首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vascular endothelial growth factor and its receptors   总被引:2,自引:0,他引:2  
Vascular endothelial growth factor (VEGF) is a prime regulator of endothelial cell proliferation, angiogenesis, vasculogenesis and vascular permeability. Its activity is mediated by the high affinity tyrosine kinase receptors, KDR/Flk-1 and Flt-1. In this article, recently discovered structural, molecular and biological properties of VEGF are described. Among the topics discussed are VEGF and VEGF receptor structure and bioactivity, the regulation of VEGF expression, the role of VEGF and its receptors in vascular development, and the involvement of VEGF and its receptors in normal and pathological (ocular and tumor) angiogenesis.  相似文献   

2.
Signaling via vascular endothelial growth factor receptors   总被引:37,自引:0,他引:37  
Angiogenesis, or development of blood vessels from preexisting vasculature, has important functions under both normal and pathophysiological conditions. Vascular endothelial growth factor receptors 1-3, also known as flt-1, KDR, and flt-4, are endothelial cell-specific receptor tyrosine kinases which serve as key mediators of the angiogenic responses. The review focuses on the signaling pathways that are initiated from these receptors and the recently identified VEGF coreceptor neuroplilin-1.  相似文献   

3.
Vascular endothelial growth factor (VEGF-A) is a crucial stimulator of vascular cell migration and proliferation. Using bone marrow-derived human adult mesenchymal stem cells (MSCs) that did not express VEGF receptors, we provide evidence that VEGF-A can stimulate platelet-derived growth factor receptors (PDGFRs), thereby regulating MSC migration and proliferation. VEGF-A binds to both PDGFRalpha and PDGFRbeta and induces tyrosine phosphorylation that, when inhibited, results in attenuation of VEGF-A-induced MSC migration and proliferation. This mechanism was also shown to mediate human dermal fibroblast (HDF) migration. VEGF-A/PDGFR signaling has the potential to regulate vascular cell recruitment and proliferation during tissue regeneration and disease.  相似文献   

4.
The molecular biology of the angiogenic growth factor, vascular endothelial growth factor (VEGF), has been studied in the dog. All major isoforms of VEGF are present in the dog. The amino acid sequences are identical between human and dog in the loop regions that are responsible for receptor binding. Accordingly, the VEGF receptors of dogs and humans are very similar and permit functional exchange of the growth factor. Here we show that canine VEGF activates human endothelial cells to the same extent as human VEGF. Similarly, the two proteins display identical cell binding properties. The VEGF receptor 1 (Flt-1) shows the same alternative splicing in humans and dogs and is overexpressed in the majority of tumors in both species. VEGF occurs also in canine tumors in similar relative quantities as in human malignancies. Based on the literature and our study we suggest that the molecular biology and the function of the VEGF signaling system are virtually identical in humans and canines and in healthy as well as in disease conditions.  相似文献   

5.
6.
Signal transduction by vascular endothelial growth factor receptors   总被引:2,自引:0,他引:2  
VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.  相似文献   

7.
The vascular endothelial growth factor receptors (VEGFR) play a significant role in angiogenesis, the formation of new blood vessels from existing vasculature. Systems biology offers promising approaches to better understand angiogenesis by computational modeling the key molecular interactions in this process. Such modeling requires quantitative knowledge of cell surface density of pro-angiogenic receptors versus anti-angiogenic receptors, their regulation, and their cell-to-cell variability. Using quantitative fluorescence, we systematically characterized the endothelial surface density of VEGFRs and neuropilin-1 (NRP1). We also determined the role of VEGF in regulating the surface density of these receptors. Applying cell-by-cell analysis revealed heterogeneity in receptor surface density and VEGF tuning of this heterogeneity. Altogether, we determine inherent differences in the surface expression levels of these receptors and the role of VEGF in regulating the balance of anti-angiogenic or modulatory (VEGFR1) and pro-angiogenic (VEGFR2) receptors.  相似文献   

8.
OBJECTIVE: To determine the expression of two angiogenic factors, vascular endothelial growth factor (VEGF) and fibroblast growth factor receptors (FGFR), in non-small cell lung carcinoma (NSCLC) in relation to tumor stage (TN0, TN1, TN2) and in association with the expression of p53 protein, a potential suppressor of tumor angiogenesis. STUDY DESIGN: The immunohistochemical (IHC) expression of VEGF and FGFR was examined in paraffin sections of 56 NSCLC in relation to the presence of lymph node metastases and p53 expression. Nodal status of NSCLC determined: 27 tumors, N0; 16, N1; and 13, N2 stage. Semiquantitative analysis with a score corresponding to IHC staining intensity and percentage of positive cells was used. Statistical analysis was performed with the chi 2 test. RESULTS: A significant association was noted between VEGF and FGFR expression in NSCLC. No relation was found between VEGF, FGFR expression and lymph node metastasis or p53 expression. CONCLUSION: We assume that VEGF and FGFR act in a synergistic manner in NSCLC and that their expression is not related to lymph node metastases. Angiogenesis is a very complex phenomenon and heterogeneous within tumors. Also, it is affected by microenviromental factors.  相似文献   

9.
Placental growth factor (PlGF) competes with vascular endothelial growth factor (VEGF) for binding to VEGF receptor (VEGFR)-1 but does not bind VEGFR2. Experiments show that PlGF can augment the response to VEGF in pathological angiogenesis and in models of endothelial cell survival, migration, and proliferation. This synergy has been hypothesized to be due to a combination of the following: signaling by PlGF through VEGFR1 and displacement of VEGF from VEGFR1 to VEGFR2 by PlGF, causing increased signaling through VEGFR2. In this study, the relative contribution of PlGF-induced VEGF displacement to the synergy is quantified using a mathematical model of ligand-receptor binding to examine the effect on ligand-receptor complex formation of VEGF and PlGF acting together. Parameters specific to the VEGF-PlGF system are used based on existing data. The model is used to simulate in silico a specific in vitro experiment in which VEGF-PlGF synergy is observed. We show that, whereas a significant change in the formation of endothelial surface growth factor-VEGFR1 complexes is predicted in the presence of PlGF, the increase in the number of VEGFR2-containing signaling complexes is less significant; these results were shown to be robust to significant variation in the kinetic parameters of the model. Synergistic effects observed in that experiment thus appear unlikely to be due to VEGF displacement but to a shift from VEGF-VEGFR1 to PlGF-VEGFR1 complexes and an increase in total VEGFR1 complexes. These results suggest that VEGFR1 signaling can be functional in adult-derived endothelial cells.  相似文献   

10.
Osteoclasts are derived from haematopoietic stem cell precursors of the monocyte/macrophage cell lineage, through interaction with factors that are believed to include M-CSF and RANKL. VEGF is a proangiogenic cytokine that has been shown to promote osteoclast differentiation and survival. In this study, we assessed the role of VEGF and its receptors in osteoclastogenesis, in vitro, by culturing osteoclast precursors in the presence of VEGF, VEGF receptor-specific ligands, and blocking antibodies to VEGF receptors. Activation of VEGFR1 in the presence of RANKL induces osteoclast differentiation. Stimulating the receptors individually induced increased resorption by osteoclasts compared to controls but not to the level observed when stimulating both receptors simultaneously. We have shown that VEGF induces osteoclast differentiation through its action on VEGFR1. The way in which VEGF mediates its effect on mature osteoclast activity, however, may be through its interaction with both receptor subtypes.  相似文献   

11.
Characterization of the receptors for vascular endothelial growth factor   总被引:31,自引:0,他引:31  
Vascular endothelial growth factor (vEGF) is a recently discovered mitogen for endothelial cells. It is also a potent angiogenic factor. We have characterized the vEGF receptors of endothelial cells using both binding and cross-linking techniques. Scatchard analysis of equilibrium binding experiments revealed two types of high-affinity binding sites on the cell surfaces of bovine endothelial cells. One of the sites has a dissociation constant of 10(-12) M and is present at a density of 3 x 10(3) receptors/cell. The other has a dissociation constant of 10(-11) M, with 4 x 10(4) receptors/cell. A high molecular weight complex containing 125I-vEGF is formed when 125I-vEGF is cross-linked to bovine endothelial cells. This complex has an apparent molecular mass of 225 kDa. Two other faintly labeled complexes with apparent molecular masses of 170 and 195 kDa also are detected. Reduction in the presence of dithiothreitol causes a substantial increase in the labeling intensity of the 170- and 195-kDa complexes, suggesting that these complexes are derived from the 225-kDa complex by reduction of disulfide bonds. The labeling of the vEGF receptors was inhibited by an excess of unlabeled vEGF but not by high concentrations of several other growth factors. Suramin and protamine, as well as several species of lectins, inhibited the binding. The expression of functional vEGF receptors was inhibited when the cells were preincubated with tunicamycin, indicating that glycosylation of the receptor is important for the expression of functional vEGF receptors. Pretreatment with swainsonine on the other hand, did not prevent formation of functional receptors. However, the mass of the 225-kDa complex is decreased by 20 kDa when 125I-vEGF is cross-linked to swainsonine-treated endothelial cells.  相似文献   

12.
Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF121, VEGF165, VEGF189, and VEGF206), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF165 elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF165 resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.  相似文献   

13.
Pheochromocytomas are well-vascularized tumors, suggesting that a potent angiogenic factor may be involved in the mechanism of their formation. As vascular endothelial growth factor (VEGF) is a potent mitogen for vascular endothelial cells, here we have investigated the mRNA and protein expression of VEGF and the mRNA expression of its two receptors (Flt-1 and Flk-1/KDR) in pheochromocytomas tissue. An increase in VEGF mRNA (mainly isoforms VEGF(121) and VEGF(165)) and in VEGF protein expression were observed by semi-quantitative RT-PCR and Western blot, respectively, compared to normal adrenomedullary tissue. Flk-1/KDR, and Flt-1 levels of mRNA were also increased markedly in tumors and correlated with levels of VEGF mRNA. Therefore, we speculate that upregulation of VEGF expression and its receptors might be important in the pathogenesis of pheochromocytomas.  相似文献   

14.
Vascular Endothelial Growth Factor (VEGF) has been typically considered to be an endothelial-specific growth factor. However, it was recently demonstrated that VEGF can interact with non endothelial cells. In this study, we tested whether vascular smooth muscles cells (VSMCs) can express VEGF receptors, such as flk-1, flt-1, and neuropilin (NP)-1, and respond to VEGF in vitro. In cultured VSMCs, flk-1 and flt-1 expression was inversely related to cell density. The expression of flk-1 was down-regulated with increasing passage numbers. However, NP-1 levels were not affected by cell density or passage numbers. Flk-1, Flt-1, and NP-1 protein levels were confirmed by Western Blotting. Although the functional mature form of Flk-1 protein is expressed at low levels in VSMCs, phosphorylation of Flk-1 following VEGF(165) stimulation was still observed. SMCs migrated significantly in response to VEGF(165) and VEGF-E, whereas Placenta Growth Factor (PlGF) induced migration only at higher concentrations. Since VEGF-E is a specific activator of flk-1 while PlGF specifically activates only flt-1, SMC migration induced by VEGF(165) is likely to be mediated primarily through the flk-1 receptor. VSMCs did not significantly proliferate in response to VEGF(165), PlGF, and VEGF-E. In conclusion, our studies demonstrate the presence of VEGF receptors on VSMCs that are functional. These studies also indicate that in vivo, VEGF may play a role in modulating the response of VSMCs.  相似文献   

15.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

16.
The vascular endothelial growth factor (VEGF) transduction pathway may be very active in B-cell chronic lymphocytic leukemia (B-CLL) cells and contributes to their enhanced survival. Vascular endothelial growth factor receptor-1 (VEGFR-1) and receptor-2 (VEGFR-2), are the high-affinity VEGF receptors, which play an important role in de novo blood vessel formation and hematopoietic cell development. The aim of our study was to compare the concentration of VEGF, VEGFR-1 and VEGFR-2 in the serum of 83, never-treated B-CLL patients in different stage of disease according to Rai classification, and 20 healthy volunteers. Of all the cytokines only the serum concentration of VEGF was found to be significantly higher in the CLL group when compared to the control group (median 468.2 pg/mL and 246.9 pg/mL, respectively) (p = 0.01). In the group of CLL patients, the serum concentrations of VEGF and VEGFR-2 were significantly higher in patients in Rai stage III and IV (median 890.0 pg/mL and 4680.4 pg/mL respectively) than in patients in Rai stage 0-II (347.8 pg/mL and 2411.6 pg/mL respectively) (p<0.0001). In the entire group of CLL patients, we have found a strong, positive correlation between the serum level of VEGF and VEGFR-2 (p = 0.00001, R = 0.46). We have also found a positive correlation between the number of lymphocytes in the peripheral blood of CLL patients and the level of VEGF (p = 0.05, R = 0.24) and VEGFR2 (p = 0.02, R = 0.29). In conclusion: VEGF and VEGF R2, but not VEGF R1, may have an important influence on the course of B-CLL.  相似文献   

17.
Tissue factor expression on the surface of endothelial cells can be induced by tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF) in a synergistic manner. We have investigated the role of the two different TNF receptors for this synergy. Firstly, stimulation of the 60 kDa TNF receptor (TNFR60) by a mutant of TNF specific for TNFR60 induced responses comparable to wild-type TNF. In contrast, stimulation of TNFR80 by a TNFR80-specific TNF mutein did not result in enhancement of tissue factor expression even in the presence of a suboptimal TNFR60 triggering. Secondly, we tested neutralizing TNF receptor antibodies for inhibition of tissue factor synthesis induced by VEGF and TNF. A TNFR60-specific antibody inhibited tissue factor production over a broad range of TNF concentrations, indicating an essential role of TNFR60 in the TNF/VEGF synergy. In contrast, blocking of TNF binding to TNFR80 strongly inhibited TNF-induced tissue factor expression at low, but less pronounced at high, TNF concentrations. In conclusion, these data are in agreement with a model in which TNFR80 participates in the synergy between VEGF and low concentrations of soluble TNF by passing the ligand to the signalling TNFR60.  相似文献   

18.
Vascular endothelial growth factor (VEGF) induces the proliferation of endothelial cells and is a potent angiogenic factor that binds to heparin. We have therefore studied the effect of heparin upon the interaction of VEGF with its receptors. Heparin, at concentrations ranging from 0.1 to 10 micrograms/ml, strongly potentiated the binding of 125I-VEGF to its receptors on endothelial cells. Scatchard analysis of 125I-VEGF binding indicates that 1 microgram/ml heparin induces an 8-fold increase in the apparent density of high affinity binding sites for VEGF, but does not significantly affect the dissociation constant of VEGF. Cross-linking experiments showed that heparin strongly potentiates the formation of the 170-, 195- and 225-kDa 125I-VEGF-receptor complexes on endothelial cells. At high 125I-VEGF concentrations (4 ng/ml), heparin preferentially enhanced the formation of the 170- and 195-kDa complexes. Preincubation of the cells with heparin, followed by extensive washes, produced a similar enhancement of subsequent 125I-VEGF binding. The binding of 125I-VEGF was completely inhibited following digestion of endothelial cells with heparinase and could be restored by the addition of exogenous heparin to the digested cells. The enhancing effect of heparin facilitated the detection of VEGF receptors on cell types that were not known previously to express such receptors. Our results suggest that cell surface-associated heparin-like molecules are required for the interaction of VEGF with its cell surface receptors.  相似文献   

19.
20.
血管内皮生长因子家族及其受体与肿瘤血管生成研究进展   总被引:7,自引:0,他引:7  
陈珊  金伟  闵平  陆核 《生命科学》2004,16(1):19-23
血管内皮生长因子(vascular endothelial growth factor,VEGF),又名血管通透性因子(vascular permeability factor,VPF)是重要的血管生成正性调节因子,是目前抗癌治疗的研究靶点之一。现已发现的VEGF家族成员包括VEGF—A、VEGF—B、VEGF—C、VEGF—D、VEGF—E和胎盘生长因子(placenta growth factor,PLGF)。VEGF的受体有VEGFR—1(fit—1)、VEGFR-2(flk-1/KDR)、VEGFR-3(fit-4)、neuropilin(NPR1/NPR2)。该家族的成员可以选择性地增强血管和/或淋巴管内皮细胞的有丝分裂,刺激内皮细胞增殖并促进血管生成,提高血管特别是微小血管的通透性,使血浆大分子外渗沉积在血管外的基质中,促进新生毛细血管网的建立,为肿瘤细胞的生长提供营养等。作者对VEGF家族成员及其受体的理化特征、VEGF与肿瘤的关系、VEGF抑制剂的研制作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号