首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
In T-10 experiments, attempts were made to significantly exceed the Greenwald limit $\bar n_{Gr} $ during high-power (P ab=750 kW) electron-cyclotron resonance heating (ECRH) and gas puffing. Formally, the density limit $(\bar n_e )_{\lim } $ exceeding the Greenwald limit $({{(\bar n_e )_{\lim } } \mathord{\left/ {\vphantom {{(\bar n_e )_{\lim } } {\bar n_{Gr} }}} \right. \kern-0em} {\bar n_{Gr} }} = 1.8)$ was achieved for q L=8.2. However, as q L decreased, the ratio ${{(\bar n_e )_{\lim } } \mathord{\left/ {\vphantom {{(\bar n_e )_{\lim } } {\bar n_{Gr} }}} \right. \kern-0em} {\bar n_{Gr} }}$ also decreased, approaching unity at q L≈3. It was suggested that the “current radius” (i.e., the radius of the magnetic surface enclosing the bulk of the plasma current I p), rather than the limiter radius, was the parameter governing the value of $(\bar n_e )_{\lim } $ . In the ECRH experiments, no substantial degradation of plasma confinement was observed up to $\bar n_e \sim 0.9(\bar n_e )_{\lim } $ regardless of the ratio ${{(\bar n_e )_{\lim } } \mathord{\left/ {\vphantom {{(\bar n_e )_{\lim } } {\bar n_{Gr} }}} \right. \kern-0em} {\bar n_{Gr} }}$ . In different scenarios of the density growth up to $(\bar n_e )_{\lim } $ , two types of disruptions related to the density limit were observed.  相似文献   

10.
11.
To investigate the effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis), we measured the following: (1) the resting oxygen consumption rate $ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{rest}}}} } \right) $ , critical swimming speed (U crit) and active oxygen consumption rate $ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} } \right) $ of fish at acclimation temperatures of 10, 15, 20, 25 and 30 °C and (2) the $ \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $ , U crit and $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ of both exercise-trained (exhaustive chasing training for 14 days) and control fish at both low and high acclimation temperatures (15 and 25 °C). The relationship between U crit and temperature (T) approximately followed a bell-shaped curve as temperature increased: U crit = 8.21/{1 + [(T ? 27.2)/17.0]2} (R 2 = 0.915, P < 0.001, N = 40). The optimal temperature for maximal U crit (8.21 BL s?1) in juvenile qingbo was 27.2 °C. Both the $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ and the metabolic scope (MS, $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} - \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $ ) of qingbo increased with temperature from 10 to 25 °C (P < 0.05), but there were no significant differences between fish acclimated to 25 and 30 °C. The relationships between $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ or MS and temperature were described as $ {\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} = 1,214.29/\left\{ {1 + \left[ {\left( {T - 28.8} \right)/10.6} \right]^{2} } \right\}\;\left( {R^{2} = 0.911,\;P < 0.001,\;N = 40} \right) $ and MS = 972.67/{1 + [(T ? 28.0)/9.34]2} (R 2 = 0.878, P < 0.001, N = 40). The optimal temperatures for $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ and MS in juvenile qingbo were 28.8 and 28.0 °C, respectively. Exercise training resulted in significant increases in both U crit and $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ at a low temperature (P < 0.05), but training exhibited no significant effect on either U crit or $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ at a high temperature. These results suggest that exercise training had different effects on swimming performance at different temperatures. These differences may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.  相似文献   

12.
The unusual ??-halogen bond interactions are investigated between $ \left( {\hbox{BNN}} \right)_3^{+} $ and X1X2 (X1, X2?=?F, Cl, Br) employing MP2 at 6-311?+?G(2d) and aug-cc-pVDZ levels according to the ??CP (counterpoise) corrected potential energy surface (PES)?? method. The order of the ??-halogen bond interactions and stabilities of the complexes are obtained to be $ \left( {\hbox{BNN}} \right)_3^{+} \ldots {{\hbox{F}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{ClF < }}\left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{C}}{{\hbox{l}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrCl}}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{B}}{{\hbox{r}}_2}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrF}}{.} $ at MP2/aug-cc-pVDZ level. The analyses of the Mulliken charge transfer, natural bond orbital (NBO), atoms in molecules (AIM) theory and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of $ \left( {\hbox{BNN}} \right)_3^{+} $ to X1X2. This result suggests that the positive aromatic ring $ \left( {\hbox{BNN}} \right)_3^{+} $ might act as a ??-electron donor to form the ??-halogen bond.
Figure
Shifts of electron density as a result of formation of the complex. The unusual ??-halogen interactions are found between (BNN)3 + and X1X2 (X1, X2=F, Cl, Br) employing MP2 method at 6-311+G(2d) and aug-cc-pVDZ levels according to the ??CP-corrected PES)?? method. The analyses of the Mulliken charge transfer, NBO, AIM and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of (BNN)3 + to X1X2. (BNN)3 + might be as ??-electron donor to form the ??-halogen bond.  相似文献   

13.
Four intense and separate localized surface plasmon resonance (LSPR) absorption peaks have been obtained in the gold-dielectric–gold–silver multilayer nanoshells. The silver coating on the gold shell results in a new LSPR peak at about 400 nm corresponding to the $ {{\left| {\omega_{+}^{-}} \right\rangle}_{Ag }} $ mode. The intense local electric field concentrated in the silver shell at the wavelength of 400 nm indicates that this new plasmonic band is coming from the symmetric coupling between the antibonding silver shell plasmon mode and the inner sphere plasmon. Increasing the silver shell thickness also leads to the intensity increasing of the $ {{\left| {\omega_{+}^{-}} \right\rangle}_{Au }} $ mode and blue shift of $ \left| {\omega_{-}^{+}} \right\rangle $ and $ \left| {\omega_{-}^{-}} \right\rangle $ modes. Therefore, quadruple intense plasmonic resonances in the visible region could be achieved in gold-dielectric–gold–silver multilayer nanoshells by tuning the geometrical parameters. And the quadruple intense plasmonic resonances in the visible region provide well potential for multiplex biosensing based on LSPR.  相似文献   

14.
Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32?±?7 years; \( \overset{\cdotp }{V}{\mathrm{O}}_{2 \max } \) : 57?±?7 mL min?1 kg?1) were exposed for 20 min to either a high-concentration of air ions (ION: 220?±?30?×?103 ions cm?3) or normal room conditions (PLA: 0.1?±?0.06?×?103 ions cm?3) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) response (τ) and the magnitude of the \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (BLac) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) τ (32?±?14 s vs. 32?±?14 s; P?=?0.7) or \( \overset{\cdotp }{V}{\mathrm{O}}_2 \) SC (404?±?214 mL vs 482?±?217 mL; P?=?0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and BLac as well as on peak and mean power output during the Wingate tests (all P?>?0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.  相似文献   

15.
Recently, a microchannel flow analyzer (MC-FAN) has been used to study the flow properties of blood. However, the correlation between blood passage time measured by use of the MC-FAN and hemorheology has not been clarified. In this study, a simple model is proposed for estimation of liquid viscosity from the passage time t p of liquids. The t p data for physiological saline were well represented by the model. According to the model, the viscosity of Newtonian fluids was estimated reasonably well from the t p data. For blood samples, although the viscosity $ \eta_{\text{mc}} $ estimated from t p was shown to be smaller than the viscosity $ \eta_{{450{\text{s}}^{ - 1} }} $ measured by use of a rotatory viscometer at a shear rate of 450 s?1, $ \eta_{\text{mc}} $ was correlated with $ \eta_{{450{\text{s}}^{ - 1} }} $ . An empirical equation for estimation of $ \eta_{{450{\text{s}}^{ - 1} }} $ from $ \eta_{\text{mc}} $ of blood samples is proposed.  相似文献   

16.
17.
In response to decreasing atmospheric emissions of sulfur (S) since the 1970s there has been a concomitant decrease in S deposition to watersheds in the Northeastern U.S. Previous study at the Hubbard Brook Experimental Forest, NH (USA) using chemical and isotopic analyzes ( $ \delta^{34} {\text{S}}_{{{\text{SO}}_{4} }} $ ) combined with modeling has suggested that there is an internal source of S within these watersheds that results in a net loss of S via sulfate in drainage waters. The current study expands these previous investigations by the utilization of δ18O analyzes of precipitation sulfate and streamwater sulfate. Archived stream and bulk precipitation samples at the Hubbard Brook Experimental Forest from 1968–2004 were analyzed for stable oxygen isotope ratios of sulfate ( $ \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} $ ). Overall decreasing temporal trends and seasonally low winter values of $ \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} $ in bulk precipitation are most likely attributed to similar trends in precipitation $ \delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}} $ values. Regional climate trends and changes in temperature control precipitation $ \delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}} $ values that are reflected in the $ \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} $ values of precipitation. The significant relationship between ambient temperature and the $ \delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}} $ values of precipitation is shown from a nearby site in Ottawa, Ontario (Canada). Although streamwater $ \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} $ values did not reveal temporal trends, a large difference between precipitation and streamwater $ \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} $ values suggest the importance of internal cycling of S especially through the large organic S pool and the concomitant effect on the $ \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} $ values in drainage waters.  相似文献   

18.
The climates of the central and southern regions of São Paulo state in Brazil favor pathogens such as Puccinia psidii Winter, which causes a common and severe disease in Eucalyptus plantations under 2 years old. We studied genetic parameters including genotype by environment interaction (G × E) of resistance to P. psidii rust in Eucalyptus grandis at nine sites in São Paulo State. Open-pollinated progeny from ten ‘provenances’ were established in a randomized complete block design; at individual sites there were from 134 to 160 progenies, from four to eight blocks, and five to six trees per plot. Significant provenance and progeny(provenance) differences were detected, as was G × E involving progeny(provenance). However, the G × E involved little if any rank changes, indicating that selection can be done efficiently at a single site, if the disease level is sufficient. The estimated coefficient of genetic variation among the progeny within provenances $ \left( {{{{\widehat{\mathrm{CV}}}}_{\mathrm{g}}}} \right) $ was high and variable among the sites (ranging from 11 % to 36.7 %), demonstrating different expression of genetic variability among the sites. The estimated heritability at the individual-tree level $ \left( {{{\widehat{h}}^2}} \right) $ and within a plot $ \left( {\widehat{h}_{\mathrm{w}}^2} \right) $ ranged from low to intermediate (ranging from 0.04 to 0.46) and was high at the progeny-mean level $ \left( {\widehat{h}_{\mathrm{f}}^2} \right) $ (ranging from 0.30 to 0.86). Our study shows good prospects of controlling this disease by selection among and within progenies in a single site.  相似文献   

19.
The effect of stepwise increments of red light intensities on pulse-amplitude modulated (PAM) chlorophyll (Chl) fluorescence from leaves of A. thaliana and Z. mays was investigated. Minimum and maximum fluorescence were measured before illumination (F 0 and F M, respectively) and at the end of each light step ( $ F^{\prime}_{0} $ and $ F^{\prime}_{\text{M}} $ , respectively). Calculated $ F^{\prime}_{0} $ values derived from F 0, F M and $ F^{\prime}_{\text{M}} $ fluorescence according to Oxborough and Baker (1997) were lower than the corresponding measured $ F^{\prime}_{0} $ values. Based on the concept that calculated $ F^{\prime}_{0} $ values are under-estimated because the underlying theory ignores PSI fluorescence, a method was devised to gain relative PSI fluorescence intensities from differences between calculated and measured $ F^{\prime}_{0} $ . This method yields fluorometer-specific PSI data as its input data (F 0, F M, $ F^{\prime}_{0} $ and $ F^{\prime}_{\text{M}} $ ) depend solely on the spectral properties of the fluorometer used. Under the present conditions, the PSI contribution to F 0 fluorescence was 0.24 in A. thaliana and it was independent on the light acclimation status; the corresponding value was 0.50 in Z. mays. Correction for PSI fluorescence affected Z. mays most: the linear relationship between PSI and PSII photochemical yields was clearly shifted toward the one-to-one proportionality line and maximum electron transport was increased by 50 %. Further, correction for PSI fluorescence increased the PSII reaction center-specific parameter, 1/F 0 ? 1/F M, up to 50 % in A. thaliana and up to 400 % in Z. mays.  相似文献   

20.
We investigated the interaction (hyper)polarizability of neon–dihydrogen pairs by performing high-level ab initio calculations with atom/molecule-specific, purpose-oriented Gaussian basis sets. We obtained interaction-induced electric properties at the SCF, MP2, and CCSD levels of theory. At the CCSD level, for the T-shaped configuration, around the respective potential minimum of 6.437 a0, the interaction-induced mean first hyperpolarizability varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-0.91\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.50{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2\hbox{--} 0.13{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.01{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Again, at the CCSD level, but for the L-shaped configuration around the respective potential minimum of 6.572 a0, this property varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-1.33\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.75{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2-0.20{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.02{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Graphical Abstract Interaction-induced mean dipole polarizability (\( \overline{a} \)) for the T-shaped configuration of H2–Ne calculated at the SCF, MP2, and CCSD levels of theory
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号