首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dual functions of resolvase, site-specific recombination and the regulation of its own expression from tnpR, both require the interaction of this protein with the DNA sequence at res, but the specificity of this interaction differs between groups of Tn3-like elements. In this study, DNA fragments that contained res from Tn21 or Tn1721 were subjected to either cleavage by DNase I or methylation by dimethyl sulphate in the presence of the purified resolvase from Tn21 or Tn1721. These experiments showed that each resolvase bound to the same three sites (I, II and III) within res from Tn1721 and to an equivalent series of three sites on Tn21: the differences in the amino acid sequences of the two proteins did not affect their interaction with either DNA. The DNA sequences at each site had some similarities and, in conjunction with data from the related transposon Tn501, a consensus was established. However, the three sites are functionally distinct: site I (tnpR-distal) spans the recombination cross-over point and sites II and III (tnpR-proximal) overlap the promoter of tnpR. The binding sites on these transposons were compared with those in the gamma delta/Tn3 system: the similarities between the two groups of transposons revealed some general features of resolvase-DNA interactions while the differences in fine structure elucidated the specificity of each resolvase.  相似文献   

2.
Catalysis of DNA recombination by Tn3 resolvase is conditional on prior formation of a synapse, comprising 12 resolvase subunits and two recombination sites (res). Each res binds a resolvase dimer at site I, where strand exchange takes place, and additional dimers at two adjacent 'accessory' binding sites II and III. 'Hyperactive' resolvase mutants, that catalyse strand exchange at site I without accessory sites, were selected in E. coli. Some single mutants can resolve a res x site I plasmid (that is, with one res and one site I), but two or more activating mutations are necessary for efficient resolution of a site I x site I plasmid. Site I x site I resolution by hyperactive mutants can be further stimulated by mutations at the crystallographic 2-3' interface that abolish activity of wild-type resolvase. Activating mutations may allow regulatory mechanisms of the wild-type system to be bypassed, by stabilizing or destabilizing interfaces within and between subunits in the synapse. The positions and characteristics of the mutations support a mechanism for strand exchange by serine recombinases in which the DNA is on the outside of a recombinase tetramer, and the tertiary/quaternary structure of the tetramer is reconfigured.  相似文献   

3.
Tn3 resolvase promotes site-specific recombination between two res sites, each of which has three resolvase dimer-binding sites. Catalysis of DNA-strand cleavage and rejoining occurs at binding site I, but binding sites II and III are required for recombination. We used an in vivo screen to detect resolvase mutants that were active on res sites with binding sites II and III deleted (that is, only site I remaining). Mutations of amino acids Asp102 (D102) or Met103 (M103) were sufficient to permit catalysis of recombination between site I and a full res, but not between two copies of site I. A double mutant resolvase, with a D102Y mutation and an additional activating mutation at Glu124 (E124Q), recombined substrates containing only two copies of site I, in vivo and in vitro. In these novel site Ixsite I reactions, product topology is no longer restricted to the normal simple catenane, indicating synapsis by random collision. Furthermore, the mutants have lost the normal specificity for directly repeated sites and supercoiled substrates; that is, they promote recombination between pairs of res sites in linear molecules, or in inverted repeat in a supercoiled molecule, or in separate molecules.  相似文献   

4.
In order to investigate the functions of the parts of the Tn 3 recombination site res, we created hybrid recombination sites by placing the loxP site for Cre recombinase adjacent to the "accessory" resolvase-binding sites II and III of res. The efficiency and product topology of in vitro recombination by Cre between two of these hybrid sites were affected by the addition of Tn 3 resolvase. The effects of resolvase addition were dependent on the relative orientation and spacing of the elements of the hybrid sites. Substrates with sites II and III of res close to loxP gave specific catenated or knotted products (four-noded catenane, three-noded knot) when resolvase and Cre were added together. The product topological complexity increased when the length of the spacer DNA segment between loxP and res site II was increased. Similar resolvase-induced effects on Cre recombination product topology were observed in reactions of substrates with loxP sites adjacent to full res sites. The results demonstrate that the res accessory sites are sufficient to impose topological selectivity on recombination, and imply that intertwining of two sets of accessory sites defines the simple catenane product topology in normal resolvase-mediated recombination. They are also consistent with current models for the mechanism of catalysis by Cre.  相似文献   

5.
The resolvases from the transposons Tn3 and Tn21 are homologous proteins but they possess distinct specificities for the DNA sequence at their respective res sites. The DNA binding domain of resolvase contains an amino acid sequence that can be aligned with the helix-turn-helix motif of other DNA binding proteins. Mutations in the gene for Tn21 resolvase were made by replacing the section of DNA that codes for the helix-turn-helix with synthetic oligonucleotides. Each mutation substituted one amino acid in Tn21 resolvase with either the corresponding residue from Tn3 resolvase or a residue that lacks hydrogen bonding functions. The ability of these proteins to mediate recombination between res sites from either Tn21 or Tn3 was measured in vivo and in vitro. With one exception, where a glutamate residue had been replaced by leucine, the activity of these mutants was similar to that of wild-type Tn21 resolvase. A further mutation was made in which the complete recognition helix of Tn21 resolvase was replaced with that from Tn3 resolvase. This protein retained activity in recombining Tn21 res sites, though at a reduced level relative to wild-type; the reduction can be assigned entirely to weakened binding to this DNA. Neither this mutant nor any other derivative of Tn21 resolvase had any detectable activity for recombination between res sites from Tn3. The exchange of this section of amino acid sequence between the two resolvases is therefore insufficient to alter the DNA sequence specificity for recombination.  相似文献   

6.
The solution properties of Tn3 resolvase (Tn3R) were studied by sedimentation equilibrium, sedimentation velocity analytical ultracentrifugation, and small-angle neutron scattering. Tn3R was found to be in a monomer-dimer self-association equilibrium, with a dissociation constant of K(D)(1-2)=50 microM. Sedimentation velocity and small-angle neutron scattering data are consistent with a solution structure of dimeric Tn3R similar to that of gammadelta resolvase in a co-crystal structure, but with the DNA-binding domains in a more extended conformation. The solution conformations of sites I, II, and III were studied with small angle x-ray scattering and modeled using rigid-body and ab initio techniques. The structures of these sites do not show any distortion, at low resolution, from B-DNA. The equilibrium binding properties of Tn3R to the individual binding sites in res were investigated by employing fluorescence anisotropy measurements. It was found that site II and site III have the highest affinity for Tn3R, followed by site I. Finally, the affinity of Tn3R for nonspecific DNA was assayed by competition experiments.  相似文献   

7.
Previously, we isolated several inhibitors that block the site-specific recombination reaction mediated by the Tn3-encoded resolvase protein. One class of inhibitors blocks resolvase binding to the recombination (res) sitc, and a second class inhibits synapse formation between resolvase and two directly repeated res sites. In this report, we identify an inhibitor, A20832, that does not inhibit resolvase binding to res, as measured by filter binding, or synapse formation. Inhibition of resolvase-promoted site-specific recombination by A20832 occurs postsynaptically at strand cleavage. DNase I analysis in the presence of A20832 indicates that only site I of res is bound by resolvase.  相似文献   

8.
The Tn3-encoded resolvase protein promotes a site-specific recombination reaction between two directly repeated copies of the recombination site res. Several inhibitors that block this event in vitro have been isolated. In this study four of these inhibitors were tested on various steps in the recombination reaction. Two inhibitors. A9387 and A1062, inhibit resolvase binding to the res site. Further, DNase I footprinting revealed that at certain concentrations of A9387 and A1062, resolvase was preferentially bound to site I of res, the site containing the recombinational crossover point. The two other inhibitors, A20812 and A21960, do not affect resolvase binding and bending of the DNA but inhibit synapse formation between resolvase and two directly repeated res sites.  相似文献   

9.
We have characterized complexes between the gamma delta resolvase and its recombination site, res, using both a gel retardation assay and DNase I cleavage. The mobility of resolvase-res complexes in polyacrylamide gels is sensitive to the location of res within the DNA fragment and is at a minimum when res is at its center. This behavior is characteristic of a protein-dependent bend. By the same assay we have found that bends are induced upon the binding of resolvase to each of the three individual binding sites that constitute res. In the wild-type res, the centers of binding sites I and II are 53 bp apart and the central section of the intersite DNA is sensitive to DNase I cleavage. We find that insertions of 10 or 21 bp (one or two turns of the DNA helix) have no discernible effect on the ability of res to recombine or to form complexes with resolvase. However, insertions of short segment (e.g. 6 or 17 bp) equivalent to nonintegral numbers of helical turns, inhibit recombination and prevent the formation of the normally compact resolvase-res complex. Complexes of resolvase with res containing 10 or 21 bp insertions exhibit a pattern of enhanced and suppressed DNase I cleavages that suggest that the intersite segment is curved. This curvature requires both that site I and II are appropriately spaced, and that site III is also present and occupied.  相似文献   

10.
11.
M A Krasnow  N R Cozzarelli 《Cell》1983,32(4):1313-1324
We studied the dynamics of site-specific recombination by the resolvase encoded by the Escherichia coli transposon Tn3. The pure enzyme recombined supercoiled plasmids containing two directly repeated recombination sites, called res sites. Resolvase is the first strictly site-specific topoisomerase. It relaxed only plasmids containing directly repeated res sites; substrates with zero, one or two inverted sites were inert. Even when the proximity of res sites was ensured by catenation of plasmids with a single site, neither relaxation nor recombination occurred. The two circular products of recombination were catenanes interlinked only once. These properties of resolvase require that the path of the DNA between res sites be clearly defined and that strand exchange occur with a unique geometry. A model in which one subunit of a dimeric resolvase is bound at one res site, while the other searches along adjacent DNA until it encounters the second site, would account for the ability of resolvase to distinguish intramolecular from intermolecular sites, to sense the relative orientation of sites and to produce singly interlinked catenanes. Because resolvase is a type 1 topoisomerase, we infer that it makes the required duplex bDNA breaks of recombination one strand at a time.  相似文献   

12.
The Tn3 resolvase requires that the two recombination (res) sites be aligned as direct repeats on the same molecule for efficient recombination to occur. To test whether resolvase must contact the DNA between res sites as predicted by tracking models, we have determined the sensitivity of recombination to protein diffusion blockades. Recombination between two res sites is unaffected either by lac repressor or bacteriophage T7 RNA polymerase being bound between them. Yet recombination is inhibited by lac repressor if the res site is bounded by a lac operator on both sides. We demonstrate that lac repressor will bind to more than one DNA site under the conditions used to assay recombination. This result suggests that lac repressor can inhibit resolvase by forming a DNA loop that isolates a res site topologically. These results do not support a tracking model for resolvase but suggest that the structure and topology of the DNA substrate is important in the formation of a synapse between res sites.  相似文献   

13.
14.
In vitro recombination by Tn3 resolvase of plasmids containing two directly repeated recombination (res) sites generates two singly interlinked catenated rings. This simple product catenane structure was maintained over a wide range of substrate supercoil densities and in a reaction mixture in which phage lambda Int-mediated recombination generated its characteristic multiply interlinked forms. Using substrates containing four res sites, we found that resolvase recombined neighboring res sites with high preference. This position effect implies that resolvase searches systematically along the DNA for a partner site. Intervening res sites in the opposite orientation did not prevent translocation. We analyzed the geometric arrangement of the interlocked rings after multiple recombination events in a four-site substrate and the pattern of segregation of nonspecific reporter rings catenated to the standard substrate. The results of these novel topological tests imply that the translocating enzyme may not make continuous contact with the DNA.  相似文献   

15.
The resolvase from the transposon Tn21 catalyses site-specific recombination between the two res sites on its DNA substrate both in the absence and presence of Mg2+ ions. This contrasts with reports on the resolvase from gamma-delta (Tn1000) and on other recombinational proteins that are homologous to Tn21 resolvase but which need Mg2+ for their activity. Magnesium ions could enhance the activity of Tn21 resolvase, as did a number of other cations but some metal ions such as Ni2+ inhibit recombination. The metal ions are not directly involved in the catalytic process but probably affect recombination by altering the conformation of the DNA. Tn21 resolvase relaxes its DNA substrate in the presence and in the absence of Mg2+, and also in ionic conditions that inhibit recombination. Hence, the topoisomerization reflects an activity of resolvase that is distinct from recombination. However, the two activities are functions of the same DNA-protein complex. The complex contains about 6 molecules of the resolvase dimer per molecule of DNA.  相似文献   

16.
We have isolated in quantitative yield the synaptic intermediate formed during site-specific recombination by Tn3 resolvase and characterized it by restriction endonuclease mapping, electron microscopy and topological methods. The intermediate accumulates at low reaction temperatures and is stabilized by crosslinking of the resolvase protomers with glutaraldehyde. The DNA-resolvase complex that maintains the structure of the intermediate (the synaptosome) is approximately 100 A in diameter, forms specifically at resolution (res) sites, and requires two res sites in a supercoiled DNA molecule. Resolvase bound to individual res sites protects approximately -0.5 supercoil per site from relaxation by a topoisomerase, whereas the formation of the synaptosome protects -3 supercoils and condenses the associated DNA to a supercoil density 2.5 times that of the non-complexed substrate. Although recombination requires two directly repeated res sites, both direct and inverted sites form synaptosomes. We conclude that the specificity of recombination is achieved by a three-stage recognition system: binding of resolvase to separate sites, formation of the synaptosome and determination of site orientation from within the complex.  相似文献   

17.
The serine recombinase gamma delta resolvase performs site-specific recombination in an elaborate synaptic complex containing 12 resolvase subunits and two 114-base pair res sites. Here we present an alternative structural model for the synaptic complex. Resolvase subunits in the complex contact their neighbors in equivalent ways, using three principal interactions, one of which is a newly proposed synaptic interaction. Evidence in support of this interaction is provided by mutations at the interface that either enable resolvase to synapse two copies of site I or inhibit synapsis of complete res sites. In our model, the two crossover sites are far apart, separated by the resolvase catalytic domains bound to them. Thus, recombination would require a substantial rearrangement of resolvase subunits or domains.  相似文献   

18.
19.
Geometric arrangements of Tn3 resolvase sites   总被引:8,自引:0,他引:8  
Site-specific recombination by Tn3 resolvase normally occurs in vitro and in vivo only between directly repeated res sites on the same supercoiled DNA molecule. However, with multiply interlinked catenane substrates consisting of two DNA rings each containing a single res site, resolvase efficiently carried out intermolecular recombination. The topology of the knots produced by several rounds of this reaction proves that the DNA within the synaptic intermediate is coiled in an interwound (plectonemic) fashion rather than wrapped solenoidally around resolvase as in previously characterized supercoiled DNA-protein complexes. The synaptic intermediate can contain equivalently supercoil, catenane, or knot crossings as long as the res sites have a right-handed coiling and a particular relative orientation. The structure of the product knots and catenanes also shows the path the DNA takes during strand exchange. Intermolecular recombination within multiply linked catenanes required negative supercoiling, as does the standard intramolecular reaction.  相似文献   

20.
DNA sequences that encode the tnpR genes and internal resolution (res) sites of transposons Tn21 and Tn501, and the res site and the start of the tnpR gene of Tn1721 have been determined. There is considerable homology between all three sequences. The homology between Tn21 and Tn501 extends further than that between Tn1721 and Tn501 (or Tn21), but in the homologous regions, Tn1721 is 93% homologous with Tn501, while Tn21 is only 72-73% homologous. The tnpR genes of Tn21 and Tn501 encode proteins of 186 amino acids which show homology with the tnpR gene product of Tn3 and with other enzymes that carry out site-specific recombination. However, in all three transposons, and in contrast to Tn3, the tnpR gene is transcribed towards tnpA gene, and the res site is upstream of both. The res site of Tn3 shows no obvious homology with the res regions of these three transposons. Just upstream of the tnpR gene and within the region that displays common homology between the three elements, there is a 50 bp deletion in Tn21, compared to the other two elements. A TnpR- derivative of Tn21 was complemented by Tn21, Tn501 and Tn1721, but not by Tn3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号