首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The activity and intracellular compartmentation of carbonicanhydrase was examined in mesophyll protoplasts of several C3terrestrial species including wheat, since this enzyme may facilitatediffusion of inorganic carbon in solution by converting CO2to bicarbonate. Carbonic anhydrase was located in the mesophyllchloroplast with little or no activity in the cytosolic fraction.In wheat, carbonic anhydrase was absent in etiolated leavesand increased in the light during greening. Thus the enzymemay have a role in photosynthesis in the chloroplast but notin the cytosol of mesophyll cells of higher C3 plants. The amount of CO2 required for half maximum rates of photosynthesis(under low O2) was about two-fold higher for isolated protoplaststhan with isolated chloroplasts of wheat. The form of inorganiccarbon taken up by protoplasts, like that of chloroplasts, isCO2. The results are discussed in relation to a possible resistanceto CO2 transfer in the cytosol of mesophyll cells. (Received February 25, 1985; Accepted May 7, 1985)  相似文献   

2.
The inhibitory effects of sulfite ions on zeatin-induced cellexpansion in cotyledons excised from dark-grown seedlings ofcucumber (Cucumis sativus L.) were examined. With 50 µMzeatin the growth rate in white light was about twice that ofthe control. Addition of Na2SO3 in the growth medium inhibitedthe zeatin-induced growth of cotyledons. Zeatin-treatment increasedthe osmotic potential in cell sap of cotyledons, while sulfitedecreased it. These treatments had no significant effect onpotassium concentration. Sulfite inhibited the zeatin-inducedincrease in contents of fructose and glucose, but did not affectsucrose content. The relative contents of non-cellulosic constituentsof cell walls fell with the advance of culture. This decreasewas repressed by sulfite, indicating that inhibition of expansiongrowth in cucumber cotyledons by sulfite ions was the resultof alterations in the cell wall structure due to changes inthe cell wall metabolism. (Received June 12, 1984; Accepted October 24, 1984)  相似文献   

3.
The rate of short-term accumulation of [35S]sulfite in Chlorellavulgaris cells was found to be strongly dependent on the pHof the medium. The rate increased with decreased pH, and theincrease in rate closely paralleled the increase in the concentrationof the un-ionized form of sulfite. When the pH of the mediumwas increased, fast accumulation ceased immediately. The rateof accumulation showed a strong temperature dependence, withan apparent temperature coefficient of 1.93 per 10°C rise,between 10 and 25°C. Because pKa values of sulfite shiftwith temperature, the rates were corrected by dividing by theconcentration of the un-ionized form of sulfite present at therespective temperatures. The temperature coefficient was thenfound to decrease to 1.45. When cells which had been allowedto accumulate [35S]sulfite for 20 min were transferred to amedium containing no sulfite, more than 50% of the accumulated[35S] was released into the medium in 20 min. Our results arecompatible with a simple diffusion model of SO2 transport intoChlorella cells. (Received September 26, 1996; Accepted January 20, 1997)  相似文献   

4.
Intact chloroplasts were isolated from mesophyll and bundlesheath protoplasts of a C4 plant, Panicum miliaceum L., to measurethe uptake of [1-14C]pyruvate into their sorbitol-impermeablespaces at 4?C by the silicone oil filtering centrifugation method.When incubated in the dark, both chloroplasts showed similarslow kinetics of pyruvate uptake, and the equilibrium internalconcentrations were almost equal to the external levels. Whenincubated in the light, only mesophyll chloroplasts showed remarkableenhancement of the uptake, the internal concentration reaching10–30 times of the external level after 5 min incubation.The initial uptake rate of the mesophyll chloroplasts was enhancedabout ten fold by light and was saturated with increasing pyruvateconcentration; Km and Vmax were 0.2–0.4 mM and 20–40µmol(mg Chl)–1 h–1, respectively. The lightenhancement was abolished by DCMU and uncoupling reagents suchas carbonylcyanide-m-chlorophenylhydrazone and nigericin. Theseresults indicate the existence of a light-dependent pyruvatetransport system in the envelope of mesophyll chloroplasts ofP. miliaceum. The uptake activity of mesophyll chloroplastsboth in the light and the dark was inhibited by sulfhydryl reagentssuch as mersalyl and p-chloromercuriphenylsulfonate, but thebundle sheath activity was insensitive to the reagents. Thesefindings are further evidence for the differentiation of mesophylland bundle sheath chloroplasts of a C4 plant with respect tometabolite transport. (Received July 3, 1986; Accepted October 8, 1986)  相似文献   

5.
Chloroplast envelopes were isolated from chloroplasts purifiedfrom Spinacea oleracea L. (C3), Panicum miliaceum L. (NAD-malicenzyme-type C1), Digitaria sanguinalis (L.) Scop. (NADP-malicenzyme-type C4), Kalanchoe daigremontiana Hamet et Perrier (constitutiveCAM), and from Mesembryanthemum crystallinum L. (inducible CAM)performing either C3 photosynthesis or Crassulacean acid metabolism(CAM). For each species, methods were developed to isolate chloroplastenvelopes free of thylakoid contamination. The polypeptidesof ribulose bisphosphate (RuBP) carboxylase which has been consistentlyreported in envelope preparations of spinach were not foundin envelope preparations of C4 mesophyll chloroplasts. Silverstaining of envelope polypeptides resolved electrophoreticallyon sodium dodecylsulfate polyacrylamide gradient slab gels produceda more complex profile than did Coomassie staining which haspreviously been used with C3 envelope preparations, even thoughsilver reacted poorly with polypeptides corresponding to thesubunits of RuBP carboxylase. All of the plants examined possesseda major polypeptide of 27 to 29 kilodaltons (kD) which was previouslysuggested to be the phosphate translocator in spinach. WithC3 M. crystallinum, the 29 kD polypeptide stained most intensely.After induction of CAM, a 32 kD polypeptide also stained intensely,giving a profile similar to that obtained with the constitutiveCAM species. A 32 kD polypeptide was also prominent in C4 envelopepreparations, suggesting that a 32 kD polypeptide may be a translocatorprotein which is required in Crassulacean acid metabolism andC4 photosynthesis, but not in C3 photosynthesis. (Received April 25, 1983; Accepted July 9, 1983)  相似文献   

6.
Effect of the Mesophyll on Stomatal Opening in Commelina communis   总被引:1,自引:0,他引:1  
The effect of a number of factors on the opening of stomatain the intact leaf and in the isolated leaf epidermis of Commelinacommunishas been investigated. Stomata in the intact leaf opened widein the light and closed rapidly on transfer to the dark. Theywere also sensitive to CO2. In contrast, stomata in isolatedepidermis floated on an incubation solution containing 100 molm–3KCl responded neither to light nor CO2. They opened as widelyas those in the intact leaf when treated with fusicoccin. Stomata in isolated epidermis opened almost as wide as thosein the intact leaf when they were incubated with isolatedmesophyllcells in the light. The solution in which the mesophyll cellswere incubated was separated by centrifugation. Themedium fromcells previously incubated in the light caused the stomata inisolated epidermis to open but that from cells kept inthe darkhad no effect. A similar effect was observed when isolated chloroplastswere incubated with the isolated epidermis.However, the supernatantfrom the chloroplast suspension had no significant effect onstomatal opening. These results indicate that the mesophyll plays an importantrole in stomatal opening in the light. The mesophyll appearstoproduce in the light, but not in the dark, a soluble compoundwhich moves to the guard cells to bring about stomatal opening.Theexperiments with isolated chloroplasts suggest that this substanceis a product of photosynthesis. Key words: Commelina communis, stomata, light, mesophyll  相似文献   

7.
In rice, alday, wheat and tobacco (Nicotiana tabacum L. Samsunand Samsun NN) plants which contained large amounts of ABA,the transpiration rate decreased rapidly with 2 ppm SO2 fumigationand reached 20 to 65% of the initial level after 5- to 30-minexposure depending on their ABA contents. In the cases of broadbean and tobacco (N. glutinosa L.) with low ABA contents, therate slightly increased for 20 and 40 min, respectively, afterthe start of the fumigation and then decreased gradually. Thetranspiration rates of corn and sorghum, in spite of their extremelylow ABA contents, pronouncedly decreased with SO2 fumigationand reached 65 and 50%, respectively, of the initial levelsafter 40-min exposure. Foliar application of 0.04 N HC1 to N.tabacum L. Samsun NN leaves remarkably depressed the transpirationrate, while the application of 0.04 M Na2SO3 decreased the rateonly to the same level as water treatment. Foliar applicationof either HCl or Na2SO3 to N. glutinosa L. leaves exerted littlechange in the transpiration rate. When 10–4M ABA was appliedto broad bean leaves prior to HCl and Na2SO3 treatment, theirtranspiration rate was decreased by HCl, but not by Na2SO3 application.In sonicated epidermal strips peeled from broad bean leaves,Na2SO3 produced a slight increase in the stomatal aperture sizein the absence of ABA, but showed no effect in the presenceof ABA. The aperture size was identical in the pH range of 3.0to 7.0 in the incubation medium. In the presence of ABA in themedium, the aperture size was small in the acidic region ofpH with a minimal value at pH 4.0. ABA decreased the aperturesize at concentrations above 10–9 M at pH 4.0 and 10–6M at pH 7.0 in the medium. [2–14C] ABA uptake by epidermalstrips was large in the acidic region, especially at pH 4.0. (Received February 28, 1980; )  相似文献   

8.
Illuminated chloroplasts isolated from SO2-fumigated spinachleaves accumulated more H2O2 than those from non-fumigated ones.This H2O2 formation was dependent on light and was inhibitedby DCMU. It also was depressed by cytochrome c and superoxidedismutase (EC 1.15.1.1 [EC] ). The addition of sulfite to rupturedchloroplasts isolated from non-fumigated leaves caused an H2O2accumulation that accompanied O2 uptake. Spinach leaves losttheir catalase (EC 1.11.1.6 [EC] ), ascorbate peroxidase and glutathionereductase (EC 1.6.4.2 [EC] ) activities at the beginning of SO2 fumigation,when H2O2 was accumulated. These results suggest that the accumulationof H2O2 in SO2-fumigated spinach leaves is caused by the increasein O2production, the precursor for H2O2, with a sulfite-mediatedchain reaction at the reducing site of photosystem I, and byinactivation of the H2O2 scavenging system. (Received October 7, 1981; Accepted June 16, 1982)  相似文献   

9.
The mechanism of light-dependent active transport of pyruvatein C4 mesophyll chloroplasts has not been clarified, particularlyin Na+-type C4 species, in which the pyruvate uptake into mesophyllchloroplasts is enhanced by illumination or by making a Na+gradient (Na+-jump) across the envelope in the dark. We re-investigatedhere the effect of Na+ on the active transport of pyruvate inmesophyll chloroplasts of Panicum miliaceum, a Na+-type C4 species,by comparing the rate of pyruvate uptake at various externalpHs under four conditions; in the light and dark together with/withoutNa+-jump: (1) At neutral pH, the rate of pyruvate uptake inthe dark was enhanced by Na+-jump but scarcely by illumination.(2) While the enhancement effect by Na+-jump was independentof external pH, that by illumination increased greatly at pHover 7.4, and the effects of light and Na+ at the alkaline pHwere synergistic. (3) The light-enhanced pyruvate uptake wasrelated to stromal alkalization induced by illumination. Infact, pyruvate uptake was induced by H+-jump in the medium frompH 8.0 to 6.7. (4) Stromal pH was lowered by the addition ofK+-pyruvate and more by Na+-pyruvate into the medium at pH 7.8in the light. (5) However, the pH and ATP levels in the stromawere not affected by Na+-jump. Thus, we discussed possibility that besides pyruvate/Na+ cotransportat neutral pH in the medium, pyruvate/H+ cotransport enhancedby the presence of Na+ operates in mesophyll chloroplasts ofNa+-type C4 species at alkaline medium. 1Present address: Biological Resources Division, Japan InternationalResearch Center for Agricultural Sciences (JIRCAS), Ministryof Agriculture, Forestry and Fisheries, 2-1 Ohwashi, Tsukuba,305 Japan  相似文献   

10.
Commercially available cell wall-degrading enzymes frequentlyused for protoplast isolation inhibited CO2 fixation and photosyntheticO2 evolution, and stimulated dark respiration by leaf tissueand isolated mesophyll protoplasts of Nicotiana tabacum L. andAntirrhinum majus L. They also depolarized the membrane potentialof cells of leaf tissue, inhibited uptake of 86Rb by tobaccoleaf tissue and isolated mesophyll protoplasts, and stimulated36CI uptake by tobacco leaf tissue. Where studied, these effectswere found to be reversible. The depolarization effect on Antirrhinumleaf cells occurred even when the enzyme preparations had beendenatured, dialysed, or desalted, and the effect was greatestin those fractions of the enzyme preparation which showed thehighest cellulase activity. Plasmolysis of tobacco leaf tissue inhibited photosyntheticO2 evolution, CO2 fixation, and 86Rb uptake to levels belowthose exhibited by isolated protoplasts in media of the samecomposition and osmolarity. The implications of these resultsfor work with leaf tissue and isolated protoplasts are discussed.  相似文献   

11.
Protoplasts as a tool for isolating functional chloroplasts from leaves   总被引:3,自引:0,他引:3  
Leaf protoplasts from various grasses can be used for isolatingchloroplasts with high photosyndietic activity. The protoplastswere stable for more than 20 hr during which time chloroplastscould be isolated from protoplasts without any loss of originalCO2 fixation capacity (100–157 µmoles/mg chl-hr).Using Triticum aestiuum to optimize assay conditions, the pHoptimum for CO2 fixation by the chloroplasts isolated from protoplastswas between 8.2 and 8.6. Magnesium (0.75 mM) was required formaximum CO2 fixation by the isolated chloroplasts and sodiumascorbate in the medium allowed a more linear increase in CO2fixation with time. Based upon 14CO2 fixation and ferricyanide-dependentoxygen evolution as criteria of intactness, chloroplasts fromprotoplasts exhibited a high degree of intactness compared tothose obtained by mechanical grinding. Chloroplasts isolatedfrom grass leaves by mechanical grinding had a relatively lowcapacity for endogenous CO2 fixation and required addition ofribose-5-phosphate and ADP for maximum activity. (Received September 8, 1975; )  相似文献   

12.
Light-enhanced active pyruvate uptake into mesophyll chloroplastsof C4 plants was reported to be mimicked by either of the twotypes of cation jump: H+-jump in maize and phylogenically relatedspecies (H+-type) and Na+-jump in all the other C4 species tested(Na+-type) [Aoki, N., Ohnishi, J. and Kanai, R. (1992) PlantCell Physiol. 33: 805]. In this study, medium and stromal pH was monitored in the suspensionof C4 mesophyll chloroplasts. Medium alkalization lasting for5 to 10 seconds after pyruvate addition was detected by a pHelectrode and observed only in the light and only in mesophyllchloroplasts from H+-type species, Zea mays L. and Coix lacryma-jobiL., but not in those from Na+-type species Panicum miliaceumL., Setaria italica (L.) Beauv. and Panicum maximum Jacq. Theinitial rate of H+ consumption showed good correlation with[14C]pyruvate uptake measured by silicone oil filtering centrifugation,both being inhibited by N-ethylmaleimide and 7-chloro-4-nitrobenzo-2-oxa-l,3-diazole to the same degree. The ratio of the rate of H+ uptaketo that of pyruvate uptake was always about 1. Pyruvate-inducedacidification of the stroma was observed in maize mesophyllchloroplasts. These results show one to one cotransport of H+and pyruvate anion into mesophyll chloroplasts of H+-type C4species in the light. (Received January 5, 1994; Accepted May 6, 1994)  相似文献   

13.
In SO2-fumigated spinach leaves under light, chloroplast SHenzymes, glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPD)(EC 1.2.1.13 [EC] ), ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19 [EC] )and fructose-1,6-bisphosphatase (FBPase) (EC 3.1.3.11 [EC] ) weremore remarkably inactivated than other chloroplast enzymes.Their activities recovered after removal of SO2. The inactivationparalleled light-dependent CO2-fixation in spinach leaves. Inilluminated chloroplasts isolated from SO2-fumigated spinachleaves, NADP-GAPD and Ru5PK were more specifically in activatedthan other chloroplast enzymes. These two enzymes could be protectedfrom the inactivation by adding catalase. The NADP-GAPD inactivationwas suppressed by DCMU, cytochrome c or anaerobic conditions.By adding thiol compounds, the NADP-GAPD inactivation was dischargedand the activity increased. In chloroplasts or crude extractsfrom non-fumigated spinach leaves, NADP-GAPD and Ru5PK weremore strongly inhibited by externally added H2O2 than otherchloroplast enzymes. All results supported the idea that thesuppression of photosynthesis at the beginning of SO2 fumigationwas caused by the reversible inhibition of chloroplast SH enzymewith H2O2. (Received October 7, 1981; Accepted June 16, 1982)  相似文献   

14.
Photosynthetically competent chloroplasts were isolated fromcells of Euglena gracilis Z grown photoautotrophically in 1.5%CO2. The isolated chloroplasts were intact and substantiallyfree from cytosolic, mitochondrial and microbody materials.The effects of some compounds on the activity of photosynthetic14CO2 fixation were examined. The optimal pH and sorbitol concentrationwere 8.0 and 0.33 M, respectively. The chloroplasts requireda high level of P, (5 to 20 mM) for the maximal rate of photosynthesis.They were insusceptible to 10 mM of free Mg2+. ATP, ADP andAMP at 1 to 5 mM notably stimulated photosynthesis, althoughhigh concentrations of AMP were unfavorable. In the assay mediumdeveloped for this study, the chloroplasts exhibited photosyntheticactivity of 120µmoles-mg–1 Chl-h–1 at 30?C. Chloroplasts could also be isolated from cells grown under ordinaryair. The rate of photosynthetic 14CO2 fixation at 1 mM NaHl4CO3was higher in these chloroplasts than in those isolated fromcells grown in 1.5% CO2, whereas at 10 mM NaHl4CO3, the ratesof the two types of chloroplasts were nearly the same. Theseresults suggest that the CO2 concentration given during growthof the algal cells affects the affinity for dissolved inorganiccarbon at the chloroplast level. (Received March 30, 1987; Accepted August 17, 1987)  相似文献   

15.
Permeability coefficients (PS values) for CO2 of the plasmamembrane (PM) of the unicellular green algae Eremosphaera viridis,Dunaliella parva, and Dunaliella acidophila, and of mesophyllprotoplasts isolated from Valerianella locusta were determinedfrom 14CO2 uptake experiments using the rapid separation ofcells by the silicone oil layer centrifugation technique. Theexperimental PS values were compared with calculated numbersobtained by interpolation of Collander plots, which are basedon lipid solubility and molecular size, for D. parva cells,mesophyll protoplasts isolated from Spinacia oleracea, mesophyllcells and guard cells of Valerianella, and guard cell protoplastsisolated from Vicia faba. The conductivity of algal plasma membranes for CO2 varies between0.1 and 9 ? 10–6 m s–1, whereas for the plasmalemmaof cells and protoplasts isolated from leaves of higher plantsvalues between 0.3 and 11 ? 10–6 m s–1 were measured.By assuming that these measurements are representative for plantsand algae in general, it is concluded that the CO2 conductivityof algal PM is of the same order of magnitude as that of thehigher plant cell PM. Ps values of plasma membranes for CO2are lower than those for SO2, but are in the same order of magnitudeas those measured for H2O. On the basis of these results itis concluded that theoretical values of about 3000 ? 10–6m s–1 believed to be representative for higher plant cells(Nobel, 1983) and which are frequently used for computer-basedmodels of photosynthesis, lack experimental confirmation andrepresent considerable overestimations. However, with severalsystems, including higher plant cells, the conductance of thePM for CO2 was significantly higher in light than in darkness.This suggests that in light, additional mechanisms for CO2 uptakesuch as facilitated diffusion or active uptake may operate inparallel with diffusional uptake. Key words: Conductivity, CO2, permeability coefficient, photosynthesis, plasmalemma  相似文献   

16.
Peroxidase activity and 3,4-dihydroxyphenylalanine (DOPA) werefound in vacuoles isolated from mesophyll protoplasts of Viciafaba L. A peroxidase isozyme localized in vacuoles migratedto the cathode during electrophoresis at pH 8.7, indicatingthat the vacuole peroxidase was a basic isozyme. When isolatedvacuoles were treated with 2 mM H2O2, dopachrome, a productof oxidation of DOPA, was formed in a reaction that was inhibitedby KCN and NaN3. These results suggest that DOPA can serve asa donor of electrons to the peroxidase in vacuoles. (Received December 25, 1989; Accepted March 22, 1990)  相似文献   

17.
Mitochondria were isolated from mesophyll protoplasts and bundlesheath protoplasts or strands which were obtained by enzymaticdigestion of six C4 species: Zea mays, Sorghum bicolor, Panicummiliaceum, Panicum capillare, Panicum maximum and Chloris gayana,representative of three C4 types. Photorespiratory glycine oxidationand related enzyme activities of mesophyll and bundle sheathmitochondria were compared. Mesophyll mitochondria showed good P/O ratios with malate andsuccinate as substrate but lacked the ability to oxidize glycine.On the other hand, mitochondria isolated from bundle sheathprotoplasts of P. miliaceum and bundle sheath strands of Z.mays possessed glycine oxidation activity similar to that ofmitochondria from C3 plant leaves. The two enzymes involvedin glycine metabolism in mitochondria, serine hydroxymethyltransferaseand glycine decarboxylase, were also assayed in the mitochondriaof the two cell types. The activities of the two enzymes inbundle sheath mitochondria were in the range found in C3 mitochondria.In contrast, the activities in mesophyll mitochondria were eithernot detectable or far lower than those in bundle sheath mitochondriaand ascribed to contaminating bundle sheath mitochondria. The present results indicate the deficiency of a complete glycineoxidation system in mesophyll mitochondria and also a differentiationbetween mesophyll and bundle sheath cells of C4 plants withrespect to the photorespiratory activities of the mitochondria. (Received June 8, 1983; Accepted August 29, 1983)  相似文献   

18.
Difference between effects of sulfur dioxide (SO2) and ozone (O3) on groundnut plants (Arachis hypogaea L.) was studied by use of an exposure system of enzymatically-isolated mesophyll cells. SO2 inhibited photosynthesis of intact groundnut leaves but induced no visible injury on leaves. SO2 also inhibited photosynthesis of isolated mesophyll cells but did not kill the cells, suggesting that SO2 inhibits photosynthesis by attacking rather specifically the photosynthetic apparatus in chloroplasts. O3 inhibited photosynthesis of intact leaves and at the same time induced visible injury corresponding to the extent of photosynthesis inhibition. O3 also inhibited photosynthesis of isolated mesophyll cells and killed the cells to the extent corresponding to photosynthesis inhibition, suggesting that O3 inhibits photosynthesis not directly by attacking the photosynthetic apparatus but indirectly by killing cells. Since the response of intact leaves to each pollutant resembled that of isolated mesophyll cells, the difference between responses of intact leaves to both pollutants may considerably reflect that of mesophyll cells.  相似文献   

19.
In chloroplasts isolated from SO2-fumigated leaves at 2.0 ppm,electron flow from water to 2,6-dichloroindophenol (DCIP) wasinhibited, but the electron flow from reduced DCIP to methylviologen was not affected. Neither diphenylcarbazide nor MnCl2could restore the activity of the DCIP-Hill reaction of SO2-injuredchloroplasts. Electron flows, from water to ferricyanide orto silicomolybdic acid, were inhibited in a degree similar tothat of the DCIP-Hill reaction. The rate of carotenoid photobleaching in the presence of carbonylcyanide-m-chlorophenylhydrazone was suppressed and paralleledthe inhibition of the DCIP-Hill reaction. In SO2-injured chloroplasts, the variable part of the fluorescencetransient was diminished, and the fluorescence yield loweredby SO2 was increased with 3-(3', 4'-dichlorophenyl)-l, l-dimethylurea(DCMU) or more pronouncedly by incubating the sample with sodiumdithionite. However, the yield could not recover to the levelfound in non-fumigated chloroplasts. With SO2 fumigation, thetime required to reach steady-state level of fluorescence becamelonger in the absence of DCMU, but was not altered in the presenceof DCMU. The pool size of the primary electron acceptors decreasedwith SO2 fumigation. We concluded that SO2 inactivated the primaryelectron donor or the reaction center itself. The mode of SO2action in the electron transport chain is discussed. (Received October 20, 1979; )  相似文献   

20.
Mesophyll chloroplasts capable of assimilating 1.2 µmolesCO2 per milligram chlorophyll per hour were isolated from 7-day-oldcorn (Zea mays, Nagano No. 1) leaves. Addition of phosphoenolpyruvateincreased the rate of CO2 fixation in light up to 22 µmolesper milligram chlorophyll per hour, whole exogenously addedribose 5-phosphate and adenosine triphosphate brought aboutonly small increases. The CO2 fixation products were mostlymalate and aspartate. Bundle sheath strands isolated from the same plants were capableof assimilating 3–26 µmoles CO2 per milligram chlorophyllper hour. The fixation rate increased 3- to 5-fold on additionof ribose 5-phosphate and adenosine triphosphate, while exogenousphosphoenolpyruvate had no effect. The bulk of early productsof light-induced CO2 fixation were phosphate esters. These results indicate that corn mesophyll chloroplasts initiallyfix CO2 by phoenolpyruvate carboxylase and that reductive pentosephosphate cycle occurs in corn bundle sheath cells, but notin the mesophyll chloroplasts. (Received January 25, 1974; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号