standard cellular phone is restricted to a maximum of 2 W/kg averaged over 10 g tissue. These results suggest that the exposure to a TDMA field at levels about four times stronger than emitted by cellular phones does not affect the learning and memory processes when there are no thermal effects.  相似文献   

8.
Radiofrequency radiation (RFR) causes heating, which can lead to detrimental biological effects. To characterize the effects of RFR exposure on body temperature in relation to animal size and pregnancy, a series of short‐term toxicity studies was conducted in a unique RFR exposure system. Young and old B6C3F1 mice and young, old, and pregnant Harlan Sprague‐Dawley rats were exposed to Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) RFR (rats = 900 MHz, mice = 1,900 MHz) at specific absorption rates (SARs) up to 12 W/kg for approximately 9 h a day for 5 days. In general, fewer and less severe increases in body temperature were observed in young than in older rats. SAR‐dependent increases in subcutaneous body temperatures were observed at exposures ≥6 W/kg in both modulations. Exposures of ≥10 W/kg GSM or CDMA RFR induced excessive increases in body temperature, leading to mortality. There was also a significant increase in the number of resorptions in pregnant rats at 12 W/kg GSM RFR. In mice, only sporadic increases in body temperature were observed regardless of sex or age when exposed to GSM or CDMA RFR up to 12 W/kg. These results identified SARs at which measurable RFR‐mediated thermal effects occur, and were used in the selection of exposures for subsequent toxicology and carcinogenicity studies. Bioelectromagnetics. 39:190–199, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

9.
The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95‐GHz wide‐band code division multiple access (W‐CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT‐2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7–17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole‐body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243–271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. Bioelectromagnetics 30:205–212, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
A novel exposure facility for exposing cell monolayers to centimeter and millimeter waves (18–40.5 GHz) used by future 5G mobile communication technology and similar applications has been developed. A detailed dosimetric characterization of the apparatus for frequencies of 27 and 40.5 GHz and 60 mm petri dishes, used in a presently ongoing study on human dermal fibroblasts and keratinocytes, was carried out. The exposure facility enables a well-defined, randomized, and blinded application of sham exposure and exposure with selectable values of incident power flux density, and additionally provides the possibility of continuous monitoring of the sample temperature during exposure while it does not require significant deviations from routine in vitro handling procedures, i.e. petri dishes are not required to be placed inside waveguides or TEM cells. Mean specific absorption rate (SAR) values inside the cell monolayer of 115 W/kg (27 GHz) and 160 W/kg (40.5 GHz) per watt antenna input power and corresponding transmitted power density (St) values at the bottom of the cell monolayer of 65 W/m2 (27 GHz) and 70 W/m2 (40.5 GHz) per watt antenna input power can be achieved, respectively. For reasonable amounts of harvested cells (80% of petri dish bottom area), the variation (max/min) of SAR and St over the cell monolayer remains below 3.7 dB (27 GHz) and 3.0 dB (40.5 GHz), respectively. © 2021 Bioelectromagnetics Society.  相似文献   

11.
To analyze possible effects of microwaves on gene expression, mice were exposed to global system for mobile communication (GSM) 1800 MHz signal for 1 h at a whole body SAR of 1.1 W/kg. Gene expression was studied in the whole brain, where the average SAR was 0.2 W/kg, by expression microarrays containing over 22,600 probe sets. Comparison of data from sham and exposed animals showed no significant difference in gene expression modulation. However, when less stringent constraints were adopted to analyze microarray results, 75 genes were found to be modulated following exposure. Forty-two probes showed fold changes ranging from 1.5 to 2.8, whereas 33 were down-regulated from 0.67- to 0.29-fold changes, but these differences in gene expression were not confirmed by real-time PCR. Under these specific limited conditions, no consistent indication of gene expression modulation in whole mouse brain was found associated to GSM 1800 MHz exposure.  相似文献   

12.
A new head exposure system for double‐blind provocation studies investigating possible effects of terrestrial trunked radio (TETRA)‐like exposure (385 MHz) on central nervous processes was developed and dosimetrically analyzed. The exposure system allows localized exposure in the temporal brain, similar to the case of operating a TETRA handset at the ear. The system and antenna concept enables exposure during wake and sleep states while an electroencephalogram (EEG) is recorded. The dosimetric assessment and uncertainty analysis yield high efficiency of 14 W/kg per Watt of accepted antenna input power due to an optimized antenna directly worn on the subject's head. Beside sham exposure, high and low exposure at 6 and 1.5 W/kg (in terms of maxSAR10g in the head) were implemented. Double‐blind control and monitoring of exposure is enabled by easy‐to‐use control software. Exposure uncertainty was rigorously evaluated using finite‐difference time‐domain (FDTD)‐based computations, taking into account anatomical differences of the head, the physiological range of the dielectric tissue properties including effects of sweating on the antenna, possible influences of the EEG electrodes and cables, variations in antenna input reflection coefficients, and effects on the specific absorption rate (SAR) distribution due to unavoidable small variations in the antenna position. This analysis yielded a reasonable uncertainty of <±45% (max to min ratio of 4.2 dB) in terms of maxSAR10g in the head and a variability of <±60% (max to min ratio of 6 dB) in terms of mass‐averaged SAR in different brain regions, as demonstrated by a brain region‐specific absorption analysis. Bioelectromagnetics 33:594–603, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Two systems for exposing mice to 2,450-MHz electromagnetic fields are described. In a waveguide system, four mice were placed in a Styrofoam cage and exposed dorsally to circularly polarized electromagnetic fields. The temperature and humidity in the mouse holder were kept constant by forced-air ventilation. For 1-W input power to the waveguide, the average specific absorption rate (SAR) was determined by twin-well calorimetry to be 3.60 ± 0.11 (SE) W/kg in 27-g mice. The maximum SAR at the skin surface determined thermographically was 8.36 W/kg in the head of the mouse. The second system was a miniature anechoic chamber. Six mice were irradiated dorsally to far field plane waves. Copper shielding and high-temperature absorbing material were lined inside the chamber to accommodate the high input power. The air ventilation at the location of the mice was separately controlled so that any heating in the absorber would not affect the animals. For 1-W input power, the average SAR was 0.17 ± 0.01 W/kg and the maximum SAR at the skin surface was 0.41 W/kg in the animal when irradiated with body axis parallel to the E field; the SARs were 0.11 ± 0.01 W/kg and 0.64 W/kg, respectively, when irradiated perpendicular to the E field.  相似文献   

14.
The current guideline for exposure to radiofrequency radiation (RFR) was developed through assessment of the biological effects data collected primarily from the rat. The consensus that a lack of hazardous biological effects occurred below a whole-body-averaged specific absorption rate (SAR) of 4.0 W/kg led to the proposition of a 0.4 W/kg guideline with a built-in safety factor of 10. This paper demonstrates that if the RFR absorption rate in the rat had been normalized with respect to total body surface area rather than body mass, the exposure guideline would be 2.3 W/m2, which translates to an SAR of approximately 0.06 W/kg for an adult human. It is further shown that a given RFR absorption rate, normalized as a fraction of a species' heat loss per unit of surface area, is independent of body mass over a range of 0.03-100 kg; however, a normalization of the RFR absorption rate to heat loss per unit of body mass is highly dependent on the species' mass. Normalizing the rate of RFR absorption to the surface area of the rat indicates that the current RFR exposure guideline of 0.4 W/kg may be too high.  相似文献   

15.
Levels of DNA single-strand break were assayed in brain cells from rats acutely exposed to low-intensity 2450 MHz microwaves using an alkaline microgel electrophoresis method. Immediately after 2 h of exposure to pulsed (2 μs width, 500 pulses/s) microwaves, no significant effect was observed, whereas a dose rate-dependent [0.6 and 1.2 W/kg whole body specific absorption rate (SAR)] increase in DNA single-strand breaks was found in brain cells of rats at 4 h postexposure. Furthermore, in rats exposed for 2 h to continuous-wave 2450 MHz microwaves (SAR 1.2 W/kg), increases in brain cell DNA single-strand breaks were observed immediately as well as at 4 h postexposure. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Six male New Zealand white rabbits were individually exposed to 600 MHz radiofrequency (RF) radiation for 90 min in a waveguide exposure system at an ambient temperature (Ta) of 20 or 30 degrees C. Immediately after exposure, the rabbit was removed from the exposure chamber and its colonic and ear skin temperatures were quickly measured. The whole-body specific absorption rate (SAR) required to increase colonic and ear skin temperature was determined. At a Ta of 20 degrees C the threshold SAR for elevating colonic and ear skin temperature was 0.64 and 0.26 W/kg, respectively. At a Ta of 30 degrees C the threshold SARs were slightly less than at 20 degrees C, with values of 0.26 W/kg for elevating colonic temperature and 0.19 W/kg for elevating ear skin temperature. The relationship between heat load and elevation in deep body temperature shown in this study at 600 MHz is similar to past studies which employed much higher frequencies of RF radiation (2450-2884 MHz). On the other hand, comparison of these data with studies on exercise-induced heat production and thermoregulation in the rabbit suggest that the relationship between heat gain and elevation in body temperature in exercise and from exposure to RF radiation may differ considerably. When combined with other studies, it was shown that the logarithm of the SAR required for a 1.0 degree C elevation in deep body temperature of the rabbit, rat, hamster, and mouse was inversely related to the logarithm of body mass. The results of this study are consistent with the conclusion that body mass strongly influences thermoregulatory sensitivity of the aforementioned laboratory mammals during exposure to RF radiation.  相似文献   

17.
In order to evaluate the importance of gestational age in possible effects due to exposure to a 20 kHz sawtooth magnetic field, pregnant ICR mice at gestational 2.5-15.5 days post-coitus, which is the most sensitive stage for the induction of major congenital malformations, were exposed in a carrousel irradiator. The mice were exposed to a 20 kHz intermediate frequency (IF) sawtooth magnetic field had a 6.5 microT peak intensity for 8 h/day. The animals were sacrificed on the 18th day of gestation; and the fetuses were examined for mortality, growth retardation, changes in head size, and other morphological abnormalities. From the above conditions, it is concluded that the exposure to a 20 kHz sawtooth magnetic field with 6.5 microT peak intensity does not inflict any adverse effect on fetuses of pregnant mice.  相似文献   

18.
The present study was designed to evaluate whether a 2 year exposure to an electromagnetic field (EMF) equivalent to that generated by cellular phones can accelerate tumor development in the central nervous system (CNS) of rats. Brain tumorigenesis was initiated by an intrauterine exposure to N-ethylnitrosourea (ENU) on gestational day 18. A total of 500 pups were divided into five groups, each composed of 50 males and 50 females: Group 1, untreated control; Group 2, ENU alone; Groups 3-5, ENU + EMF (sham exposure and 2 exposure levels). A 1.439 GHz time division multiple access (TDMA) signal for the Personal Digital Cellular (PDC), Japanese standard cellular system was used for the exposure of the rat head starting from 5 weeks of age, 90 min a day, 5 days a week, for 104 weeks. Brain average specific absorption rate (SAR) was 0.67 and 2.0 W/kg for low and high exposures, respectively: whole body average SAR was less than 0.4 W/kg. There were no inter-group differences in body weights, food consumption, and survival rates. No increase in the incidences or numbers per group of brain and/or spinal cord tumors, either in the males or females, was detected in the EMF exposed groups. In addition, no clear changes in tumor types were evident. Thus, under the present experimental conditions, 1.439 GHz EMF exposure to the heads of rats for a 2 year period was not demonstrated to accelerate or affect ENU initiated brain tumorigenesis.  相似文献   

19.
In an 18-month carcinogenicity study, Pim1 transgenic mice were exposed to pulsed 900 MHz (pulse width: 0.577 ms; pulse repetition rate: 217 Hz) radiofrequency (RF) radiation at a whole-body specific absorption rate (SAR) of 0.5, 1.4 or 4.0 W/kg [uncertainty (k = 2): 2.6 dB; lifetime variation (k = 1): 1.2 dB]. A total of 500 mice, 50 per sex per group, were exposed, sham-exposed or used as cage controls. The experiment was an extension of a previously published study in female Pim1 transgenic mice conducted by Repacholi et al. (Radiat. Res. 147, 631-640, 1997) that reported a significant increase in lymphomas after exposure to the same 900 MHz RF signal. Animals were exposed for 1 h/day, 7 days/week in plastic tubes similar to those used in inhalation studies to obtain well-defined uniform exposure. The study was conducted blind. The highest exposure level (4 W/kg) used in this study resulted in organ-averaged SARs that are above the peak spatial SAR limits allowed by the ICNIRP (International Commission on Non-ionizing Radiation Protection) standard for environmental exposures. The whole-body average was about three times greater than the highest average SAR reported in the earlier study by Repacholi et al. The results of this study do not suggest any effect of 217 Hz-pulsed RF-radiation exposure (pulse width: 0.577 ms) on the incidence of tumors at any site, and thus the findings of Repacholi et al. were not confirmed. Overall, the study shows no effect of RF radiation under the conditions used on the incidence of any neoplastic or non-neoplastic lesion, and thus the study does not provide evidence that RF radiation possesses carcinogenic potential.  相似文献   

20.
Rats were irradiated with circularly polarized, 2,450-MHz pulsed microwaves (2-microseconds pulses, 500 pulses per second [pps]) for 45 min in the cylindrical waveguide system of Guy et al:(Radio Sci 14:63-74, 1979). Immediately after exposure, sodium-dependent high-affinity choline uptake, an indicator of cholinergic activity in neural tissue, was measured in the striatum, frontal cortex, hippocampus, and hypothalamus. The power density was set to give average whole-body specific absorption rates (SAR) of 0.3, 0.45, 0.6, 0.75, 0.9, or 1.2 W/kg to study the dose-response relationship between the rate of microwave energy absorption and cholinergic activity in the different areas of the brain. Decrease in choline uptake was observed in the striatum at a SAR of 0.75 W/kg and above, whereas for the frontal cortex and hippocampus, decreases in choline uptake were observed at a SAR of 0.45 W/kg and above. No significant effect was observed in the hypothalamus at the irradiation power densities studied. The probit analysis was used to determine the SAR50 in each brain area, i.e., the SAR at which 50% of maximum response was elicited. SAR50 values for the striatum, frontal cortex, and hippocampus were 0.65, 0.38, and 0.44 W/kg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号