首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to investigate the role of HO‐1 induction in prevention of thioacetamide (TAA)‐induced oxidative stress, inflammation and liver damage. The changes in hepatic dimethylarginine dimethylaminohydrolase (DDAH) activity as well as plasma arginine and asymmetric dimethylarginine (ADMA) levels were also measured to evaluate nitric oxide (NO) bioavailability. Rats were divided into four groups as control, hemin, TAA and hemin + TAA groups. Hemin (50 mg kg?1, i.p.) was injected to rats 18 h before TAA treatment to induce HO‐1 enzyme expression. Rats were given TAA (300 mg kg?1, i.p.) and killed 24 h after treatment. Although TAA treatment produced severe hepatic injury, upregulation of HO‐1 ameliorated TAA‐induced liver damage up to some extent as evidence by decreased serum alanine transaminase, aspartate transaminase and arginase activities and histopathological findings. Induction of HO‐1 stimulated antioxidant system and decreased lipid peroxidation in TAA‐treated rats. Myeloperoxidase activity and inducible NO synthase protein expression were decreased, whereas DDAH activity was increased by hemin injection in TAA‐treated rats. Induction of HO‐1 was associated with increased arginine levels and decreased ADMA levels, being the main determinants of NO production, in plasma of TAA‐treated rats. In conclusion, our results indicate that HO‐1 induction alleviated increased oxidative stress and inflammatory reactions together with deterioration in NO production in TAA‐induced liver damage in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Chromium picolinate is advocated as an anti-diabetic agent for impaired glycemic control. It is a transition metal that exists in various oxidation states and may thereby act as a pro-oxidant. The present study has been designed to examine the effect of chromium picolinate supplementation on hyperglycemia-induced oxidative stress. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (50 mg/kg body weight) and chromium was administered orally as chromium picolinate (1 mg/kg body weight) daily for a period of four weeks after the induction of diabetes. As is characteristic of diabetic condition, hyperglycemia was associated with an increase in oxidative stress in liver in terms of increased lipid peroxidation and decreased glutathione levels. The activity of antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase were significantly reduced in liver of diabetic animals. Levels of α-tocopherol and ascorbic acid were found to be considerably lower in plasma of diabetic rats. Chromium picolinate administration on the other hand was found to have beneficial effect in normalizing glucose levels, lipid peroxidation and antioxidant status. The results from the present study demonstrate potential of chromium picolinate to attenuate hyperglycemia-induced oxidative stress in experimental diabetes.  相似文献   

3.
Carnosine (beta-alanyl-L-histidine) is a dipeptide with antioxidant properties. Free radicals are involved in the pathogenesis of acute liver injury induced by thioacetamide (TAA). In this study, we investigated the effect of carnosine treatment on TAA-induced oxidative stress and hepatotoxicity. Rats were injected intraperitoneally with TAA (500 mg/kg) and carnosine (250 mg/kg, intraperitoneal) was co-administered with TAA. All animals were killed 24 h after injections. TAA administration resulted in hepatic necrosis, significant increases in plasma transaminase activities as well as hepatic lipid peroxide levels. In addition, hepatic antioxidant system was found to be depressed following TAA administration. When carnosine was co-administered with TAA in rats, plasma transaminase activities were found to approach to normal values in rats. Histological findings also suggested that carnosine has preventive effect on TAA-induced hepatic necrosis. Carnosine treatment caused significant decreases in lipid peroxide levels in TAA-treated rats without any changes in enzymatic and non-enzymatic antioxidants except vitamin E in the liver of rats. Our findings indicate that carnosine, in vivo may have a preventive effect on TAA-induced oxidative stress and hepatotoxicity by acting as an non-enzymatic antioxidant itself.  相似文献   

4.
In this study, the intraperitoneal administration of 1 mg/kg thioacetamide (TAA) produced hepatotoxicity in mice. The increase in serum SGOT and SGPT produced at 24 h by this regimen was decreased in a dose-dependent manner by coadministration of tetramethylpyrazine (TMP; 10, 25 and 50 mg/kg). A rise in serum interleukin-2 was similarly prevented. Increased concentrations of malondialdehyde (MDA) generated in vitro in liver homogenates prepared from TAA-treated mice were decreased by TMP treatments. The increase in MDA produced by TAA was also prevented by in vitro addition of TMP to liver homogenates. These results suggest that part of the hepatocellular injury induced by TAA is mediated by oxidative stress caused by the action of cytokines through lipid peroxidation. TMP appears to act by preventing lipid peroxidation.  相似文献   

5.
This study was designed to evaluate and compare the effect of melatonin, vitamin E and L-carnitine on brain and liver oxidative stress and liver damage. Oxidative stress and hepatic failure were produced by a single dose of thioacetamide (TAA) (150 mg kg(-1)) in Wistar rats. A dose of either melatonin (3 mg kg(-1)) vitamin E (20 mg kg(-1) ) or L-carnitine (100 mg kg(-1)) was used. Blood samples were taken from the neck vasculature in order to determine ammonium, blood urea nitrogen (BUN) and liver enzymes. Lipid peroxidation products, glutathione (GSH) content and antioxidative enzymes were determined in cerebral and hepatic homogenates. The results showed a decrease in BUN and in the antioxidant enzymes activities and GSH in the brain and liver. Likewise, TAA induced significant enhancement of lipid peroxidation products levels in both liver and brain, as well as in ammonia values. Melatonin, vitamin E and L-carnitine, although melatonin more significantly, decreased the intensity of the changes produced by the administration of TAA alone. Furthermore melatonin combined with TAA, decreased the ammonia levels and increased the BUN values compared with TAA animals. Also it was more effective than vitamin E or L-carnitine in these actions. These data show the protective effect of these agents, especially melatonin, against oxidative stress and hepatic damage present in fulminant hepatic failure.  相似文献   

6.
Organoselenides have been documented as promising pharmacological agents against a number of diseases associated with oxidative stress. Here we have investigated, for the first time, the potential antioxidant activity of binaphthyl diselenide ((NapSe)2; 50 mg kg?1, p.o.) against the 2‐nitropropane (2‐NP)‐induced hepatoxicity in rats, using different end points of toxicity (liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatinine). In addition, in view of the association of oxidative stress with 2‐NP exposure, hepatic lipid peroxidation, ascorbic acid levels, δ‐aminolevulinate dehydratase (δ‐ALA‐D) and catalase (CAT) activities were evaluated. 2‐NP caused an increase of AST, ALT and hepatic lipid peroxidation. 2‐NP also caused hepatic histopathological alterations and δ‐ALA‐D inhibition. (NapSe)2 (50 mg kg?1) prevented 2‐NP‐induced changes in plasmatic ALT and AST activities and also prevented changes in hepatic histology, δ‐ALA‐D and lipid peroxidation. Results presented here indicate that the protective mechanism of (NapSe)2 against 2‐NP hepatotoxicity is possibly linked to its antioxidant activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, β‐carotene, and α‐lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague‐Dawley rats, normal and streptozotocin‐induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, β‐carotene, pycnogenol + β‐carotene, or pycnogenol + β‐carotene + α‐lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with β‐carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) β‐carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 18:345–352, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20046  相似文献   

8.
This study evaluated the effect of different doses of the antioxidant α‐lipoic acid (LA) administered by intraperitoneal injection on the detoxifying capacity (activity of glutathione‐S‐transferase, GST) and oxidative damage (lipids and proteins) in the pompano, Trachinotus marginatus. The plasma glucose levels showed that there were no differences between the treatments (P > 0.05). In the brain, GST activity was significantly higher (P < 0.05) in fish injected with 40 mg LA kg?1 when compared with the control group. In the muscle, GST activity was not influenced by LA treatment (P > 0.05). In the liver, fish injected with 20 mg LA kg?1 showed higher GST activity than the control group (P < 0.05); however, higher doses (40 and 60 mg LA kg?1) led to a reduction of GST activity in the liver, which was comparable to that observed in the control group (P > 0.05). The two highest LA doses (40 and 60 mg kg?1) had opposite effects, depending on the tissue examined: LA was an antioxidant in the brain, reducing lipid peroxidation (P < 0.05), and a pro‐oxidant in the liver, augmenting oxidative lipid damage (P < 0.05). The latter effect was accompanied by an increase in the free iron concentration in the liver at higher LA doses. These results indicate the need to thoroughly evaluate the antioxidant effects on aquatic organisms, since at some doses and/or in some organs their beneficial effects can be lost.  相似文献   

9.
AimsThe present study evaluated a comparative and combined hepatoprotective effect of atorvastatin (AS) and ferulic acid (F) against high fat diet (HFD) induced oxidative stress in terms of hyperlipidemia, anti-oxidative status, lipid peroxidation and inflammation.Main methodsMale Swiss albino mice were given a diet containing high fat (H) (23.9% wt/wt), supplemented with AS (10 mg/kg) or F (100 mg/kg) and both (10 and 100 mg/kg) for 8 weeks. The control mice (C) were fed with normal diet.Key findingsThe H mice exhibited increased body weight; hyperlipidemia; serum level of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); hepatic lipid profile; lipid accumulation; reactive oxygen species (ROS) of hepatocytes, lipid peroxidation and liver antioxidant capacity was decreased. Immunofluorescent and Western blot assay revealed activation of nuclear factor kappa B (NF-κB) signaling pathway. The addition of F or AS and both in the diet significantly counteracted HFD induced body weight gain; hyperlipidemia; TNF-α, IL-6; hepatic lipid profile; fatty infiltration; NF-κB signaling pathway; ROS; lipid peroxidation and moreover elevated levels of hepatic antioxidant enzymes activity were observed.SignificanceSimultaneous treatment with AS, F and their combination protected against HFD induced weight gain and oxidative stress. The protection may be attributed to the hypolipidemic and free radical scavenging activity of AS or F and their combination. This study illustrates that AS and F have relatively similar hypolipidemic, antioxidative, anti-inflammatory actions and the AS + F combination along with HFD has shown outstanding effects as compared to other treated groups.  相似文献   

10.
Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.  相似文献   

11.
The primary objective of this study was to assess the efficacy of ferulic acid (FA), a phenolic antioxidant, in ameliorating oxidative stress in the testis and liver of diabetic pubertal rats. Male (6 wk old) rats were rendered diabetic by an acute dose (60 mg/kg body weight, intraperitoneal) of streptozotocin (STZ) and were given oral supplementation of FA (50 mg/kg body weight/d on alternate days) for 4 weeks. The protective efficacy of FA was assessed by measuring markers of oxidative stress in the testis and liver along with the effect of stress on lipid profile in serum/testis. Terminally, the testis (cytosol and mitochondria) of STZ-administered rats exhibited a marked elevation in the status of lipid peroxidation and enhanced reactive oxygen species (ROS) production compared to the non-diabetic controls. FA treatment completely normalized the oxidative impairments in the testis. Further, STZ-induced depletion of reduced glutathione (GSH) and elevated protein carbonyl content in the testis were restored to normalcy by FA treatment. The protective effects of FA were also discernible in the testis in terms of restoration of activities of various antioxidant enzymes in the diabetic rats. Furthermore, STZ-induced oxidative impairments in the liver were also abrogated significantly by FA treatment. STZ-induced perturbations in serum and testicular lipid profiles in the diabetic rats were also significantly attenuated by FA treatment. Collectively, these results indicate that oral supplementation of FA can significantly mitigate diabetes-associated oxidative impairments in the testis as well as in the liver and suggests the efficacy of FA as a complementary therapeutic agent in the management of diabetes-associated oxidative stress-mediated complications.  相似文献   

12.
The present study was designed to investigate the hepatoprotective potential of dimethyl fumarate (DMF) against thioacetamide (TAA)‐induced liver damage. Wistar rats were treated with DMF (12.5, 25, and 50 mg/kg/day, orally) and TAA (200 mg/kg intraperitoneally, every third day) for 6 consecutive weeks. TAA exposure significantly reduced body weight, increased liver weight and index, and intervention with DMF did not ameliorate these parameters. DMF treatment significantly restored TAA‐induced increase in the levels of aspartate aminotransferase, alanine aminotransferase, γ‐glutamyl transferase, total bilirubin, uric acid, malondialdehyde, reduced glutathione, and histopathological findings such as inflammatory cell infiltration, deposition of collagen, necrosis, and bridging fibrosis. DMF treatment significantly ameliorated TAA‐induced hepatic stellate cell activation, increase in inflammatory cascade markers (NACHT, LRR, and PYD domains‐containing protein 3; NLRP3, apoptosis‐associated speck like protein containing a caspase recruitment domain; ASC, caspase‐1, nuclear factor‐kappa B; NF‐κB, interleukin‐6), fibrogenic makers (α‐smooth muscle actin; ɑ‐SMA, transforming growth factor; TGF‐β1, fibronectin, collagen 1) and antioxidant markers (nuclear factor (erythroid‐derived 2)‐like factor 2; Nrf2, superoxide dismutase‐1; SOD‐1, catalase). The present findings concluded that DMF protects against TAA‐induced hepatic damage mediated through the downregulation of inflammatory cascades and upregulation of antioxidant status.  相似文献   

13.
The present study has been carried out to investigate the protective role of taurine against cadmium (Cd)-induced oxidative impairment in murine liver. Oral administration of cadmium chloride (CdCl2) at a dose of 4 mg/kg body weight for 6 days increased the accumulation of the Cd in the liver and diminished the liver weight to body weight ratio. The CdCl2 altered the levels of intracellular trace elements, cofactors of various metalloenzymes and increased the activities of serum marker enzymes related to liver dysfunction. In addition, Cd intoxication also attenuated intracellular antioxidant power, the activities of antioxidant enzymes as well as the levels of cellular metabolites. Moreover, level of hepatic metallothionein, lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of intracellular reactive oxygen species (ROS) and the activities of cytochrome P450s have been increased due to Cd toxicity. In addition to the oxidative impairments, Cd exposure caused hepatic cell death mainly via the necrotic pathway. Oral administration of taurine at a dose of 100 mg/kg body weight for 5 days prior to CdCl2 intoxication prevented the alterations of all the toxic-induced hepatic damages. Histological studies also supported the beneficial role of taurine against Cd-induced hepatic damages. Combining all, results suggest that taurine could protect hepatic tissues against Cd-induced oxidative stress probably through its antioxidant activity.  相似文献   

14.
Chronic liver failure leads to hyperammonemia, a central component in the pathogenesis of hepatic encephalopathy (HE); however, a correlation between blood ammonia levels and HE severity remains controversial. It is believed oxidative stress plays a role in modulating the effects of hyperammonemia. This study aimed to determine the relationship between chronic hyperammonemia, oxidative stress, and brain edema (BE) in two rat models of HE: portacaval anastomosis (PCA) and bile-duct ligation (BDL). Ammonia and reactive oxygen species (ROS) levels, BE, oxidant and antioxidant enzyme activities, as well as lipid peroxidation were assessed both systemically and centrally in these two different animal models. Then, the effects of allopurinol (xanthine oxidase inhibitor, 100mg/kg for 10days) on ROS and BE and the temporal resolution of ammonia, ROS, and BE were evaluated only in BDL rats. Similar arterial and cerebrospinal fluid ammonia levels were found in PCA and BDL rats, both significantly higher compared to their respective sham-operated controls (p<0.05). BE was detected in BDL rats (p < 0.05) but not in PCA rats. Evidence of oxidative stress was found systemically but not centrally in BDL rats: increased levels of ROS, increased activity of xanthine oxidase (oxidant enzyme), enhanced oxidative modifications on lipids, as well as decreased antioxidant defense. In PCA rats, a preserved oxidant/antioxidant balance was demonstrated. Treatment with allopurinol in BDL rats attenuated both ROS and BE, suggesting systemic oxidative stress is implicated in the pathogenesis of BE. Analysis of ROS and ammonia temporal resolution in the plasma of BDL rats suggests systemic oxidative stress might be an important "first hit", which, followed by increases in ammonia, leads to BE in chronic liver failure. In conclusion, chronic hyperammonemia and oxidative stress in combination lead to the onset of BE in rats with chronic liver failure.  相似文献   

15.
Paracetamol (PC) is a widely used analgesic and antipyretic drug, but it leads to acute hepatotoxicity at high doses intakes. This study was aimed to investigate the effects of Chrysin (CR) on hepatotoxicity constituted at high doses of PC in rats. Rats were subjected to oral pretreatment of CR (25 and 50 mg/kg b.w.) via feeding needle for 6 days against hepatotoxicity induced by a single dose of PC (500 mg/kg b.w.) administered orally via feeding needles. Although PC increases lipid peroxidation and liver enzyme activities, it has led to reduction of antioxidant enzyme activities. PC induced inflammatory responses by increasing the levels of TNF‐α and IL‐1β. Furthermore, PC caused apoptosis and autophagy by increasing activity of Caspase‐3 and LC3B level. On the other hand, CR therapy significantly regulated these values in rats. This study demonstrated that CR possesses restorative effect against PC‐induced hepatotoxicity by suppressing oxidative stress, inflammation, and apoptotic and autophagic tissue damage.  相似文献   

16.
Estimating the ability of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) to alleviate pulmonary injury induced via isoproterenol (ISP). ISP was injected in a dose of (100 mg/kg, subcutaneously twice at an interval of 24 h). One month post BM‐MSCs transplantation by intravenous injection, pulmonary oxidative stress was assessed, and Western blot analyses and histopathological investigations were conducted. Compared with the normal control group, BM‐MSCs transplantation significantly decreased the expression of pulmonary anti‐oxidative stress marker. Western blot analysis revealed that ISP significantly reduced the protein expression of the anti‐oxidative stress marker nuclear related factor‐2 (Nrf2). However, the apoptotic marker (caspase‐3) and collagen content marker (8‐hydroxyproline) were markedly elevated. These biochemical markers were confirmed by histopathological investigations. Finally, it was demonstrated that BM‐MSCs transplantation showed a superior effect in improving pulmonary function through alleviating oxidative stress, apoptosis, and collagen content.  相似文献   

17.
It has been suggested that free oxygen radicals play a role in the genesis of epilepsy and in post-seizure neuronal death. The aim of this study was to investigate the dose dependent effect of ghrelin on pentylenetetrazole (PTZ)-induced oxidative stress in a rat seizure model. For this purpose, the ghrelin groups were treated with intraperitoneal injections of ghrelin at doses of 20, 40, 60 and 80 microg/kg before the PTZ injection. Superoxide dismutase (SOD) and catalase (CAT) activities, and reduced glutathione (GSH) and thiobarbituric acid-reactive substance (TBARS) levels were measured in erythrocytes, liver and brain tissue. TBARS, the indicator of lipid peroxidation, was significantly increased in erythrocytes, liver and brain tissue, while antioxidant enzyme activities and glutathione levels were significantly decreased in PTZ injected rats. Ghrelin pretreatment prevented lipid peroxidation and the reduction in antioxidant enzyme activities and GSH levels against PTZ-induced oxidative stress in a dose dependent manner. The present data indicates that PTZ at a convulsive dose induces an oxidative stress response by depleting the antioxidant defense systems and increasing lipid peroxidation in the erythrocytes, liver and brain of rats. Ghrelin pretreatment diminished oxidative stress and prevented the decrease in antioxidant enzyme activities, and thus may reduce neuronal death in the brain during seizures. However, further studies are needed in order to confirm our hypothesis.  相似文献   

18.
Reactive oxygen species have been implicated in seizure-induced neurodegeneration, and there is a correlation between free radical level and scavenger enzymatic activity in the epilepsy. It has been suggested that pilocarpine-induced seizures is mediated by an increase in oxidative stress. Current research has found that antioxidant may provide, in a certain degree, neuroprotection against the neurotoxicity of seizures at the cellular level. Alpha-tocopherol has numerous nonenzymatic actions and is a powerful liposoluble antioxidant. The objective of the present study was to evaluate the neuroprotective effects of alpha-tocopherol (TP) in rats, against oxidative stress caused by pilocarpine-induced seizures. 30 min prior to behavioral observation, Wistar rats were treated with, 0.9% saline (i.p., control group), TP (200 mg/kg, i.p., TP group), pilocarpine (400 mg/kg, i.p., P400 group), or the combination of TP (200 mg/kg, i.p.) and pilocarpine (400 mg/kg, i.p.). After the treatments all groups were observed for 6 h. The enzymatic activities, lipid peroxidation and nitrite concentrations were measured using speccitrophotometric methods and these data were assayed. In P400 group mice there was a significant increase in lipid peroxidation and nitrite levels. However, no alteration was observed in superoxide dismutase (SOD) and catalase activities. In the TP and pilocarpine co-administered mice, antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content, as well as increased the SOD and catalase activities in rat hippocampus after seizures. Our findings strongly support the hypothesis that oxidative stress occurs in hippocampus during pilocarpine-induced seizures, indicate that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and imply that strong protective effect could be achieved using alpha-tocopherol.  相似文献   

19.
An imbalance between production of reactive oxygen species (ROS) and its elimination by antioxidant defense system in the body has been implicated for causes of aging and neurodegenerative diseases. This study was design to assess the changes in activities of antioxidant enzymes (superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase), lipid peroxidation and reduced glutathione (GSH) levels in the brain of 2, 10 and 20 month old rats, and to determine the effect of safranal on the status of selected oxidative stress indices in the 10 and 20 month old rats. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results of this study demonstrated that aging caused significant increase in the level of lipid peroxidation as well decrease in the GSH level and activities of SOD and GST in the brain of aging rats. The results of this study showed that safranal ameliorated the increased lipid peroxidation level as well as decreased GSH content of the brain of 10 and 20 month old rats. In addition, safranal treatment to the 20 month old rats, which restored the SOD and GST activities. In conclusion, safranal can be effective to protect susceptible aged brain from oxidative damage by increasing antioxidant defenses.  相似文献   

20.
This study aimed to investigate the protective effects and underlying mechanisms of cistanche on sevoflurane‐induced aged cognitive dysfunction rat model. Aged (24 months) male SD rats were randomly assigned to four groups: control group, sevoflurane group, control + cistanche and sevoflurane + cistanche group. Subsequently, inflammatory cytokine levels were measured by ELISA, and the cognitive dysfunction of rats was evaluated by water maze test, open‐field test and the fear conditioning test. Three days following anaesthesia, the rats were killed and hippocampus was harvested for the analysis of relative biomolecules. The oxidative stress level was indicated as nitrite and MDA concentration, along with the SOD and CAT activity. Finally, PPAR‐γ antagonist was used to explore the mechanism of cistanche in vivo. The results showed that after inhaling the sevoflurane, 24‐ but not 3‐month‐old male SD rats developed obvious cognitive impairments in the behaviour test 3 days after anaesthesia. Intraperitoneal injection of cistanche at the dose of 50 mg/kg for 3 consecutive days before anaesthesia alleviated the sevoflurane‐induced elevation of neuroinflammation levels and significantly attenuated the hippocampus‐dependent memory impairments in 24‐month‐old rats. Cistanche also reduced the oxidative stress by decreasing nitrite and MDA while increasing the SOD and CAT activity. Moreover, such treatment also inhibited the activation of microglia. In addition, we demonstrated that PPAR‐γ inhibition conversely alleviated cistanche‐induced protective effect. Taken together, we demonstrated that cistanche can exert antioxidant, anti‐inflammatory, anti‐apoptosis and anti‐activation of microglia effects on the development of sevoflurane‐induced cognitive dysfunction by activating PPAR‐γ signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号