首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycophorin A was phosphorylated using protein kinases and the new protein was investigated using31P NMR spectroscopy. Most of these 30 moles of phosphate were found to be attached to Ser and Thr. Some of these phosphate residues appear to be affected by the carbohydrate residues present. The phosphorylated protein appears to be in a severe state of aggregation, with the degree of aggregationpH-dependent.  相似文献   

2.
The cell surface cAMP chemotactic receptor ofD. discoideum can be phosphorylated in partially purified plasma membrane preparations in a ligand-dependent manner. CAR-kinase, the enzyme responsible for receptor phosphorylation, was shown to be an integral membrane protein. It could utilize either ATP or GTP to phosphorylate the receptor, although ATP was much more efficient. The apparent affinity constant for ATP was approximately 20–25 µM. Maximum CAR-kinase activity was observed betweenpH 6.5 andpH 7, and required the presence of Mg2+. Neither Mn2+ nor Ca2+ could substitute for that divalent cation. The enzyme was found to be sensitive to the ionic strength and temperature of the incubation reaction. Dephosphorylation of the receptor was not observed in the membrane preparations, indicating that the enhanced level of receptor phosphorylation that occurred upon ligand binding was not an indirect reflection of receptor dephosphorylation and subsequent incorporation of radiolabeled phosphate.  相似文献   

3.
Bacterial plasmids have genes that confer highly specific resistances to As, Bi, Cd, Cu, Cr, Hg, Pb, Te, Zn, and other toxic heavy metals. For each toxic cation or anion, generally a different resistance system exists, and these systems may be “linked” together on multiple resistance plasmids. For Cd2+, AsO2 ?, AsO4 3?, Hg2+, and organomercurials, DNA sequence analysis has supplemented direct physiological and biochemical experiments to produce sophisticated understanding. ThecadA ATPase ofS.aureus plasmids is a 727 amino acid membrane ATPase that pumps Cd2+ from the cells as rapidly as it is accumulated. This polypeptide is related by sequence to other cation translocating ATPases, including the membrane K+ ATPases ofEscherichia coli andStreptococcus faecalis, the H+ ATPases of yeast andNeurospora, the Na+/K+ ATPases of vertebrate animals, and the Ca2+ ATPases of rabbit muscle. The conserved residues include the aspartyl residue that is phosphorylated, the lysine involved in ATP binding, and the proline within a membrane translocating region. The arsenate and arsenite translocating ATPase consists of 3 polypeptides (from DNA sequence analysis), including a recognizable ATP binding protein (arsA), an integral membrane protein (arsB gene), and a substrate specificity subunit (arsC gene). Inorganic mercury and organomercurial degradation is carried out by a series of about 6 polypeptides, including 2 soluble intracellular enzymes (organomercurial lyase and mercuric reductase). The latter is related by sequence and function to glutathione reductase and lipoamide dehydrogenase of prokaryotes and eukaryotes. These enzymes are dimeric, FAD-containing, NAD(P)H-dependent oxidoreductases. Other recognizable polypeptides in themer system include a DNA-binding regulatory protein from themerR gene and a Hg2+ transport system consisting of a periplasmic Hg2+-binding protein (merP gene) and a membrane protein (merT gene) in gram negative systems.  相似文献   

4.
Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller “leaf-like” structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics’ analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu2+ stress. After 5 days of Cu2+ stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu2+-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu2+-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.  相似文献   

5.
Coenzyme and substrate interactions with mannitol-1-phosphate dehydrogenase fromEscherichia coli (a dimer of MW 45,000) have been studied by fluorescence spectroscopy. NAD+ quenches the fluorescence emission of the protein tryptophan residues; shifting the excitation wavelength from 280 to 290 nm results in an increase in this quenching and a red shift in the emission maximum. NAD+ also quenches the fluorescence of covalently attached pyridoxyl phosphate, and this quenching is accompanied by a spectral broadening above 425 nm. Fructose-6-phosphate increases the binding of NAD+, but causes a slight reduction in the quenching of the tryptophan fluorescence observed at saturating levels of coenzyme, and reverses the NAD+-induced broadening in the pyridoxyl phosphate emission spectrum. NADH quenches the protein emission much less than NAD+; this quenching is not changed by shifting the excitation wavelength and is not affected by the presence of bound mannitol-1-phosphate. Titrations monitoring the quenching by NADH indicate a single class of NADH binding sites, while titrations monitoring NADH fluorescence suggest that coenzyme fluorescence is more enhanced when NADH is bound to less than half of the total enzyme subunits, with the emission per NADH molecule bound decreasing as the number of NADH molecules bound increases. In the absence of coenzyme, neither fructose-6-phosphate nor mannitol-1-phosphate have any effect on the protein tryptophan emission; however, both substrates induce specific changes in the emission spectrum of covalently attached pyridoxyl phosphate. These results suggest that the different coenzymes and substrates cause specific conformational changes in mannitol-1-phosphate dehydrogenase.  相似文献   

6.
Ralstonia paucula strain RA4T, a gram negative, non-spore forming, motile bacterium having positive catalase and oxidase test, was isolated from surface soil. Twin arginine translocation protein type D (TatD) is shown to be located in cytoplasm and exhibits magnesium-dependent DNase. A tatD DNase gene was isolated and cloned from Ralstonia paucula RA4T genome. Nucleotide sequence analysis of the gene revealed 813 nucleotides encoding a protein of 270 amino acid residues. The tatD gene showed a high similarity to homolog gene from Ralstonia pickettii strain 12D. The deduced polypeptide sequence of TatD DNase from R. paucula RA4T had a typical catalytic site, HHPLDEHRHDP, and its calculated molecular mass and predicted isoelectric point were 29616 Da and 5.33, respectively. The deduced amino acid sequence showed a high degree of similarity to TatD DNase isoforms from Ralstonia genus and other sources. Predicted three-dimensional structure of TatD confirmed the presence of active site and theoretical function as DNase.  相似文献   

7.
8.
9.
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the 1H, 13C, and 15N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain 15N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.  相似文献   

10.
Both the major sialoglycoprotein (PAS-1) and the component designated by Fairbanks et al. (G. Fairbanks, T. L. Steck, and D. F. H. Wallach, 1971, Biochemistry10, 2606–2617) as Band 3 are shown to be bonafide phosphoproteins by virtue of the presence of covalently bound serine and threonine phosphate residues. In agreement with the findings of others, PAS-1 does not seem to be phosphorylated when ghosts are incubated with [γ-32P]ATP, but the phosphorylation is significant (about 0.15 mol/mol) when the cells are incubated in the presence of 32Pi. Band 3 is phosphorylated to the extent of 0.90 mol/mol, and these sites are apparently distributed in several places along the polypeptide chain. Spectrin is also a phosphoprotein containing approximately four molecules of phosphate per 450,000 daltons of protein. The phosphorylation of these three polypeptides is not stimulated by the presence of cAMP.  相似文献   

11.
The thermophilic autotrophMethanobacterium thermoautotrophicum assimilates CO2 via a novel pathway rather than via the Calvin cycle. The central intermediate of this pathway is acetyl CoA which is reductively carboxylated to pyruvate. Cell extracts of the organism contained phosphoenolpyruvate synthetase with a specific activity of 100 nmol min-1 mg-1 protein (65°C). Pyruvate kinase and pyruvate, phosphate dikinase were not detected. Phosphoenolpyruvate synthetase was partially purified (50-fold) and the following reaction stoichiometry was established: $${\text{Pyruvate + ATP + H}}_{\text{2}} {\text{O }} \to {\text{ Phosphoenolpyruvate + AMP + P}}_{\text{i}} $$ The enzyme activity was depedent on free Mg2+ ions, NH 4 + or K+ ions, and SH-groups. Mn2+, but not Ca2+, could partially substitute for Mg2+; Na+ could not substitute for K+ or NH 4 + . The pH-optima,V max-values and the apparentK M-values for the substrates of the enzyme in both directions were determined. Thermodynamic, kinetic and regulatory features indicate that, in vivo, the enzyme functions in the direction of phosphoenolpyruvate synthesis from pyruvate. Not only is the synthesis of phosphoenolpyruvate via the PEP synthetase reaction energetically favorable; the enzyme also catalyzed this synthesis 100 times faster than the reverse reaction, the apparentK M value for pyruvate (40 μM) being low and the apparentK M value for phosphate (100 mM) being high. Furthermore, AMP, ADP, PP and α-ketoglutarate were inhibitors of PEP synthesis, indicating that the enzyme activity may be controlled in vivo. The role of phosphoenolpyruvate synthetase in autotrophic CO2 assimilation pathway ofMethanobacterium, as expected from previous labelling studies, is confirmed.  相似文献   

12.
Adenine requiring mutants of Serratia marcescens SM-6-F'lac + have been found to grow well in minimal-glucose medium solely supplemented with cAMP. From one of these ade strains double mutants (called ade cpd) were isolated which could no longer utilize cAMP but which still grew on 5′AMP. Dialyzed cell extracts (soluble fraction) of the double mutants, assayed for cAMP phosphodiesterase, were unable to hydrolyze cAMP whereas cell extracts of the parental strains yielded 5′AMP at a rate of 1.6–2.0 μmoles min−1 mg−1 protein. The loss of the phosphodiesterase activity in S. marcescens cpd W1181 did not cause an accumulation of large amounts of cAMP as was found for the diesterase-negative mutant AB257pc-1 of Escherichia coli. The induced synthesis of β-galactosidase in mutant cpd W 1181 showed about the same sensitivity to transient and permanent catabolite (glucose) repression as the corresponding cpd + strain. Starting from S. marcescens cpd W1181 three independent double mutants (called cpd cya) were isolated which required exogenous cAMP for utilizing various carbohydrates as carbon source, for motility and for the formation of extracellular lipase and the red pigment prodigiosine. The intracellular concentration of cAMP in these mutants, grown in nutrient broth, was 40–60% of that of the parental strain which is about 4×10−4 M. However, the adenylate cyclase in cell extracts of the mutants W1237 and W1270 was like that of the corresponding cya + strain (about 2×10−2 μmoles min−1 mg−1 protein).  相似文献   

13.
A plasmid analogous to the one described by Nagai and Thogersen (Nature,309, 810–812, 1984) has been constructed for the expression of globins inE. coli. Induction with nalidixic acid produces high yields of a fusion protein, NS1-FX-β-globin, where NS1 represents 81 residues of a flu virus protein and FX represents a blood-clotting Factor Xa recognition sequence, Ile-Glu-Gly-Arg. This fusion protein is readily solubilized in 50 mM NaOH and remains in solution when thepH is adjusted to 8.6. Under these conditions, the fusion protein is hydrolyzed by activated Factor X, giving authentic β-globin which can be folded in the presence of cyanohemin and native α-chains to produce a tetrameric hemoglobin with the functional properties of natural human hemoglobin.  相似文献   

14.
A highly active amide hydrolase (DamH) was purified from Delftia sp. T3-6 using ammonium sulfate precipitation, diethylaminoethyl anion exchange, hydrophobic interaction chromatography, and Sephadex G-200 gel filtration. The molecular mass of the purified enzyme was estimated to be 32 kDa by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis. The sequence of the N-terminal 15 amino acid residues was determined to be Gly-Thr-Ser-Pro-Gln-Ser-Asp-Phe-Leu-Arg-Ala-Leu-Phe-Gln-Ser. Based on the N-terminal sequence and results of peptide mass fingerprints, the gene (damH) was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). DamH was a bifunctional hydrolase showing activity to amide and ester bonds. The specific activities of recombinant DamH were 5,036 U/mg for 2′-methyl-6′-ethyl-2- chloroacetanilide (CMEPA) (amide hydrolase function) and 612 U/mg for 4-nitrophenyl acetate (esterase function). The optimum substrate of DamH was CMEPA, with K m and k cat values of 0.197 mM and 2,804.32 s?1, respectively. DamH could also hydrolyze esters such as 4-nitrophenyl acetate, glycerol tributyrate, and caprolactone. The optimal pH and temperature for recombinant DamH were 6.5 and 35 °C, respectively; the enzyme was activated by Mn2+ and inhibited by Cu2+, Zn2+, Ni2+, and Fe2+. DamH was inhibited strongly by phenylmethylsulfonyl and SDS and weakly by ethylenediaminetetraacetic acid and dimethyl sulfoxide.  相似文献   

15.
Microsomal 3-hydroxy-3-methylglutaryl Coenzyme A reductase (EC 1.1.1.34) was inactivated by [γ-32P]ATP in the presence of endogenous reductase kinases, solubilized, and purified 575-fold with retention of32P to a state where phosphoreductase was the only32P-labeled protein present.32P comigrated with reductase activity under nondenaturing conditions (polyacrylamide gets, isoelectric focusing gels) and with reductase monomer under denaturing conditions (sodium dodecyl sulfate-polyacrylamide gels). Polyfunctional antibody to homogeneous reductase precipitated all of the32P present. The phosphate-reductase bond was acid-stable and base-labile. Following acid hydrolysis and high-voltage electrophoresis,32P label migrated solely with phosphoserine and inorganic orthophosphate. Exhaustive (>100 h) tryptic digestion of phosphoreductase denatured in 2 M urea yielded two major phosphorylated components as judged by high-performance liquid chromatography or Sephadex G-25 chromatography. 3-Hydroxy-3-methylglutaryl Coenzyme A reductase inactivated in the microsomal state by [γ-32P]ATP is thus phosphorylated exclusively at seryl residues and contains two structurally distinct phosphorylation sites.  相似文献   

16.
The eukaryotic translation initiation factor 2A (eIF2A) was identified as a factor that stimulates the binding of methionylated initiator tRNA (Met-tRNA i Met ) to the 40S ribosomal subunit, but its physiological role remains poorly defined. Recently, eIF2A was shown to be involved in unconventional translation initiation from CUG codons and in viral protein synthesis under stress conditions where eIF2 is inactivated. We determined the crystal structure of the WD-repeat domain of Schizosaccharomyces pombe eIF2A at 2.5 Å resolution. The structure adopts a novel nine-bladed β-propeller fold. In contrast to the usual β-propeller proteins, the central channel of the molecule has the narrower opening on the bottom of the protein and the wider opening on the top. Highly conserved residues are concentrated in the positively-charged top face, suggesting the importance of this face for interactions with nucleic acids or other initiation factors.  相似文献   

17.
Nitrogenase activity, RNA synthesis, and protein synthesis were measured in heterocysts of Anabaena variabilis. Heterocysts labelled in situ for 4 h with [14C]uracil accumulated label in rRNA and tRNA to the same specific activity as RNA from vegetative cells. With isolated heterocysts, however, assimilation of [3H]uracil into RNa occurred at about 10% the rate in vegetative cells, and ceased 90 min after isolation. Pulse-chase experiments indicated that heterogeneous, high-molecular-weight RNA synthesized during the first 30 min of incubation was turned over during a 2 h chase, howver there was no accumulation of label in rRNA and tRNA as was seen with heterocysts labelled in situ and with vegetative cells. Assimilation of [3H]glycine into protein by isolated heterocysts was linear up to about 60 min, then proceeded at a slower rate for an additional 180 min. Maintenance of protein synsthesis and nitrogen fixation were both blocked by chloramphenicol and rifampicin. The data suggest that differentiated heterocysts continue to synthesize RNA and proteins and that these processes may contribute to the functional lifetime of heterocysts.  相似文献   

18.
A set of seven peptides constituting the various loops and most of the surface areas of α-bungarotoxin (BgTX) was synthesized. In appropriate peptides, the cyclical (by a disulfide bond) monomers were prepared. In all cases, the peptides were purified and characterized. The ability of these peptides to bindTorpedo californica acetylcholine receptor (AChR) was studied by radiometric adsorbent titrations. Three regions, represented by peptides 1–16, 26–41, and 45–59, were able to bind125I-labeled AChR and, conversely,125I-labeled peptides were bound by AChR. In these regions, residues Ile-1, Val-2, Trp-28 and/or Lys-38, and one or all of the three residues Ala-45, Ala-46, and Thr-47, are essential contact residues in the binding of BgTX to receptor. Other synthetic regions of BgTX showed little or no AChR-binding activity. The specificity of AChR binding to peptides 1–16, 26–41, and 45–59 was confirmed by inhibition with unlabeled BgTX. It is concluded that BgTX has three main AChR-binding regions (loop I with N-terminal extension and loops II and III extended toward the N-terminal by residues 45–47).  相似文献   

19.
Human erythrocyte (RBC) catechol-O-methyltransferase (COMT) is under genetic control. Experiments were performed to determine whether COMT in the human lymphocyte is regulated in parallel with RBC COMT. Supernatants of lymphocyte homogenates contained COMT activity. However, they also contained a potent COMT inhibitor, the effect of which could be negated by dilution. Lymphocyte COMT activity was maximal at a reaction pH of 7.7 and at a MgCl2 concentration of 0.67mm. The apparent K m value for 3,4-dihydroxybenzoic acid, the catechol substrate for the reaction, was 1.2×10?5 m and that for S-adenosyl-l-methionine, the methyl donor, was 2.3×10?6 m. An average of 48.3±3.3% (mean ± SEM) of the enzyme activity in crude lymphocyte homogenates from 3 subjects was removed by centrifugation at 100,000 g for 1 hr and was presumed to be membrane associated. The average COMT activity in lymphocytes isolated from blood of 23 randomly selected adult subjects was 14.0±1.2 units/106 cells (mean ± SEM) or 913±69 units/mg protein. There was a significant correlation of relative RBC with relative lymphocyte COMT activity in these 23 subjects. The correlation coefficient was 0.733 (P<0.001) when lymphocyte enzyme activity was expressed per milligram of protein and 0.649 (P<0.001) when lymphocyte activity was expressed per 106 cells. These results are compatible with the conclusion that the genetic polymorphism which regulates RBC COMT activity may also regulate the level of human lymphocyte COMT activity.  相似文献   

20.
The N 1-methyladenosine residue at position 58 of tRNA is found in the three domains of life, and contributes to the stability of the three-dimensional L-shaped tRNA structure. In thermophilic bacteria, this modification is important for thermal adaptation, and is catalyzed by the tRNA m1A58 methyltransferase TrmI, using S-adenosyl-l-methionine (AdoMet) as the methyl donor. We present the 2.2 Å crystal structure of TrmI from the extremely thermophilic bacterium Aquifex aeolicus, in complex with AdoMet. There are four molecules per asymmetric unit, and they form a tetramer. Based on a comparison of the AdoMet binding mode of A. aeolicus TrmI to those of the Thermus thermophilus and Pyrococcus abyssi TrmIs, we discuss their similarities and differences. Although the binding modes to the N6 amino group of the adenine moiety of AdoMet are similar, using the side chains of acidic residues as well as hydrogen bonds, the positions of the amino acid residues involved in binding are diverse among the TrmIs from A. aeolicus, T. thermophilus, and P. abyssi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号