首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has recently been shown that certain oligodeoxynucleotides (ODNs) designed as catalytic DNA molecules (DNAzymes) exhibit potent cytotoxicity independent of RNA-cleavage activity in a number of cell lines. These cytotoxic ODNs all featured a 5′ G-rich sequence and induced cell death by a TLR9-independent mechanism. In this study, we examined the sequence and length dependence of ODNs for cytotoxicity. A G-rich sequence at the 5′ terminus of the molecule was necessary for cytotoxicity and the potency of ODNs with active 5′ sequences was length dependent. Cytotoxicity appeared to be generally independent of 3′ sequence composition, although 3′ sequences totally lacking G-nucleotides were mostly inactive. Nucleolin, elongation factor 1-alpha (eEF1A) and vimentin were identified as binding to a cytotoxic ODN (Dz13) using protein pull-down assays and LC-MS/MS. Although these proteins have previously been described to bind G-rich ODNs, the binding of eEF1A correlated with cytotoxicity, whereas binding of nucleolin and vimentin did not. Quiescent non-proliferating cells were resistant to cytotoxicity, indicating cytotoxicity may be cell cycle dependent. Although the exact mechanism of cytotoxicity remains unknown, marked potency of the longer (25nt) ODNs in particular, indicates the potential of these molecules for treatment of diseases associated with abnormal cell proliferation.  相似文献   

2.
Ample evidence suggests that almost all polypeptides can either adopt a native structure (folded or intrinsically disordered) or form misfolded amyloid fibrils. Soluble protein oligomers exist as an intermediate between these two states, and their cytotoxicity has been implicated in the pathology of multiple human diseases. However, the mechanism by which soluble protein oligomers develop into insoluble amyloid fibrils is not clear, and investigation of this important issue is hindered by the unavailability of stable protein oligomers. Here, we have obtained stabilized protein oligomers generated from common native proteins. These oligomers exert strong cytotoxicity and display a common conformational structure shared with known protein oligomers. They are soluble and remain stable in solution. Intriguingly, the stabilized protein oligomers interact preferentially with both nucleic acids and glycosaminoglycans (GAG), which facilitates their rapid conversion into insoluble amyloid. Concomitantly, binding with nucleic acids or GAG strongly diminished the cytotoxicity of the protein oligomers. EGCG, a small molecule that was previously shown to directly bind to protein oligomers, effectively inhibits the conversion to amyloid. These results indicate that stabilized oligomers of common proteins display characteristics similar to those of disease-associated protein oligomers and represent immediate precursors of less toxic amyloid fibrils. Amyloid conversion is potently expedited by certain physiological factors, such as nucleic acids and GAGs. These findings concur with reports of cofactor involvement with disease-associated amyloid and shed light on potential means to interfere with the pathogenic properties of misfolded proteins.  相似文献   

3.
The development of antisense, antigene, or aptameric oligonucleotides to modulate in vivo cellular functions depends on using stable biologic molecules. Previous investigations showed that GT oligonucleotides could exert a specific, dose-dependent cytotoxic effect on human cancer cell lines. This is tightly related to the ability of these oligomers to specifically bind nuclear proteins, giving a complex of apparent molecular weight of 45 kDa. We demonstrated that with respect to the cytotoxic GT-beta-oligomer, alpha-anomeric GT analog did not alter the growth of the T lymphoblastic CCRF-CEM cell line, although the cells took it up efficiently. In agreement with this, GT-alpha-oligomer did not form the cytotoxicity-related 45-kDa complex with nuclear proteins. These findings likely could be related to the ability of GT-alpha to structure under nondenaturing conditions because of the high number of T in the sequence.  相似文献   

4.
GT oligomers, showing a dose-dependent cytotoxic effect on a variety of human cancer cell lines, but not on normal human lymphocytes, recognize and form complexes with nuclear proteins. By working with human T-lymphoblastic CCRF-CEM cells and by using MS and SouthWestern blotting, we identified eukaryotic elongation factor 1 alpha (eEF1A) as the main nuclear protein that specifically recognizes these oligonucleotides. Western blotting and supershift assays confirmed the nature of this protein and its involvement in forming a cytotoxicity-related complex (CRC). On the contrary, normal human lymphocytes did not show nuclear proteins able to produce CRC in a SouthWestern blot. Comparative bidimensional PAGE and Western-blotting analysis for eEF1A revealed the presence of a specific cluster of spots, focusing at more basic pH, in nuclear extracts of cancer cells but absent in those of normal lymphocytes. Moreover, a bidimensional PAGE SouthWestern blot demonstrated that cytotoxic GT oligomers selectively recognized the more basic eEF1A isoform expressed only in cancer cells. These results suggest the involvement of eEF1A, associated with the nuclear-enriched fraction, in the growth and maintenance of tumour cells, possibly modulated by post-translational processing of the polypeptide chain.  相似文献   

5.
Aptameric GT oligomers are a new class of potential anticancer molecules that inhibit the growth of human cancer cell lines by binding to specific nuclear proteins. We demonstrated that an aptameric GT oligonucleotide increased the therapeutic index of doxorubicin and vinblastine in T lymphoblastic drug-sensitive and multidrug-resistant (MDR) cells. The doxorubicin ID50 decreased 6.5-fold by coadministration of 1 microM GT to CCRF-CEM cells and by 24-fold by coadministration of 0.75 microM GT to CEM-VLB300 cells. In CEM-VLB300 cells, the vinblastine ID50 decreased 11-fold by coadministration of 0.5 microM GT. Control CT sequence did not potentiate the drugs in either CCRF-CEM or CEM-VLB300 cells. The ability of GT to bind to specific nuclear proteins in cancer cells related to the increase in the therapeutic index of doxorubicin and vinblastine. No cooperation was detected by the administration of GT oligomer together with doxorubicin to rat differentiated thyroid FRTL-5 cells and to normal human lymphocytes. These cells did not show binding of GT to the specific nuclear proteins, and they were not sensitive to the cytotoxic action of the GT sequence. Drug potentiation by GT not involving normal human lymphocytes might be exploited to develop a more selective treatment of drug-sensitive and MDR tumors.  相似文献   

6.
The aptameric oligonucleotides GT were found to exert a selective, specific and dose-dependent cell growth inhibition effect on a variety of human cancer cells by recognising specific nuclear proteins and among these in particular an isoform of the eukaryotic elongation factor 1A1 (EEF1A1). The potential development of these aptameric oligomers needs that they retain serum and intracellular stabilities. Polycations are safe non-viral carriers of the nucleic acids. We demonstrated that a weakly basic polycation, the ethoxylated polyethylenimine (EPEI), can efficiently deliver cytotoxic GT oligomers when they were complexed as partial pre-paired duplex. In this way, nuclease-resistance of the oligomer was markedly improved and the administration of the duplex complexed with EPEI to lymphoblastic cancer cells caused a specific cytotoxic effect at concentrations lower than that of naked GT. However, the cytotoxic activity of the oligomer-EPEI complex resulted strictly related to the GC content and Tm of the duplex region. The single-stranded GT and the duplex with high GC content and Tm, although complexed with EPEI failed to exert cytotoxicity. Overall results indicated that aptameric oligomers complexed with polycations can be efficiently delivered into the cells and display the desired biological effect designing a balanced partial duplex whose stability can allow oligomer release from the polycation under the physiological cellular conditions.  相似文献   

7.
Numerous models of molecular evolution have been formulated to describe the forces that shape sequence divergence among homologous proteins. These models have greatly enhanced our understanding of evolutionary processes. Rarely are such models empirically tested in the laboratory, and even more rare, are such models exploited to generate novel molecules useful for synthetic biology. Here, we experimentally demonstrate that the heterotachy model of evolution captures signatures of functional divergence among homologous elongation factors (EFs) between bacterial EF-Tu and eukaryotic eEF1A. These EFs are GTPases that participate in protein translation by presenting aminoacylated-tRNAs to the ribosome. Upon release from the ribosome, the EFs are recharged by nucleotide exchange factors EF-Ts in bacteria or eEF1B in eukaryotes. The two nucleotide exchange factors perform analogous functions despite not being homologous proteins. The heterotachy model was used to identify a set of sites in eEF1A/EF-Tu associated with eEF1B binding in eukaryotes and another reciprocal set associated with EF-Ts binding in bacteria. Introduction of bacterial EF-Tu residues at these sites into eEF1A protein efficiently disrupted binding of cognate eEF1B as well as endowed eEF1A with the novel ability to bind bacterial EF-Ts. We further demonstrate that eEF1A variants, unlike yeast wild-type, can function in a reconstituted in vitro bacterial translation system.  相似文献   

8.
The translation elongation factor 1 complex (eEF1) plays a central role in protein synthesis, delivering aminoacyl-tRNAs to the elongating ribosome. The eEF1A subunit, a classic G-protein, also performs roles aside from protein synthesis. The overexpression of either eEF1A or eEF1B alpha, the catalytic subunit of the guanine nucleotide exchange factor, in Saccharomyces cerevisiae results in effects on cell growth. Here we demonstrate that overexpression of either factor does not affect the levels of the other subunit or the rate or accuracy of protein synthesis. Instead, the major effects in vivo appear to be at the level of cell morphology and budding. eEF1A overexpression results in dosage-dependent reduced budding and altered actin distribution and cellular morphology. In addition, the effects of excess eEF1A in actin mutant strains show synthetic growth defects, establishing a genetic connection between the two proteins. As the ability of eEF1A to bind and bundle actin is conserved in yeast, these results link the established ability of eEF1A to bind and bundle actin in vitro with nontranslational roles for the protein in vivo.  相似文献   

9.
Eukaryotic elongation factor 2 (eEF2) catalyzed the translocation of peptidyl-tRNA from the ribosomal A site to the P site. In this paper, the interaction between eEF2 and GTD RNA, a synthetic oligoribonucleotide that mimicked the GTPase domain of rat 28S ribosomal RNA, was studied in vitro. The purified eEF2 could bind to GTD RNA, forming a stable complex. Transfer RNA competed with GTD RNA in binding to eEF2, whereas poly(A), poly(U) and poly(I, C) did not interfere with the interaction between eEF2 and GTD RNA, demonstrating that the tertiary structure of RNA might be necessary for the recognition of and binding to eEF2. The complex formation of eEF2 with GTD RNA was inhibited by SRD RNA, a synthetic oligoribonucleotide mimic of Sarcin/Ricin domain RNA of rat 28S RNA. Similarly, GTD RNA inhibited the interaction between eEF2 and SRD RNA. This fact implies that these small oligoribonucleotides probably share similar recognition or binding identity elements in their tertiary structures. In addition, the binding of eEF2 to GTD RNA could be obviously weakened by the ADP-ribosylation of eEF2 with diphtheria toxin. These results indicate that eEF2 behaves differently from prokaryotic EF-G in binding to ribosomal RNA.  相似文献   

10.
Rice proteins that bind single-stranded G-rich telomere DNA   总被引:4,自引:0,他引:4  
In this work, we have identified and characterized proteins in rice nuclear extracts that specifically bind the single-stranded G-rich telomere sequence. Three types of specific DNA-protein complexes (I, II, and III) were identified by gel retardation assays using synthetic telomere substrates consisting of two or more single-stranded TTTAGGG repeats and rice nuclear extracts. Since each complex has a unique biochemical property and differs in electrophoretic mobility, at least three different proteins interact with the G-rich telomere sequences. These proteins are called rice G-rich telomere binding protein (RGBP) and none of them show binding affinity to double-stranded telomere repeats or single-stranded C-rich sequence. Changing one or two G's to C's in the TTTAGGG repeats abolishes binding activity. RGBPs have a greatly reduced affinity for human and Tetrahymena telomeric sequence and do not efficiently bind the cognate G-rich telomere RNA sequence UUUAGGG. Like other telomere binding proteins, RGBPs are resistant to high salt concentrations. RNase sensitivity of the DNA-protein interactions was tested to investigate whether an RNA component mediates the telomeric DNA-protein interaction. In this assay, we observed a novel complex (complex III) in gel retardation assays which did not alter the mobilities or the band intensities of the two pre-existing complexes (I and II). The complex III, in addition to binding to telomeric sequences, has a binding affinity to rice nuclear RNA, whereas two other complexes have a binding affinity to only single-stranded G-rich telomere DNA. Taken together, these studies suggest that RGBPs are new types of telomere-binding proteins that bind in vitro to single-stranded G-rich telomere DNA in the angiosperms.  相似文献   

11.
Hyperthermia increases levels of nuclear-associated proteins in a manner that correlates with cell killing. If the increase in nuclear-associated proteins represents a lethal lesion then treatments that protect against killing by heat should reduce and/or facilitate the recovery of levels of the proteins in heated cells. This hypothesis was tested using three heat protection treatments: cycloheximide, D2O, and thermotolerance. All three treatments reduced levels of the proteins measured immediately following hyperthermia at 43.0 or 45.5 degrees C, with the greatest reduction occurring at 43.0 degrees C. In addition to reducing the proteins, thermotolerance facilitated the recovery of the proteins to control levels following hyperthermia. Thus thermotolerance may protect cells by both reducing the initial heat damage and facilitating recovery from that damage. Cycloheximide and D2O did not facilitate recovery of nuclear-associated proteins, suggesting that their protection against cytotoxicity related to the proteins resulted solely from their reduction of increases in levels of the proteins. All three treatments have been shown to stabilize cellular proteins against thermal denaturation. The results of this study suggest that the increase in nuclear-associated proteins may result from thermally denatured proteins adhering to the nucleus and that it is the ability of cycloheximide, D2O, and thermotolerance to thermostabilize proteins that reduces the increase in levels of the proteins within heated cells.  相似文献   

12.
We have previously identified in human fibroblasts a multisubunit protein (designated PGB) that specifically bound single-stranded G-rich microsatellite DNA sequences. PGB was later found to be identical, or closely related to translin, an octameric protein that bound single-stranded DNA consisting of sequences flanking chromosomal translocations. Here, we report that recombinant translin binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n, with higher affinities (Kdis approximately = 2 nM and Kdis approximately = 12.5 nM, respectively, in 100 mM NaCl and 25 degrees C) than the affinity with which it binds a prototypical sequence flanking translocation sites (Kdis approximately = 23 nM). Translin also binds d(GT)n and d(TTAGGG)n overhangs linked to double-stranded DNA with equilibrium constants in the nanomolar range. Formation of DNA quadruplexes by the d(TTAGGG)n repeats inhibits their binding to translin. A further study of the binding parameters revealed that the minimal length of d(GT)n and d(TTAGGG)n oligonucleotides that a translin octamer can bind is 11 nucleotides, but that such oligonucleotides containing up to 30 nucleotides can bind only a single translin octamer. However, the oligonucleotides d(GT)27 and d(TTAGGG)9 bind two octamers with negative cooperativity. Translin does not detectably bind single-stranded d(GT)n sequences embedded within double-stranded DNA. Based on our data, we propose that translin might be involved in the control of recombination at d(GT)n.d(AC)n microsatellites and in telomere maintenance.  相似文献   

13.
Apart from its canonical function in translation elongation, eukaryotic translation elongation factor 1A (eEF1A) has been shown to interact with the actin cytoskeleton. Amino acid substitutions in eEF1A that reduce its ability to bind and bundle actin in vitro cause improper actin organization in vivo and reduce total translation. Initial in vivo analysis indicated the reduced translation was through initiation. The mutant strains exhibit increased levels of phosphorylated initiation factor 2α (eIF2α) dependent on the presence of the general control nonderepressible 2 (Gcn2p) protein kinase. Gcn2p causes down-regulation of total protein synthesis at initiation in response to increases in deacylated tRNA levels in the cell. Increased levels of eIF2α phosphorylation are not due to a general reduction in translation elongation as eEF2 and eEF3 mutants do not exhibit this effect. Deletion of GCN2 from the eEF1A actin bundling mutant strains revealed a second defect in translation. The eEF1A actin-bundling proteins exhibit changes in their elongation activity at the level of aminoacyl-tRNA binding in vitro. These findings implicate eEF1A in a feedback mechanism for regulating translation at initiation.  相似文献   

14.
Testis-specific protein, Y-encoded (TSPY) binds to eukaryotic translation elongation factor 1 alpha (eEF1A) at its SET/NAP domain that is essential for the elongation during protein synthesis implicated with normal spermatogenesis. The eEF1A exists in two forms, eEF1A1 (alpha 1) and eEF1A2 (alpha 2), encoded by separate loci. Despite critical interplay of the TSPY and eEF1A proteins, literature remained silent on the residues playing significant roles during such interactions. We deduced 3D structures of TSPY and eEF1A variants by comparative modeling (Modeller 9.13) and assessed protein–protein interactions employing HADDOCK docking. Pairwise alignment using EMBOSS Needle for eEF1A1 and eEF1A2 proteins revealed high degree (~92%) of homology. Efficient binding of TSPY with eEF1A2 as compared to eEF1A1 was observed, in spite of the occurrence of significant structural similarities between the two variants. We also detected strong interactions of domain III followed by domains II and I of both eEF1A variants with TSPY. In the process, seven interacting residues of TSPY’s NAP domain namely, Asp 175, Glu 176, Asp 179, Tyr 183, Asp 240, Glu 244, and Tyr 246 common to both eEF1A variants were detected. Additionally, six lysine residues observed in eEF1A2 suggest their possible role in TSPY–eEF1A2 complex formation essential for germ cell development and spermatogenesis. Thus, more efficient binding of TSPY with eEF1A2 as compared to that of eEF1A1 established autonomous functioning of these two variants. Studies on mutated protein following similar approach would uncover the causative obstruction, between the interacting partners leading to deeper understanding on the structure–function relationship.  相似文献   

15.
We present a biochemical analysis of the effects of three single-stranded DNA binding proteins on extension of oligonucleotide primers by the Tetrahymena telomerase. One of them, a human protein designated translin, which was shown to specifically bind the G-rich Tetrahymena and human telomeric repeats, slightly stimulated the primer extension reactions at molar ratios of translin/primer of <1:2. At higher molar ratios, it inhibited the reactions by up to 80%. The inhibition was caused by binding of translin to the primers, rather than by a direct interaction of this protein with telomerase. A second protein, the general human single-stranded DNA binding protein Replication Protein A (RPA), similarly affected the primer extension by telomerase, even though its mode of binding to DNA differs from that of translin. A third protein, the E. coli single-stranded DNA binding protein (SSB), whose binding to DNA is highly cooperative, caused more substantial stimulation and inhibition at the lower and the higher molar ratios of SSB/primer, respectively. Both telomere-specific and general single-stranded DNA binding proteins are found in living cells in telomeric complexes. Based on our data, we propose that these proteins may exert either stimulatory or inhibitory effects on intracellular telomerases, depending on their local concentrations.  相似文献   

16.
A conserved feature of telomeres is the 3'-overhang of their G-rich strand. These G-overhangs function as substrates for telomerase-mediated strand extension, and are critical for end-protection of telomeres. These functions and their regulations are mediated by specific G-overhang binding proteins. In species of the plant order Asparagales, telomere motifs have diverged from a type typical of the plant Arabidopsis thaliana (TTTAGGG)(n) to a type typical of human (TTAGGG)(n). Presumably, this change in motif had an impact on the structure of the telomere and/or the binding of telomeric proteins, including the G-overhang binding proteins. Therefore, we analyse here nucleoprotein complexes formed by protein extracts from plants possessing human-type telomeres (Muscari armeniacum and Scilla peruviana). Proteins were characterized that bind to the G-rich strand of both telomere motifs, or to the ancestral Arabidopsis-type motif alone, but none bound to double-stranded or C-rich complementary strand telomere motifs. We demonstrate the size, sequence-specificity and thermostability of these DNA-binding proteins. We also analysed the formation of complexes from renatured protein fractions after SDS-PAGE (sodium-dodecyl-sulphate polyacrylamide-gel-electrophoresis). We discuss the evolutionary consequences of protein binding flexibility, to act on both ancestral and present telomeric sequences. Of particular interest is that the ancestral repeat, which is thought not to form the telomere, binds the proteins most strongly. These data are discussed in line with other known plant telomere-binding proteins and with the complex nature of the telomere in Asparagales carrying a human-type motif.  相似文献   

17.
We have identified and characterized protein factors from mung bean (Vigna radiata) nuclear extracts that specifically bind the single-stranded G-rich telomeric DNA repeats. Nuclear extracts were prepared from three different types of plant tissue, radicle, hypocotyl, and root, in order to examine changes in the expression patterns of telomere-binding proteins during the development of mung bean. At least three types of specific complexes (A, B, and C) were detected by gel retardation assays with synthetic telomere and nuclear extract from radicle tissue, whereas the two major faster-migrating complexes (A and B) were formed with nuclear extracts from hypocotyl and root tissues. Gel retardation assays also revealed differences in relative amount of each complex forming activity in radicle, hypocotyl, and root nuclear extracts. These data suggest that the expression of telomere-binding proteins is developmentally regulated in plants, and that the factor involved in the formation of complex C may be required during the early stages of development. The binding factors have properties of proteins and are hence designated as mung bean G-rich telomere-binding proteins (MGBP). MGBPs bind DNA substrates with three or more single-stranded TTTAGGG repeats, while none of them show binding affinity to either double-stranded or single-stranded C-rich telomeric DNA. These proteins have a lower affinity to human telomeric sequences than to plant telomeric sequences and do not exhibit a significant binding activity to Tetrahymena telomeric sequence or mutated plant telomeric sequences, indicating that their binding activities are specific to plant telomere. Furthermore, RNase treatment of the nuclear extracts did not affect the complex formation activities. This result indicates that the single-stranded telomere-binding activities may be attributed to a simple protein but not a ribonucleoprotein. The ability of MGBPs to bind specifically the single-stranded TTTAGGG repeats may suggest their in vivo functions in the chromosome ends of plants.  相似文献   

18.
Eukaryotic elongation factor 1A (eEF1A) appears to be a multifunctional protein because several biochemical activities have been described for this protein, in addition to its role in protein synthesis. In maize (Zea mays) endosperm, the synthesis of eEF1A is increased in o2 (opaque2) mutants, and its concentration is highly correlated with the protein-bound lysine content. To understand the basis of this relationship, we purified eEF1A isoforms from developing endosperm and investigated their accumulation and their functional and structural properties. Formation of three isoforms appears to be developmentally regulated and independent of the o2 mutation, although one isoform predominated in one high lysine o2 inbred. The purified proteins differ in their ability to bind F-actin in vitro, suggesting that they are functionally distinct. However, they share similar aminoacyl-tRNA-binding activities. Tandem mass spectrometry revealed that each isoform is composed of the four same gene products, which are modified posttranslationally by methylation and phosphorylation. The chemical differences that account for their different actin-binding activities could not be determined.  相似文献   

19.
The activation of the muscarinic acetylcholine receptor (mAChR) family, consisting of five subtypes (M1-M5), produces a variety of physiological effects throughout the central nervous system. However, the role of each individual subtype remains poorly understood. To further elucidate signal transduction pathways for specific subtypes, we used the most divergent portion of the subtypes, the intracellular third (i3) loop, as bait to identify interacting proteins. Using a brain pull-down assay, we identify elongation factor 1A2 (eEF1A2) as a specific binding partner to the i3 loop of M4, and not to M1 or M2. In addition, we demonstrate a direct interaction between these proteins. In the rat striatum, the M4 mAChR colocalizes with eEF1A2 in the soma and neuropil. In PC12 cells, endogenous eEF1A2 co-immunoprecipitates with the endogenous M4 mAChR, but not with the endogenous M1 mAChR. In our in vitro model, M4 dramatically accelerates nucleotide exchange of eEF1A2, a GTP-binding protein. This indicates the M4 mAChR is a guanine exchange factor for eEF1A2. eEF1A2 is an essential GTP-binding protein for protein synthesis. Thus, our data suggest a novel role for M4 in the regulation of protein synthesis through its interaction with eEF1A2.  相似文献   

20.
The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His(6)-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His(6)-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号