首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Pattanaik B  Roleda MY  Schumann R  Karsten U 《Planta》2008,227(4):907-916
Microcoleus chthonoplastes constitutes one of the dominant microorganisms in intertidal microbial mat communities. In the laboratory, the effects of repeated daily exposure to ultraviolet radiation (16:8 light:dark cycle) was investigated in unicyanobacterial cultures isolated from three different localities (Baltic Sea = WW6; North Sea = STO and Brittany = BRE). Photosynthesis and growth were measured in time series (12–15 days) while UV-absorbing mycosporine-like amino acids (MAAs) and cellular integrity were determined after 12 and 3 days exposure to three radiation treatments [PAR (22 μmol photon m−2 s−1) = P; PAR + UV-A (8 W m−2) = PA; PAR + UV-A + UV-B (0.4 W m−2) = PAB]. Isolate-specific responses to UVR were observed. The proximate response to radiation stress after 1-day treatment showed that isolate WW6 was the most sensitive to UVR. However, repeated exposure to radiation stress indicated that photosynthetic efficiency (F v/F m) of WW6 acclimated to UVR. Conversely, although photosynthesis in STO exhibited lower reduction in F v/F m during the first day, the values declined over time. The BRE isolate was the most tolerant to radiation stress with the lowest reduction in F v/F m sustained over time. While photosynthetic efficiencies of different isolates were able to acclimate to UVR, growth did not. The discrepancy seems to be due to the higher cell density used for photosynthesis compared to the growth measurement. Apparently, the cell density used for photosynthesis was not high enough to offer self-shading protection because cellular damage was also observed in those filaments under UVR. Most likely, the UVR acclimation of photosynthesis reflects predominantly the performance of the surviving cells within the filaments. Different strategies were observed in MAAs synthesis. Total MAAs content in WW6 was not significantly different between all the radiation treatments. In contrast, the additional fluence of UV-A and UV-B significantly increased MAAs synthesis and accumulation in STO while only UV-B fluence significantly increased MAAs content in BRE. Regardless of the dynamic photosynthetic recovery process and potential UV-protective functions of MAAs, cellular investigation showed that UV-B significantly contributed to an increased cell mortality in single filaments. In their natural mat habitat, M. chthonoplastes benefits from closely associated cyanobacteria which are highly UVR-tolerant due to the production of the extracellular UV-sunscreen scytonemin.  相似文献   

2.
Zacher K  Roleda MY  Hanelt D  Wiencke C 《Planta》2007,225(6):1505-1516
Ozone depletion is highest during spring and summer in Antarctica, coinciding with the seasonal reproduction of most macroalgae. Propagules are the life-stage of an alga most susceptible to environmental perturbations therefore, reproductive cells of three intertidal macroalgal species Adenocystis utricularis (Bory) Skottsberg, Monostroma hariotii Gain, and Porphyra endiviifolium (A and E Gepp) Chamberlain were exposed to photosynthetically active radiation (PAR), PAR + UV-A and PAR + UV-A + UV-B radiation in the laboratory. During 1, 2, 4, and 8 h of exposure and after 48 h of recovery, photosynthetic efficiency, and DNA damage were determined. Saturation irradiance of freshly released propagules varied between 33 and 83 μmol photons m−2 s−1 with lowest values in P. endiviifolium and highest values in M. hariotii. Exposure to 22 μmol photons m−2 s−1 PAR significantly reduced photosynthetic efficiency in P. endiviifolium and M. hariotii, but not in A. utricularis. UV radiation (UVR) further decreased the photosynthetic efficiency in all species but all propagules recovered completely after 48 h. DNA damage was minimal or not existing. Repeated exposure of A. utricularis spores to 4 h of UVR daily did not show any acclimation of photosynthesis to UVR but fully recovered after 20 h. UVR effects on photosynthesis are shown to be species-specific. Among the tested species, A. utricularis propagules were the most light adapted. Propagules obviously possess good repair and protective mechanisms. Our study indicates that the applied UV dose has no long-lasting negative effects on the propagules, a precondition for the ecological success of macroalgal species in the intertidal.  相似文献   

3.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

4.
The unconsolidated sediment of intertidal mudflats constitutes a highly unstable environment, due to continuously changing water levels and currents as well as temporary exposure to the air. Therefore, diatoms inhabiting marine intertidal areas are subjected to strongly changing surface light and UV intensities due to exposure at low tide. Five marine intertidal diatoms (Achnanthes exigua, Cocconeis peltoides, Diploneis littoralis, Navicula digitoradiata and Amphora exigua) were isolated from the Solthörn tidal flat (Lower Saxony, southern North Sea). Semi-continuous cultures were used to determine the effect of UV radiation (photosynthetically active radiation only [PAR], PAR+UV-B, PAR+UV-A, PAR+UV-B+UV-A) during short- and long-term exposure (6 h or 30 days). Growth rates, chlorophyll a (chl a), antioxidant capacities, accumulation of phenolic compounds (e.g. flavonoids) and DMSP, and activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase and glutathione reductase) were assessed. UV-A had only minor effects on cells, while growth rate, chl a content and protein content were significantly reduced after long-term UV-B exposure. Achnanthes exigua extracts showed the highest antioxidant capacity. The highest activity of SOD, APX and MDHAR was found under long-term combined UV exposure (PAR+UV-B+UV-A). Overall, the antioxidative defence of the five isolates was stimulated during exposure to UV radiation, as may be found during emersion. Emersion induces oxidative stress and, as a result, growth of the five diatom taxa was inhibited to suit changing environmental conditions. All five taxa tested in the present study showed species-specific acclimatization potentials, providing possible explanations for variability in population, species composition and ecosystem structures in the face of climatic variations.  相似文献   

5.
Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata, and Laminaria saccharina. The physiology of light harvesting, changes in photosynthetic efficiency and kinetics of photosynthetic recovery were measured by in vivo fluorescence changes of Photosystem II (PSII). Saturation irradiance of freshly released spores showed minimal I k values (photon fluence rate where initial slope intersects horizontal asymptote of the curve) values ranging from 13 to 18 μmol photons m−2 s−1 among species collected at different depths, confirming that spores are low-light adapted. Exposure to different radiation spectra consisting of photosynthetically active radiation (PAR; 400–700 nm), PAR+UV-A radiation (UV-A; 320–400 nm), and PAR+ UV-A+UV-B radiation (UV-B; 280–320 nm) showed that the cumulative effects of increasing PAR fluence and the additional effect of UV-A and UV-B radiations on photoinhibition of photosynthesis are species specific. After long exposures, Laminaria saccharina was more sensitive to the different light treatments than the other three species investigated. Kinetics of recovery in zoospores showed a fast phase in S. dermatodea, which indicates a reduction of the photoprotective process while a slow phase in L. saccharina indicates recovery from severe photodamage. This first attempt to study photoinhibition and kinetics of recovery in zoospores showed that zoospores are the stage in the life history of seaweeds most susceptible to light stress and that ultraviolet radiation (UVR) effectively delays photosynthetic recovery. The viability of spores is important on the recruitment of the gametophytic and sporophytic life stages. The impact of UVR on the zoospores is related to the vertical depth distribution of the large sporophytes in the field.  相似文献   

6.
Thalli of the intertidal Phaeophyte Fucus spiralis L. and the subtidal Chlorophyte Ulva olivascens Dangeard were exposed to artificial UV-A, UV-B and photosynthetically active radiation (PAR) by combination of PAR + UV-A + UV-B (PAB), PAR + UV-A (PA) and PAR (P) treatments. UV-A enhanced photosynthesis and stimulated carbonic anhydrase (CA) and nitrate reductase (NR) in F. spiralis whilst PAR only had an inhibitory effect in this species. U. olivascens suffered chronic photoinhibition in all the treatments as evidenced by reduced maxima photosynthesis (Pmax) and photosynthetic efficiency (α). Non stimulatory effect was observed upon CA and NR in this species. Our results showed that artificial UV radiation triggered opposite responses in both species. We suggest that differences shown by both species might be related to their location in the rocky shore and their ability to sense UV. We propose that the ratio UV:PAR acts as an environmental signal involved in the control of photosynthesis as shown by pronounced inhibition in samples exposed to only PAR. We also suggest that UV-regulated photosynthesis would be related to carbon (C) and nitrogen (N) cycles, regulating feedback processes that control C and N assimilation.  相似文献   

7.
Porphyra umbilicalis was cultured under constant light conditions but showed a diurnal pattern in chlorophyll fluorescence. Photoinhibition after light treatment was determined by PAM fluorescence measurements. Treatment with only UV irradiation caused a slow but steady decline in the effective photosynthetic quantum yield from which there was no recovery. Solar simulated irradiation led to a large decrease in quantum yield after short periods of irradiation; partial recovery occurred after shading the samples. No significant difference was found between samples exposed to PAR only or to PAR + UV-A and/or UV-B irradiation. Determination of mycosporine-like amino acids (MAAs)before and during exposure to solar simulated irradiation showed a high initial concentration of MAAs but no increase due to the irradiance treatment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines (Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280–320 nm) can affect plant–disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280–400 nm), spectral UV-B and UV-A (320–400 nm), the biological effective UVBE, as well as the PAR (400–700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.  相似文献   

9.
The UV-absorbing mycosporine-like amino acids (MAAs) are hypothesized to protect organisms against harmful UV radiation (UVR). Since the physiology and metabolism of these compounds are unknown, the induction and kinetics of MAA biosynthesis by various natural radiation conditions were investigated in the marine red alga Chondrus crispus collected from Helgoland, Germany. Three photosynthetically active radiation (PAR, 400–700 nm) treatments without UVR and three UV-A/B (290–400 nm) treatments without PAR were given. Chondrus crispus collected from 4–6 m depth contained only traces of the MAA palythine. After 24 h exposure to 100% ambient PAR, traces of three additional MAAs, shinorine, palythinol and palythene, were detected, and their concentrations increased strongly during a one-week exposure to all PAR treatments. The concentration of all MAAs varied directly with PAR dose, with palythine and shinorine being four- to sevenfold higher than palythinol and palythene. Likewise, naturally high doses of both UV-A and UV-B resulted in a strong accumulation of all MAAs, in particular shinorine. While shinorine accumulation was much more stimulated by UVR, the content of all other MAAs was more affected by high PAR, indicating an MAA-specific induction triggered by UVR or PAR. Received: 24 September 1997 / Accepted: 17 December 1997  相似文献   

10.
Laboratory and field experiments were done hi Still-water Cove, Carmel Bay, California, and Monterey Harbor, California, to determine the effect of photosynthetically active radiation (PAR) on the shallow (upper) limit of giant kelp, Macrocystis pyrifera (L.) C. Agardh. At shallow depths, M. pyrifera did not recruit or grow to macroscopic size from gametophytes or embryonic sporophytes transplanted to vertical buoy lines; sharp decreases in PAR with depth coincided with observed recruitment and sporophyte distributions. Shade manipulations indicated that settlement of M. pyrifera zoospores was decreased, but not prohibited, by high PAR. Postsettlement stages (gametophytes and embryonic sporophytes), however, survived only under shade. These results suggest that high PAR can inhibit the recruitment of M. pyrifera to shallow water by killing its postsettlement stages; whether or not ultraviolet (UV) radiation also inhibits recruitment was not tested. In either case, however, it appears that high irradiance (PAR and/or UV) regulates the shallow limit of M. pyrifera prior to temperature and desiccation stresses inherent to intertidal regions. In an additional experiment, recruitment or growth of transplanted gametophytes or embryonic sporophytes of Macrocystis integrifolia Bory also did not occur at shallow depths, suggesting that this shallow water species accesses high irradiance regions via a method other than sexual reproduction.  相似文献   

11.
Benthic diatoms inhabiting intertidal flats face highly variable environmental conditions, due to changing water levels and exposure during low tide. The present study is the second part of a more extensive study of the adaptive potential of these species in response to varying UV radiations in the Solthörn tidal flat (Lower Saxony, southern North Sea). Five isolates (Achnanthes exigua, Amphora exigua, Cocconeis peltoides, Diploneis littoralis and Navicula digitoradiata), which were found in this area in high cell numbers in summer 2008, were used in semi-continuous cultures to study the physiological effects of UV-radiation (PAR [photosynthetically active radiation], PAR+UV-A, PAR+UV-B, PAR+UV-B+UV-A). For short- and long-term exposures (6 h, 30 days), the composition of intercellular carbohydrates, amino and fatty acids were analysed in exponential-phase cultures grown at a salinity of 30 in a 12?:?12 h light?:?dark cycle at 20?°C. Although all tested species showed distinct differences in their initial carbohydrate, amino and fatty acid compositions and in their responses to the different UV treatments, general response patterns could be identified. Overall physiological responses to short- and long-term UV treatments included the accumulation of proline as well as an increase in total carbohydrates and lipids, whereas significant differences in the composition of carbohydrates, amino and fatty acids occurred after long-term exposure to the UV treatments (P < 0.05). While UV-A exposure led to higher accumulations of phenylalanine, aspartic acid and saturated fatty acids, the response to UV-B long-term exposure included increases of galactose, mannose and unsaturated fatty acids in the cells. In both UV experiments there was a noteworthy accumulation of the amino acid tryptophan in most species. The combined UV-A+UV-B experiment showed a significant (P < 0.05) increase of aspartic acid, phenylalanine, galactose and saturated fatty acids in a majority of species. Overall, the results indicated significant differences in the physiological responses of the five diatom taxa during UV exposure, which suggests species-specific acclimation strategies that may explain the growth insensitivity towards at least short-term UV.  相似文献   

12.
Fagerberg WR 《Protoplasma》2007,230(1-2):51-59
Summary. Electromagnetic radiation (EMR) in the 400–700 nm bandwidth of photosynthetically active radiation (PAR) has been established as an important source of energy for photosynthesis and environmental signals regulating many aspects of green-plant life. Above-ambient levels of UV-B radiation (290–320 nm) under high-PAR conditions have been shown to elicit responses in chloroplasts of Brassica napus similar to those of chloroplasts at low-PAR exposure (W. Fagerberg and J. Bornman, Physiol. Plant. 101: 833–844, 1997). The question arises as to whether UV at normal levels can also evoke similar responses. Here we provide evidence that even below-ambient levels of UV-B (1/28 ambient; Durham, N.H., U.S.A., 1200 hours, March) were capable of inducing an increase in thylakoid surface area relative to the chloroplast volume typical of a low-PAR response (shade response) in sunflowers. This response occurred even though leaves were concurrently exposed to PAR levels that normally induce a “sun” or high-PAR response in the absence of UV-B. Subambient levels of UV-B were also associated with a decrease in chloroplast and starch volume. Exposure to levels of UV-A 1/10 of ambient appeared to enhance the high-PAR response of the chloroplast, characterized by an increase in the amounts of stored starch, an increase in chloroplast volume density ratio values, and a decrease in thylakoid surface area density ratios relative to the high-light controls. These effects were opposite to those seen in UV-B-exposed tissue. In a general sense, subambient levels of UV-B evoked a response similar to that elicited by low-PAR irradiance, while subambient UV-A elicited responses similar to those typical of high-PAR irradiance. The fact that below-ambient levels of UV altered a normal chloroplast structural response to PAR provides evidence that UV may be an important environmental signal for plants. Correspondence and reprints: Department of Plant Biology, University of New Hampshire, Durham, NH 03824, U.S.A. This is Scientific Contribution number 2292 from the New Hampshire Agricultural Experiment Station.  相似文献   

13.
Variability in the effect of solar ultraviolet radiation (UV-B) on primary productivity of natural phytoplankton assemblages was examined in coastal water off Manazuru Harbor, Sagami Bay, central Japan for two full years during the period from September 1996 to September 1998. Solar UV-B, UV-A, and PAR were determined in air and water. Surface water was exposed to UV-B+UV-A+PAR and UV-A+PAR with Mylar film and primary productivity under those two light regimes was determined with 13C method. Size distribution of chlorophyll a concentration was also examined. When the occurrence of >10 m size fraction was lower than 80% in a warm season, the UV-B effect was significant. Whenever red tide species occurred, they did not respond to UV-B radiation. Although winter population was also dominated by >10 m size fraction, a ratio of UV-B to UV-A+PAR was already so low that the UV-B effect was insignificant. The occurrence of >10 m size fraction, which might be enhanced by a supply of nitrate and consequently could be related to high supply of dissolved organic matter, seemed to play a significant role in controlling the effect of UV-B on primary productivity in the coastal water. Reduction rate of primary productivity ranged from <10% from November to April to 41% at maximum from May to October with annual reduction rate of 10% in the present study.  相似文献   

14.
W. Guan  X. Peng  S. Lu 《Photosynthetica》2016,54(2):219-225
This study investigated the effect of solar ultraviolet radiation (UVR) and temperature on a chain length and photosynthetic performance of diatom Chaetorceros curvisetus. The cells were cultured in large quartz tubes and exposed to PAR, PAR + UV-A (PA), or PAR + UV-A + UV-B (PAB) radiation at 20°C and 28°C for six days, respectively. After recovery for 1 h, the cells were exposed again to three different radiations for 1 h. Then, a change in the photochemical efficiency (FPSII) was examined and UVR-induced photoinhibition was calculated. The percentage of long chains (more than five single cells per chain) in C. curvisetus significantly increased from 8.2% (PAR) to 38.9% (PAB) at 20°C; while it was not notably affected at 28°C. Mycosporine-like amino acids (MAAs) concentration obviously increased by irradiance increment from PAR to PAB at 20°C. Chlorophyll (Chl) a concentration significantly declined with increasing irradiance at 20°C. Both MAAs and Chl a concentrations were not obviously changed by irradiance at 28°C. Before and after reexposure, FPSII was significantly reduced both at 20°C and 28°C. UVR-induced photoinhibition at 20°C (39%) was higher than that at 28°C (30.9%). Solar UV radiation, especially UV-B, could significantly influence the percentage of long chains of C. curvisetus, especially at low temperature. UVR-induced photoinhibition can be alleviated by higher temperatures.  相似文献   

15.
Lud  D.  Huiskes  A.H.L.  Moerdijk  T.C.W.  Rozema  J. 《Plant Ecology》2001,154(1-2):87-99
We report a long-term experiment on the photosynthetic response of natural vegetation of Deschampsia antarctica (Poaceae) and Turgidosculum complicatulum (Lichenes) to altered UV-B levels on Léonie Island, Antarctica.UV-B above the vegetation was reduced by filter screens during two seasons. Half of the screens were transparent to UV-A and UV-B (ambient treatment) or absorbing UV-B and part of the UV-A (below-ambient treatment). Half of the wedge- shaped filters had side walls leading to an enhancement of the daily mean temperature in summer by 2–4 °C, simulating rising mean air temperature on the Antarctic Peninsula. The other half of the filters were without side walls resulting in close-to-ambient temperature underneath. Plots without filters served as controls.UV-B supplementation of an extra 1.3 kJ UV-BBE was achieved using UV-mini-lamp systems during 15 days in the second season.We found no evidence that altered incident UV-B levels and temperature had an effect on maximum photosystem II efficiency (F v/F m) and effective photosystem II efficiency (F/F m) in both species. UV-B reduction did not influence contents of chlorophyll, carotenoids and methanol-soluble UV absorbing compounds in D. antarctica.Flowering shoot length of D. antarctica was not affected by UV-B reduction. Temperature enhancement tended to result in longer inflorescence axes. Results of two austral summer seasons of UV- reduction in natural stands of D. antarctica and T. complicatulum suggest that current ambient levels of UV-B do not have a direct effect on the photosynthetic performance and pigment contents of these species. Cumulative effects on growth have not been recorded after two years but can not be excluded on a longer term.  相似文献   

16.
Santas  Regas  Koussoulaki  A.  Häder  D.-P. 《Plant Ecology》1997,128(1-2):93-97
Daily and weekly fluctuations of PAR, UV-A, and UV-B have been continuously monitored for 5 months in Ancient Korinthos, Greece (37°58 N, 23°0 E) using a calibrated instrument based on 3 sharp band sensors. Daily dose ranged between 521–12 006 kJ m-2 for PAR; 52–1, 239 kJ m-2 for UV-A; and 0.66–22.5 kJ m2 for UV-B. Weekly dose ranged between 16 778-81 788 kJ m-2 for PAR; 1 406–8 517 kJ m-2 for UV-A; and 18–151 kJ m-2 for UV-B. UV-B/PAR and UV-A/PAR ratio distribution, however, does not follow closely PAR fluctuations. Generally, the UV-B/PAR and UV-A/PAR ratios were high in bright light conditions (2.1×10-3, 118×10-3) and low in darker weeks (0.9×10-3, 63×10-3. The UV-B/UV-A ratio exhibits smaller fluctuations with season (20x1×10-3, 12×10-3). Attention is drawn to the effects of sudden changes in ambient radiation and to the ratios of UV-B, UV-A, and PAR.  相似文献   

17.
Chondrus crispus and Mastocarpus stellatus both inhabit the intertidal and upper sublittoral zone of Helgoland, but with C. crispus generally taking a lower position. Measurements of chlorophyll fluorescence, activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and content and composition of UV absorbing mycosporine-like amino acids (MAAs) were conducted in the laboratory, to test whether susceptibility to UV radiation may play a role in the vertical distribution of these two species. Effective and maximal quantum yield of photochemistry as well as maximal electron transport rate (ETRmax) in C. crispus were more strongly affected by UV-B radiation than in M. stellatus. In both species, no negative effects of the respective radiation conditions were found on total activity of RubisCO. Total MAA content in M. stellatus was up to 6-fold higher than in C. crispus and the composition of MAAs in the two species was different. The results indicate that, among others, UV-B sensitivity may be a factor restricting C. crispus to the lower intertidal and upper sublittoral zone, whereas M. stellatus is better adapted to UV radiation and is therefore more competitive in the upper intertidal zone. Received: 15 November 1999 / Received in revised form: 28 February 2000 / Accepted: 10 March 2000  相似文献   

18.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

19.
The induction of UV-absorbing compounds known as mycosporine-like amino acids (MAAs) by red, green, blue, and white light (43% ambient radiation greater than 390 nm) was examined in sublittoral Chondrus crispus Stackh. Fresh collections or long-term cultures of sublittoral thalli, collected from Helgoland, North Sea, Germany, and containing no measurable amounts of MAAs, were exposed to filtered natural radiation for up to 40 days. The MAA palythine (λmax 320 nm) was synthesized in thalli in blue light to the same extent observed in control samples in white light. In contrast, thalli in green or red light contained only trace amounts of MAAs. After the growth and synthesis period, the photosynthetic performance of thalli in each treatment, measured as pulse amplitude modulated chlorophyll fluorescence, was assessed after a defined UV dose in the laboratory. Thalli with MAAs were more resistant to UV than those without, and exposure to UV-A+B was more damaging than UV-A in that optimal (Fv/Fm) and effective (φII) quantum yields were lower and a greater proportion of the primary electron acceptor of PSII, Q, became reduced at saturating irradiance. However, blue light-grown thalli were generally more sensitive than white light control samples to UV-A despite having similar amounts of MAAs. The most sensitive thalli were those grown in red light, which had significantly greater reductions in Fv/Fm and φII and greater Q reduction. Growth under UV radiation alone had been shown previously to lead to the synthesis of the MAA shinorine (λmax 334 nm) rather than palythine. In further experiments, we found that preexposure to blue light followed by growth in natural UV-A led to a 7-fold increase in the synthesis of shinorine, compared with growth in UV-A or UV-A+B without blue light pretreatment. We hypothesize that there are two photoreceptors for MAA synthesis in C. crispus, one for blue light and one for UV-A, which can act synergistically. This system would predispose C. crispus to efficiently synthesize UV protective compounds when radiation levels are rising, for example, on a seasonal basis. However, because the UV-B increase associated with artificial ozone reduction will not be accompanied by an increase in blue light, this triggering mechanism will have little additional adaptive value in the face of global change unless a global UV-B increase positively affects water column clarity.  相似文献   

20.
The interactive effects of an 8 h exposure to UV radiation and altered temperatures on the ultrastructure and germination of zoospores of the sublittoral brown alga Laminaria hyperborea (Gunn.) Foslie were investigated for the first time. Spores were exposed to four temperatures (2, 7, 12 and 17 degrees C) and three light regimes (PAR, PAR + UV-A, PAR + UV-A+UV-B). Freshly-released spores of L. hyperborea lack a cell wall and contain a nucleus with fine granular nucleoplasm and a nucleolus, one chloroplast, several mitochondria, dictyosomes and an endoplasmatic reticulum. Further, several kinds of so-called adhesive vesicles, lipid globuli and physodes containing UV-absorbing phlorotannins are embedded in the cytoplasm. No eye-spot is present. Physodes were found but they were rare and small. After an 8 h exposure to UV-B, the nucleoplasm had a mottled structure, chloroplasts contained plastoglobuli, the structure of the mitochondria changed from crista- to sacculus-type and germination was strongly inhibited at all temperatures. UV-A only had an impact on the ultrastructure at the highest temperature tested. The strongest effects were found at 17 degrees C, where germination was reduced to 35%, 32% and 9% after exposure to PAR, PAR+UV-A and PAR + UV-A + UV-B, respectively. This study indicates that UV-B radiation has strong damaging effects on the physiology and ultrastructure of zoospores of L. hyperborea. The results are important for developing scenarios for the effect of enhanced UV radiation and increasing temperatures caused by global climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号