首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

2.
The effects of temperature on ion fluxes and catecholamine secretion that are mediated by nicotinic acetylcholine receptors (nAChRs), voltage-sensitive calcium channels (VSCCs), and voltage-sensitive sodium channels (VSSCs) were investigated using bovine adrenal chromaffin cells. When the chromaffin cells were stimulated with DMPP, a nicotinic cholinergic agonist, or 50 mM K+, the intracellular calcium ([Ca2+]i) elevation reached a peak and decreased more slowly at lower temperatures. The DMPP-induced responses were more sensitive to temperature changes compared to high K+-induced ones. In the measurement of intracellular sodium concentrations ([Na+]i), it was found that nicotinic stimulation required a longer time to attain the maximal level of [Na+]i at lower temperatures. In addition, the VSSCs-mediated [Na+]i increase evoked by veratridine was also reduced as the temperature decreased. The measurement of [3H]norepinephrine (NE) secretion showed that the secretion within the first 3 min evoked by DMPP or high K+ was greatest at 37 degrees C. However, at 25 degrees C, the secretion evoked by DMPP, but not that by the 50 mM K+, was greater after 10 min of stimulation. This data suggest that temperature differentially affects the activity of nAChRs, VSCCs, and VSSCs, resulting in differential [Na+]i and [Ca2+]i elevation, and in the [3H]NE secretion by adrenal chromaffin cells.  相似文献   

3.
Cultures of bovine adrenomedullary chromaffin cells accumulated 1-[methyl-3H]methyl-4-phenylpyridinium ([3H]MPP+) in a time- and concentration-dependent manner with an apparent Km of 0.7 microM and a Vmax of 3 pmol/min/10(6) cells. The uptake was sodium dependent and sensitive to inhibitors of the cell-surface catecholamine transporter. At low concentrations of MPP+, the subcellular distribution was identical to that of endogenous catecholamines in the catecholamine-containing chromaffin vesicles. However, at a higher concentration of MPP+, a larger proportion of the toxicant was recovered in the cytosolic fraction, with less in the chromaffin vesicle fractions. When cells were prelabeled with [3H]MPP+, at 1 and 300 microM, and then permeabilized with digitonin in the absence of Ca2+, there was a proportionally greater release of MPP+ from the cells labeled at the higher concentration of the toxicant. In the presence of Ca2+, cell permeabilization induced a time-dependent secretion of catecholamines and a parallel secretion of MPP+. Under these conditions, the secretion of endogenous catecholamines was unaffected by the presence of MPP+. When the permeabilization studies were carried out in the presence of tetrabenazine, a massive release of MPP+ was observed in the absence of Ca2+ and was not further increased by Ca2+. In intact cells prelabeled with 300 microM [3H]MPP+, the secretagogues nicotine and veratridine elicited a Ca2+ -dependent secretion of catecholamines and MPP+ from the cells in similar proportions to their cellular contents. Barium-induced release of both species was independent of external Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Increased arachidonic acid release occurred during activation of catecholamine secretion from cultured bovine adrenal medullary chromaffin cells. The nicotinic agonist 1,1-dimethyl-4- phenylpiperazinium (DMPP) caused an increased release of preincubated [3H]arachidonic acid over a time course which corresponded to the stimulation of catecholamine secretion. Like catecholamine secretion, the DMPP-induced [3H]arachidonic acid release was calcium-dependent and was blocked by the nicotinic antagonist mecamylamine. Depolarization by elevated K+, which induced catecholamine secretion, also stimulated arachidonic acid release. Because arachidonic acid release from cells probably results from phospholipase A2 activity, our findings indicate that phospholipase A2 may be activated in chromaffin cells during secretion.  相似文献   

5.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

6.
In addition to the somatodendritic region, myenteric motoneuron terminals are endowed with nicotinic autoreceptors. We aimed at investigating the effect of nicotinic receptor (nAChR) activation on [3H]-acetylcholine ([3H]-ACh) release from longitudinal muscle-myenteric plexus of the rat ileum and to evaluate whether this could be modulated by adenosine, an endogenous neuromodulator typically operating changes in intracellular cyclic AMP. The nAChR agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP, 1-30 microM, 3 min) increased [3H]-ACh release in a concentration-dependent manner. DMPP (30 microM)-induced [3H]-ACh outflow was attenuated by hexamethonium (0.1-1 mM), tubocurarine (1-5 microM), or by removing external Ca2+ (plus EGTA, 1 mM). In contrast to veratridine (0.2-10 microM)-induced [3H]-ACh release, the DMPP (30 microM)-induced outflow was resistant to tetrodotoxin (1 microM) and cadmium (0.5 mM). Pretreatment with adenosine deaminase (0.5 U/mL) or with the adenosine A(2A)-receptor antagonist, ZM 241385 (50 nM), enhanced nAChR-induced transmitter release. Activation of A(2A) receptors with CGS 21680C (3 nM) reduced the DMPP-induced release of [3H]-ACh. CGS 21680C (3 nM) inhibition was prevented by MDL 12,330A (10 microM, an adenylate cyclase inhibitor) and by H-89 (10 microM, an inhibitor of protein kinase A), but was potentiated by rolipram (300 microM, a phosphodiesterase inhibitor). DMPP-induced transmitter release was decreased by 8-bromo-cyclic AMP (1 mM, a protein kinase A activator), rolipram (300 microM), and forskolin (3 microM, an activator of adenylate cyclase). Both MDL 12,330A (10 microM) and H-89 (10 microM) facilitated DMPP-induced release of [3H]-ACh. The results indicate that nAChR-induced [3H]-ACh release is triggered by the influx of Ca2+, independent of voltage-sensitive calcium channels, presumably directly through nAChRs located on myenteric axon terminals. It was also shown that endogenous adenosine, activating A(2A) receptors coupled to the adenylate cyclase/cyclic AMP transducing system, is tonically downregulating this nAChR-mediated control of [3H]-ACh release.  相似文献   

7.
The effects of nicotine and 1,1-dimethyl-4-phenylpiperazinium (DMPP) on the release of newly synthesized [3H]acetylcholine in mouse cerebral cortical synaptosomes were examined. Nicotine and DMPP produced increases in [3H]acetylcholine release, over the level of spontaneous release, of 24% and 30%, respectively, of a maximum depolarization-induced release produced by 50 mM potassium. The maximum effect was achieved at a concentration of 1 X 10(-4) M for both agents. The time course of release indicated a slow onset of action, reaching a maximum effect at 15 min of incubation. Both nicotine and DMPP also produced a slightly greater release of total tritium, measured in the absence of cholinesterase inhibition, than of [3H]acetylcholine. The release induced by nicotine was completely antagonized by hexamethonium and was largely (58%) calcium-dependent. Nicotine also produced an increase in [3H]choline accumulation into synaptosomes. These results indicate that the nicotinic agonists nicotine and DMPP can produce a moderate enhancement of acetylcholine release by a receptor-mediated action on cholinergic nerve terminals in the central nervous system.  相似文献   

8.
In isolated bovine adrenal chromaffin cells, beta-endorphin, dynorphin, and levorphanol caused a dose-dependent inhibition of catecholamine (CA) secretion elicited by acetylcholine (ACh), with an ID50 of 50, 1.3, and 4.3 microM, respectively. The inhibition by the opiate compounds was specific for the release evoked by ACh and nicotinic drugs and was noncompetitive with ACh. Stereospecific binding sites for the opiate agonist [3H]etorphine were found in homogenates of bovine adrenal medulla (KD = 0.59 nM). beta-Endorphin, dynorphin, levorphanol, and naloxone were potent inhibitors of the binding of [3H]etorphine with an ID50 of 12, 0.4, 5.2, and 6.2 nM, respectively. However, [3,5-I2Tyr1]-beta-endorphin, [3,5-I2Tyr1]-dynorphin, and dextrorphan, three opiate compounds with no or little activity in the guinea pig ileum assay, were relatively ineffective in inhibiting the binding of [3H]etorphine (ID50 700, 600, and 10,000 nM, respectively). On the other hand, these three compounds were equipotent with beta-endorphin, dynorphin, and levorphanol, respectively, in inhibiting the ACh-evoked release of CA from the adrenal chromaffin cells (ID50 of 10, 1.5, and 6 microM, respectively). Inhibition of CA release was also obtained with naloxone (ID50 = 14) microM) and naltrexone (ID50 greater than 10(-4) M), two classical antagonists of opiate receptors, and this effect was additive to that of beta-endorphin. These data indicate that the opiate modulation of CA release from adrenal chromaffin cells is not related to the stimulation of the high affinity stereospecific opiate binding sites of the adrenal medulla. The physiological function of these sites remains to be determined.  相似文献   

9.
Using a sensitive perfusion system we have studied the nicotine-induced release of [3H]dopamine ([( 3H]DA) from striatal synaptosomes. Nicotine-evoked release was concentration dependent with an EC50 of 3.8 microM. The response to 1 microM nicotine was comparable to that to 16 mM K+; 10 microM veratridine evoked a larger response. All three stimuli were Ca2+ dependent but only the response to veratridine was blocked by tetrodotoxin. Repetitive stimulations by 1 microM (-)-nicotine (100 microliters) at 30-min intervals resulted in similar levels of [3H]DA release; higher concentrations of (-)-nicotine resulted in an attenuation of the response particularly following the third stimulation. This may reflect desensitisation or tachyphylaxis of the presynaptic nicotinic receptor. The action of nicotine was markedly stereoselective: a 100-fold higher concentration of (+)-nicotine was necessary to evoke the same level of response as 1 microM (-)-nicotine. It is proposed that these presynaptic nicotinic receptors on striatal terminals are equivalent to high-affinity nicotine binding sites described in mammalian brain.  相似文献   

10.
When [3H]inositol-prelabeled cultured bovine adrenal chromaffin cells were stimulated with high K+ (56 mM) and nicotine (10 microM), a large and transient increase in [3H]inositol 1,3,4,5,6-pentakisphosphate (InsP5) accumulation was observed. The accumulation reached the maximum level at 15 s and then declined to the basal level at 2 min. The time course of accumulation of InsP5 was parallel to that of [3H]inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Angiotensin II (Ang II) (10 microM) rapidly accumulated InsP5, but the level was sustained for 2 min. With a slower time course and a lesser amount than InsP5, high K+, nicotine, and Ang II caused an accumulation of [3H]inositol 1,3,4,5-tetrakisphosphate and [3H]inositol hexakisphosphate. Veratridine (100 microM), maitotoxin (10 ng/ml), ATP (30 microM), platelet-derived growth factor (10 ng/ml), and endothelin (10 ng/ml) also induced the InsP5 accumulation. High K+, nicotine, veratridine, and maitotoxin induced an increase in 45Ca2+ uptake, whereas Ang II, ATP, platelet-derived growth factor, and endothelin did not cause 45Ca2+ uptake. Nifedipine, a calcium channel antagonist, inhibited the high K(+)-induced InsP5 accumulation but failed to affect the Ang II-induced InsP5 accumulation. In an EGTA-containing and Ca2(+)-depleted medium, the high K(+)-induced InsP5 accumulation was completely inhibited, whereas the InsP5 accumulation induced by Ang II was not significantly inhibited. 12-O-tetradecanoylphorbol-13-acetate inhibited partially the Ang II-induced InsP5 accumulation but failed to inhibit the high K(+)-induced accumulation. In those experiments, the changes of InsP5 accumulation were closely correlated to those of Ins(1,4,5)P3. In the chromaffin cell homogenate, [3H] Ins(1,4,5)P3 was converted eventually to [3H]InsP5 through [3H]inositol 1,3,4,6-tetrakisphosphate. Taken together, the above results suggest that InsP5 is rapidly formed by a variety of stimulants and that the formation of InsP5 may occur through two mechanisms, i.e. Ca2+ uptake-dependent and Ca2+ uptake-independent ones in cultured adrenal chromaffin cells.  相似文献   

11.
C Cherdchu  T D Hexum 《Life sciences》1988,43(13):1069-1077
Acute stimulation of bovine adrenal chromaffin cells in culture with 1,1-dimethyl-4-phenylpiperazinium (DMPP) gives rise to a significant increase in secretion of [Met5]-enkephalin immunoreactive material (ME-IRM) into the culture medium (1). Following this secretion the cellular ME-IRM levels do not decrease, suggesting the replenishment of the peptides. The repletion of the cellular ME-IRM appears to result from an increase in processing of large molecular weight peptides containing [Met5]-enkephalin and [Leu5]-enkephalin. Gel filtration chromatography on Bio-Gel P-10 was used to fractionate the enkephalin-like peptides (ELPs) present in the culture media and chromaffin cell extracts. Fractionation was done for samples before and after nicotinic receptor stimulation by DMPP to demonstrate the secretion and repletion of the ELPs. Gel chromatographic profiles of ELPs present in the culture media after DMPP stimulation revealed the presence of 4 peaks, representing different molecular forms of these peptides (Peaks 1-4), with a selective increase in secretion of Peaks 3 and 4. The chromatograms of ELPs extracted from cultured chromaffin cells showed similar patterns to those obtained from ELPs present in the culture medium after stimulation. Analyses of individual peaks after fractionation of cell culture extracts showed an increase in the amount of immunoreactive material found in Peak 4 with a concomitant decrease in the immunoreactivity found in the higher molecular weight peaks (Peaks 1-3). Further purification of Peak 4 from cell extracts on reversed-phase HPLC (RP-HPLC) showed a significant amount of ELPs existed as the sulfoxide derivative of [Met5]-enkephalin. The content of [Met5]-enkephalin sulfoxide (ME-O-enk) did not decrease following DMPP stimulation. We conclude that acute stimulation of nicotinic receptors in the chromaffin cells enhances the processing of proenkephalin precursors to keep pace with the secretion of low molecular weight peptides.  相似文献   

12.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

13.
Abstract: We investigated the effect of the adenosine receptor agonist 5'-( N -ethylcarboxamido)adenosine (NECA) in catecholamine secretion from adrenal chromaffin cells that exhibit only the A2b subtype adenosine receptor. NECA reduced catecholamine release evoked by the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) in a time-dependent manner. Inhibition reached 25% after 30–40-min exposure to NECA. This effect on DMPP-evoked catecholamine secretion was mirrored by a similar (27.7 ± 3.3%), slowly developing inhibition of [Ca2+]i transients induced by DMPP that peaked at 30-min preincubation with NECA. The capacity of the chromaffin cells to buffer Ca2+ load was not affected by the treatment with NECA. Short-term treatment with NECA failed both to modify [Ca2+]i levels and to increase endogenous diacylglycerol production, showing that NECA does not activate the intracellular Ca2+/protein kinase C signaling pathway. The inhibitory effects of NECA were accompanied by a 30% increase of protein phosphatase activity in chromaffin cell cytosol. We suggest that dephosphorylation of a protein involved in DMPP-evoked Ca2+ influx pathway (e.g., L-type Ca2+ channels) could be the mechanism of the inhibitory action of adenosine receptor stimulation on catecholamine secretion from adrenal chromaffin cells.  相似文献   

14.
Abstract— Suspensions of isolated adrenal cells were prepared by digesting hamster adrenal glands with collagenase, and the secretion of catecholamine from these cells was studied. Acetylcholine (ACh) produces a dose-dependent increase in catecholamine secretion; half-maximal secretion is produced by 3 μm -ACh, and maximal secretion by 100 μm -ACh. The cholinergic receptor in these cells appears to be nicotinic, since catecholamine secretion is stimulated by the nicotinic agonists nicotine and dimeth-ylphenylpiperaziniurn, but not by the muscarinic agonists pilocarpine or oxotremorine. ACh-induced catecholamine secretion is inhibited by hexamethonium, tubocurarine, and atropine, but is not inhibited by α-bungarotoxin. ACh-induced catecholamine secretion is dependent upon the presence of extracellular Ca2+, and appears to occur by exocytosis, since the release of catecholamine is accompanied by the release of dopamine β-monooxygenase, but not of lactate dehydrogenase. These biochemical studies complement the morphological evidence for exocytosis in hamster adrenal glands, and indicate that catecholamine secretion from hamster chromaffin cells is similar to that from chromaffin cells of other species.  相似文献   

15.
Nicotine evokes the release of catecholamines from bovine adrenal glands perfused with oxygenated Krebs-bicarbonate solution. Two 2-min pulses of 5 microM nicotine, at 40-min intervals (S1 and S2), gave net catecholamine outputs of 45.2 +/- 3.6 and 29.1 +/- 3.5 micrograms/8 min, respectively. Apomorphine (1 or 10 microM) markedly inhibited catecholamine release during S2 to 9.1 +/- 2.2 and 0.5 micrograms/8 min, respectively. Haloperidol (0.5 microM) reversed the inhibitory effects of apomorphine. Haloperidol alone enhanced catecholamine release induced by nicotine to 67.9 +/- 7.9 micrograms/8 min. [3H]Spiperone binds to adrenomedullary membranes with a KD of 0.24 nM and a Bmax of 117 fmol/mg of protein. Whereas spiperone and haloperidol potently displaced such binding, 3,4-dihydroxyphenylethylamine (dopamine) and sulpiride were poorer displacers, and SCH23390, prazosin, phenoxybenzamine, propranolol, BAY-K-8644, and nitrendipine did not displace [3H]spiperone bound. These data strongly suggest that, as in the cat, the bovine adrenal medulla chromaffin cell contains a dopaminergic receptor that modulates the catecholamine secretory process triggered by stimulation of the nicotinic cholinoceptor. Such a receptor seems to be of the D2 type and might be involved in a sympatho-adrenal cooperative mechanism contributing to the maintenance of cardiovascular homeostasis during stressful situations as well as to the pathogenesis of hypertension. If so, selective dopaminergic agonists might prove clinically useful in the treatment of hypertension.  相似文献   

16.
Bovine adrenal chromaffin cells possess both nicotinic and muscarinic cholinergic receptors, but only nicotinic receptors have heretofore appeared to mediate Ca2+-dependent exocytosis. We have now found that muscarinic receptor stimulation in bovine adrenal chromaffin cells leads to enhanced inositol phospholipid metabolism as evidenced by the rapid (less than 1 min) formation of inositol trisphosphate (IP3) and inositol bisphosphate (IP2). Muscarinic receptor-mediated accumulation of IP3 and IP2 continues beyond 1 min in the presence of LiCl and is accompanied by large increases in inositol monophosphate. Muscarinic receptor stimulation was also found to enhance nicotine-induced catecholamine secretion by 1.7-fold if muscarine was added 30 s before nicotine addition. Moreover, since the muscarinic antagonist atropine reduces acetylcholine-induced secretion, we conclude that muscarinic receptor stimulation somehow primes these cells for nicotinic receptor-mediated secretion, perhaps by causing small nonstimulatory increases in cytosolic free Ca2+ mediated by IP3. Furthermore, we show that small depolarizations of these cells with 10 mM K+, which themselves do not affect basal secretion, also enhance nicotine-induced secretion. Thus, small increases in cytosolic free Ca2+ produced either by physiologic muscarinic receptor stimulation or by small experimental depolarizations with K+ may prime the chromaffin cells for nicotinic receptor-mediated secretion.  相似文献   

17.
Presynaptic nicotinic acetylcholine receptors on striatal nerve terminals modulate the release of dopamine. We have compared the effects of a number of nicotinic agonists and antagonists on a perfused synaptosome preparation preloaded with [3H]dopamine. (-)-Nicotine, acetylcholine, and the nicotinic agonists cytisine and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), at micromolar concentrations, stimulated the release of [3H]dopamine from striatal nerve terminals. Carbamylcholine was a much weaker agonist. The actions of (-)-nicotine, cytisine, and DMPP were inhibited by low concentrations of the nicotinic antagonists dihydro-beta-erythroidine, mecamylamine, pempidine, and neosurugatoxin; alpha-bungarotoxin was without effect, and extending the time of exposure to this toxin resulted in only very modest inhibition. This pharmacology points to a specific nicotinic receptor mechanism that is clearly distinct from that at the neuromuscular junction. Atropine failed to antagonise the effects of acetylcholine and carbamylcholine, suggesting that no muscarinic component is involved. The nicotinic receptor ligands (-)-[3H]nicotine and 125I-alpha-bungarotoxin bound to specific sites enriched in the synaptosome preparation. Drugs tested on the perfused synaptosomes were examined for their ability to interact with these two ligand binding sites in brain membranes. The differential sensitivity to the neurotoxins alpha-bungarotoxin and neosurugatoxin of the 125I-alpha-bungarotoxin and (-)-[3H]nicotine binding sites, respectively, leads to a tentative correlation of the (-)-[3H]nicotine site with the presynaptic nicotinic receptor on striatal nerve terminals.  相似文献   

18.
We have compared the enkephalin-like material derived from proenkephalin released from perfused cat adrenal glands stimulated with pilocarpine (5 X 10(-4)M) and nicotine (5 X 10(-6) M). In addition, two doses of acetylcholine (10(-5) and 10(-4) M) and 50 mM K+ were tested. Free Met-enkephalin immunoreactivity and total Met-enkephalin immunoreactivity, as determined by enzymatic digestion of large enkephalin-containing fragments, were coreleased with catecholamines. Free Met-enkephalin immunoreactivity represented 13% of total immunoreactivity for nicotinic stimulation, 46% for pilocarpine, 33% for 10(-5) M acetylcholine, 22% for 10(-4) M acetylcholine, and 16% for 50 mM K+. Analysis of the perfusate by gel filtration showed that 80% of the total Met-enkephalin immunoreactivity whose release was induced by pilocarpine was eluted in fractions corresponding to fragments of low molecular weight, whereas these fractions accounted only for 10% of the total Met-enkephalin immunoreactivity whose release was induced by nicotine. HPLC analysis of low-molecular-weight peptide fractions revealed that Met-enkephalin, Met-enkephalin-Arg-Gly-Leu, and Met-enkephalin-Arg-Phe represented 69% of total Met-enkephalin immunoreactivity whose release was induced by pilocarpine. These results indicate that selective activation of muscarinic receptors is followed by release of low-molecular-weight material, whereas nicotine application also yielded high-molecular-weight peptides. Furthermore, increasing the acetylcholine concentration from 10(-5) to 10(-4) M and using 50 mM K+ increased proportionally the high-molecular-weight peptide secretion. Results are discussed in relation to the existence of a heterogeneous population of granules either in the same cell or in different cells, containing proenkephalin-derived peptides. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have recently shown that vasoactive intestinal polypeptide (VIP) is as potent as acetylcholine in inducing the secretion of catecholamines from the rat adrenal medulla. In the present study we have investigated the molecular mechanism involved in the exocytotic secretion of catecholamines by VIP and the effects of VIP on Ca45 uptake and phosphoinositide breakdown and compared them with those of the classical cholinergic agonists. We now show that omission of Ca2+ from the perfusion medium had almost no effect on VIP-induced secretion; however, addition of 1 mM EGTA to calcium-free medium abolished the secretion. Stimulation with VIP did not result in a net increase in Ca45 uptake and it was not modified by a protein kinase C activator, phorbol ester. All these effects of VIP were comparable to those of muscarine. VIP (0.3 to 10 microM) and muscarine (30 to 100 microM) produced time-and concentration-dependent increase (up to 700%) in the production of [3H]inositol phosphates. The production of [3H]inositol phosphates by VIP and muscarine occurred in calcium-free and EGTA medium. The effect of VIP on [3H]IP, [3H]IP2, and [3H]IP3 production was reduced by (1 to 30 microM) VIP antagonist (an analogue of growth hormone-releasing factor, Ac-Tyr1hGRF) and 1 to 20 microM naloxone. Although nicotine produced a brisk secretory response, there was no change in [3H]inositol phosphates. We conclude that inositol 1,4,5-trisphosphate generated upon activation of VIP and muscarine receptors is linked to exocytotic secretion of adrenal medullary hormones through release of internal Ca2+ ions.  相似文献   

20.
Acetylcholine (ACh) release is modulated pre-synaptically by both muscarinic and nicotinic receptor-mediated processes. While muscarinic autoreceptors inhibit ACh release, nicotinic autoreceptors enhance ACh release and thus disruption of these processes could potentially affect cholinergic toxicity following exposure to anticholinesterases. Marked age-related differences in sensitivity to some organophosphorus (OP) anticholinesterases have been reported. We compared nicotinic autoreceptor function (NAF) during maturation and aging and evaluated its potential modulation by the common OP insecticide, chlorpyrifos (CPF). Cortical synaptosomes were pre-loaded with [3H]choline, superfused (0.6 ml/min) with physiological buffer and [3H]ACh release was evoked with potassium (KCl, 9 mM), with or without co-addition of exogenous ACh to stimulate nicotinic autoreceptors. Fractions of perfusate were subsequently collected and area under the curve (AUC) for [3H] was analyzed by scintillation counting. The difference in evoked release due to co-addition of exogenous ACh was defined as NAF. Under these conditions, atropine (ATR, 0.1 microM) appeared requisite for NAF; thus this muscarinic antagonist was subsequently added to all perfusion buffers. In synaptosomes from adult tissues, exogenous ACh (3-100 microM) significantly increased release in a concentration-dependent manner. The nicotinic antagonist mecamylamine (MEC, 100 microM) substantially reduced the potassium-evoked release elicited by co-addition of ACh (10 microM). Interestingly, the nicotinic agonists nicotine (NIC) and dimethylphenylpiperazinium (DMPP; 0.1-10 microM) had no effect on release. The active metabolite of CPF (i.e. chlorpyrifos oxon (CPO), 1-10 microM) inhibited NAF in vitro. Maturation-related expression of NAF was noted (AUC with co-addition of 10 microM ACh: 7-day rats, 7+/-6; 21-day rats, 44+/-6; 90-day rats, 196+/-37; 24-month rats, 173+/-52). NAF was substantially reduced (67-91%) 96 h after maximum tolerated dosages of CPF in adult and aged rats (279 mg/kg, sc) but not in juveniles (127 mg/kg, sc), even though AChE inhibition was similar among the age groups (>80%). Together these data suggest that NAF is differentially expressed during maturation and that this neuromodulatory process may be selectively altered by some OP insecticides, potentially contributing to age-related differences in response to AChE inhibitors. As NAF has been postulated to be activated under conditions of 'impaired' cholinergic function, selective alteration of this pre-synaptic process by OP anticholinesterases may be also important in age-related conditions associated with cholinergic hypofunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号