首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
The aim of this study was to evaluate the safety and probiotic potential characteristics of ten Lactobacillus spp. strains (Lactobacillus fermentum SJRP30, Lactobacillus casei SJRP37, SJRP66, SJRP141, SJRP145, SJRP146, and SJRP169, and Lactobacillus delbrueckii subsp. bulgaricus SJRP50, SJRP76, and SJRP149) that had previously been isolated from water buffalo mozzarella cheese. The safety of the strains was analyzed based on mucin degradation, hemolytic activity, resistance to antibiotics and the presence of genes encoding virulence factors. The in vitro tests concerning probiotic potential included survival under simulated gastrointestinal (GI) tract conditions, intestinal epithelial cell adhesion, the presence of genes encoding adhesion, aggregation and colonization factors, antimicrobial activity, and the production of the β-galactosidase enzyme. Although all strains presented resistance to several antibiotics, the resistance was limited to antibiotics to which the strains had intrinsic resistance. Furthermore, the strains presented a limited spread of genes encoding virulence factors and resistance to antibiotics, and none of the strains presented hemolytic or mucin degradation activity. The L. delbrueckii subsp. bulgaricus strains showed the lowest survival rate after exposure to simulated GI tract conditions, whereas all of the L. casei and L. fermentum strains showed good survivability. None of the tested lactobacilli strains presented bile salt hydrolase (BSH) activity, and only L. casei SJRP145 did not produce the β-galactosidase enzyme. The strains showed varied levels of adhesion to Caco-2 cells. None of the cell-free supernatants inhibited the growth of pathogenic target microorganisms. Overall, L. fermentum SJRP30 and L. casei SJRP145 and SJRP146 were revealed to be safe and to possess similar or superior probiotic characteristics compared to the reference strain L. rhamnosus GG (ATCC 53103).  相似文献   

2.
The aim of this study was to evaluate the technological and functional potential of lactic acid bacteria (LAB) isolated from fermented stinky bean (Sataw-Dong). Of the 114 LAB colonies isolated from spontaneously fermented stinky bean which showed inhibitory activity against two food-borne pathogens (Staphylococcus aureus DMST 4480 and Escherichia coli DMST 4212), the five isolates (KJ03, KJ15, KJ17, KJ22, KJ23) exhibiting excellent antagonistic activity were subjected to further study. These five strains showed titratable acidity as lactic acid in the range of 1.47–1.55 %, with strains KJ03 and KJ23 additionally exhibiting a high NaCl tolerance of >7 % (w/v). Using 16S rRNA gene sequence analysis, strains KJ03 and KJ23 were identified as Lactobacillus plantarum and L. fermentum, respectively, and further investigated for their functional properties in vitro. Both strains survived well in a simulated gastrointestinal tract environment with <1 log cell decrease over 8 h (>8 log CFU/ml). Lactobacillus plantarum KJ03 showed the best performance with respect to cholesterol removal (53 %), while L. fermentum KJ23 showed the highest cell-surface hydrophobicity (39.5 %). Neither of the two strains showed any hemolysis activity. Both strains hydrolyzed glycodeoxycholic and taurodeoxycholic acids. In terms of antibiotic susceptibility, L. fermentum KJ23 was not sensitive to tetracycline. Taking all of the results into account, L. plantarum KJ03 possessed desirable in vitro functional properties. This strain is therefore a good candidate for further investigation for use in Sataw-Dong fermentation to assess its technological performance as a potential probiotic starter.  相似文献   

3.
To identify and investigate the role of surface layer proteins (SLPs) on the probiotic properties of Lactobacillus strains, SLPs were extracted from Lactobacillus bulgaricus fb04, L. rhamnosus fb06, L. gasseri fb07, and L. acidophilus NCFM by 5 mol/L lithium chloride. The molecular masses of the four SLPs were approximately 45–47 kDa as analyzed by SDS-PAGE. Hydrophobic amino acids were the main components of the four SLPs. The secondary structure content of the four SLPs showed extensive variability among different strains. After the SLPs were removed from the cell surface, the autoaggregation ability, coaggregation ability, and gastrointestinal tolerability of the four lactobacilli were significantly reduced as compared with the intact cells (P?<?0.05). When exposed to bile salt stress, L. rhamnosus fb06, L. gasseri fb07, and L. acidophilus NCFM expressed more SLPs as determined by Bradford method. In conclusion, the four lactobacilli all possessed functional SLPs, which had positive contributions to the probiotic properties of the four Lactobacillus strains. This research could reveal the biological contributions of SLPs from Lactobacillus strains and offer a theoretical basis for the application of lactobacilli and their SLPs in food and pharmaceutical industries.  相似文献   

4.
A group of 67 Lactobacillus spp. strains containing Lactobacillus casei/paracasei, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus rhamnosus and Lactobacillus salivarius species isolated from early childhood caries and identified to the species level in a previous study (?vec et al., Folia Microbiol 54:53–58, 2009) was characterized by automated ribotyping performed by the RiboPrinter® microbial characterization system and by randomly amplified polymorphic DNA fingerprinting (RAPD-PCR) with M13 primer to evaluate these techniques for characterization of lactobacilli associated with dental caries. Ribotyping revealed 55 riboprints among the analysed group. The automatic identification process performed by the RiboPrinter system identified 18 strains to the species level, however cluster analysis divided obtained ribotype patterns into individual clusters mostly corresponding to the species assignment of particular strains. RAPD-PCR fingerprints revealed by the individual Lactobacillus spp. showed higher variability than the ribotype patterns and the fingerprint profiles generated by the analysed species were distributed among one to four clusters. In conclusion, ribotyping is shown to be more convenient for the identification purposes while RAPD-PCR fingerprinting results indicate this method is a better tool for typing of Lactobacillus spp. strains occurring in dental caries.  相似文献   

5.
The present study evaluates the probiotic properties of three Lactobacillus plantarum strains MJM60319, MJM60298, and MJM60399 possessing antimicrobial activity against animal enteric pathogens. The three strains did not show bioamine production, mucinolytic and hemolytic activity and were susceptible to common antibiotics. The L. plantarum strains survived well in the simulated orogastrointestinal transit condition and showed adherence to Caco-2 cells in vitro. The L. plantarum strains showed strong antimicrobial activity against enterotoxigenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella enterica subsp. enterica serovar Typhimurium, Choleraesuis and Gallinarum compared to the commercial probiotic strain Lactobacillus rhamnosus GG. The mechanism of antimicrobial activity of the L. plantarum strains appeared to be by the production of lactic acid. Furthermore, the L. plantarum strains tolerated freeze-drying and maintained higher viability in the presence of cryoprotectants than without cryoprotectants. Finally, the three L. plantarum strains tolerated NaCl up to 8% and maintained >60% growth. These characteristics of the three L. plantarum strains indicate that they could be applied as animal probiotic after appropriate in vivo studies.  相似文献   

6.
There has been an increasing interest in the use of probiotic products for the prevention of Clostridium difficile infection (CDI). Bio-K+® is a commercial probiotic product comprising three strains of lactobacilli—Lactobacillus acidophilus CL1285®, Lact. casei LBC80R® and Lact. rhamnosus CLR2®—that have been applied to prevent CDI. Generally considered as safe, lactobacilli have potential to cause bacteremia, endocarditis and other infections. The source of Lactobacillus bacteremia can be normal human flora or lactobacilli-containing probiotic. The aim of this study was to assess whether probiotic lactobacilli caused bacteremia and to show the value of molecular identification and typing techniques to determine probiotic and patient strain relatedness. We report an episode of Lactobacillus bacteremia in a 69-year-old man admitted to a hospital with severe congestive heart failure. During his hospitalization, he required long-term antibiotic therapy. Additionally, the patient received Bio-K+® probiotic as part of a quality improvement project to prevent CDI. Subsequently, Lactobacillus bacteremia occurred. Two independent blinded laboratory evaluations, using pulse field gel electrophoresis, 16S rRNA gene sequencing and DNA fingerprint analysis (rep-PCR), were performed to determine whether the recovered Lact. acidophilus originated from the probiotic product. Ultimately, the patient strain was identified as Lact. casei and both laboratories found no genetic relation between the patient’s strain and any of the probiotic lactobacilli. This clinical case of lactobacillus bacteremia in the setting of probiotic exposure demonstrates the value of using discriminatory molecular methods to clearly determine whether there were a link between the patient’s isolate and the probiotic strains.  相似文献   

7.
The aim of this study was to evaluate the probiotic potential of lactic acid bacteria (LAB) strains isolated from Horreh. Some probiotic properties, e.g., resistance to acid, bile tolerance, antibacterial activity, and antibiotic susceptibility, were investigated. A total of 140 Gram-positive and catalase-negative isolates from Horreh were subjected to identification and grouping by cultural methods and the 16S rRNA sequencing. The new isolates were identified to be Lactobacillus (fermentum, plantarum, and brevis) Weissella cibaria, Enterococcus (faecium and faecalis), Leuconostoc (citreum and mesenteroides subsp. mesenteroides) and Pediococcus pentosaceus. Probiotic potential study of LAB isolates showed that Lb. plantarum and Leu. mesenteroides subsp. mesenteroides isolates were able to grow at pH 2.5 and 3.5. Lactobacillus plantarum (isolate A44) showed the highest cell hydrophobicity (84.5%). According to antibacterial activity tests, Listeria innocua and Staphylococcus aureus were the most sensitive indicators against the selected LAB strains, while Escherichia coli and Bacillus cereus were the most resistant. In addition, all the isolated LAB species were resistant to vancomycin. The results of the present study suggested that the Lactobacillus fermentum and plantarum isolated from Horreh, characterized in this study, have potential use for industrial purposes as probiotics.  相似文献   

8.
Bacterial strains were isolated from cassava-derived food products and, for the first time, from cassava by-products, with a focus on gari, a flour-like product, and the effluents from the production processes for gari and fufu (a dough also made from cassava flour). A total of 47 strains were isolated, all of which were tested to determine their resistance to acidic pH and to bile salt environments. Four of the 47 isolates tested positive in both environments, and these four isolates also showed antibacterial behaviour towards both Gram-positive and Gram-negative microbial pathogens (i.e. Methicillin-resistance Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Salmonella enteritidis, Escherichia coli, Escherichia coli (O157), Yersinia enterocolitica). In most cases, the antibacterial activity was related to bacteriocin production. Molecular identification analysis (16S rDNA and randomly amplified polymorphic DNA-PCR) revealed that the four isolates were different strains of the same species, Lactobacillus fermentum. These results demonstrate that bacteria isolated from cassava-derived food items and cassava by-products have interesting properties and could potentially be used as probiotics.  相似文献   

9.
The present study shows that, from 300 Lactobacillus strains isolated from the oral cavity and large intestine of 600 healthy people, only 9 had high antagonistic activity against pathogens and opportunistic pathogens. All antagonistic strains of lactobacilli have been identified by 16S rRNA sequencing and assigned to four species: Lactobacillus fermentum, Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus casei. In addition, these lactobacilli appeared to be nonpathogenic and had some probiotic potential: the strains produced lactic acid and bacteriocins, showed high sensitivity to broad-spectrum antibiotics, and were capable of forming biofilms in vitro. With the help of PCR and specific primers, the presence of genes for prebacteriocins in L. plantarum (plnEF, plnJ, plnN) and L. rhamnosus (LGG_02380 and LGG_02400) has been revealed. It was found that intestinal strains of lactobacilli were resistant to hydrochloric acid and bile. Lactobacilli isolated from the oral cavity were characterized by a high degree of adhesion, whereas intestinal strains were characterized by average adhesion. Both types of lactobacilli had medium to high rates of auto-aggregation and hydrophobicity and could coaggregate with pathogens and opportunistic pathogens. Additionally, the ability of the lactobacilli strains to produce gasotransmitters, CH4, CO2, C2H6, CO, and NH3, has been revealed.  相似文献   

10.
Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.  相似文献   

11.

Background

The microflora composition of the oral cavity affects oral health. Some strains of commensal bacteria confer probiotic benefits to the host. Lactobacillus is one of the main probiotic genera that has been used to treat oral infections. The objective of this study was to select lactobacilli with a spectrum of probiotic properties and investigate their potential roles in oral health.

Results

An oral isolate characterized as Lactobacillus brevis BBE-Y52 exhibited antimicrobial activities against Streptococcus mutans, a bacterial species that causes dental caries and tooth decay, and secreted antimicrobial compounds such as hydrogen peroxide and lactic acid. Compared to other bacteria, L. brevis BBE-Y52 was a weak acid producer. Further studies showed that this strain had the capacity to adhere to oral epithelial cells. Co-incubation of L. brevis BBE-Y52 with S. mutans ATCC 25175 increased the IL-10-to-IL-12p70 ratio in peripheral blood mononuclear cells, which indicated that L. brevis BBE-Y52 could alleviate inflammation and might confer benefits to host health by modulating the immune system.

Conclusions

L. brevis BBE-Y52 exhibited a spectrum of probiotic properties, which may facilitate its applications in oral care products.
  相似文献   

12.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

13.
The search for probiotic candidates among lactic acid bacteria (LAB) isolated from food may uncover new strains with promising health and technological properties. Lactobacillus mucosae strains attracted recent research attention due to their ability to adhere to intestinal mucus and to inhibit pathogens in the gastrointestinal tract, both related to a probiotic potential. Properties of interest and safety aspects of three Lb. mucosae strains (CNPC006, CNPC007, and CNPC009) isolated from goat milk were investigated employing in vitro tests. The presence of genetic factors related to bile salt hydrolase production (bsh), intestinal adhesion properties (msa, map, mub, and ef-tu), virulence, and biogenic amine production were also verified. All strains exhibited the target map, mub, and ef-tu sequences; the msa gene was detected in CNPC006 and CNPC007 strains. Some of the searched sequences for virulence factors were detected, especially in the CNPC009 strain; all strains carried the hyl gene, related to the production of hyaluronidase. Lb. mucosae CNPC007 exhibited a high survival rate in simulated gastric and enteric conditions. Besides, all strains exhibited the bsh sequence, and CNPC006 and CNPC007 were able to deconjugate salts of glycodeoxycholic acid (GDC). Regarding technological properties for dairy product applications, a relatively higher milk acidification and clotting capacity, diacetyl production, and proteolytic activity were registered for CNPC007 in comparison to the other strains. Collectively, the results aim at Lb. mucosae CNPC007 as a promising probiotic candidate for application in dairy products, deserving further studies to confirm and explore its potential.  相似文献   

14.
Eleven Lactobacillus plantarum from Slovak ovine and caprine lump and stored cheeses, and from four commercial probiotic and yogurt cultures (Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus acidophilus) identified using a Maldi-TOF MS analysis were screened in vitro for selected aspects correlated with safety (antibiotic susceptibility patterns, biochemical and haemolytic activity, presence of genes responsible for biogenic amines production), functional traits (including acid, bile tolerance and antimicrobial activity), ecological roles (ability to produce biofilms), and technological applications (acidification and milk coagulation capacity) for assurance of their quality and diversity. The antibiotic susceptibility showed two L. plantarum strains, 19l5 and 18l4, with the presence of the non-wild-type ECOFFs (epidemiological cut-off) for clindamycin and/or gentamicin. All these strains expressed a high acid tolerance at pH 2.5 after a 4 h exposure (bacteria viability varied between 60% and 91%), and bile resistance at 0.3% oxgall ranged from 60% to 99% with no haemolytic activity. Three wild L. plantarum strains, 17l1, 16l4, 18l2, had no harmful metabolic activities, and formed strong biofilms that were measured by a crystal violet assay. Simultaneously, the acid cell-free culture supernatant (ACFCS) from L. plantarum 18l2 had a marked inhibitory effect on the viability of the pathogens as evaluated by flow-cytometry, and also exhibited fast acidification and milk coagulation. As a result, we conclude that L. plantarum 18l2 can be included as part of the created lactobacilli collection that is useful as a starter, or starter adjunct, in the dairy industry, due to its desirable safety and probiotic characteristics, together with rapid acidification capacity compared with other investigated strains from commercially accessible products.  相似文献   

15.
Bacterial lectins are carbohydrate-binding adhesins that recognize glycoreceptors in the gut mucus and epithelium of hosts. In this study, the contribution of lectin-like activities to adhesion of Lactobacillus mucosae LM1 and Lactobacillus johnsonii PF01, which were isolated from swine intestine, were compared to those of the commercial probiotic Lactobacillus rhamnosus GG. Both LM1 and PF01 strains have been reported to have good adhesion ability to crude intestinal mucus of pigs. To confirm this, we quantified their adhesion to porcine gastric mucin and intestinal porcine enterocytes isolated from the jejunum of piglets (IPEC-J2). In addition, we examined their carbohydrate-binding specificities by suspending bacterial cells in carbohydrate solutions prior to adhesion assays. We found that the selected carbohydrates affected the adherences of LM1 to IPEC-J2 cells and of LGG to mucin. In addition, compared to adhesion to IPEC-J2 cells, adhesion to mucin by both LM1 and LGG was characterized by enhanced specific recognition of glycoreceptor components such as galactose, mannose, and N-acetylglucosamine. Hydrophobic interactions might make a greater contribution to adhesion of PF01. A similar adhesin profile between a probiotic and a pathogen, suggest a correlation between shared pathogen–probiotic glycoreceptor recognition and the ability to exclude enteropathogens such as Escherichia coli K88 and Salmonella Typhimurium KCCM 40253. These findings extend our understanding of the mechanisms of the intestinal adhesion and pathogen-inhibition abilities of probiotic Lactobacillus strains.  相似文献   

16.
Lactic acid bacteria (LAB) are widely known as probiotic microorganisms that afford several health benefits for the host. In this study, 15 isolates of LAB from various sources in Thailand were examined for their probiotic properties. Based on their phenotypic and genetic characteristics, they belong to the genera Lactobacillus, Pediococcus, and Weissella. All isolates showed the ability to induce interleukin-12 (IL-12) at different levels. Cell-free supernatant of Lactobacillus acidipiscis SR7-1 and Lactobacillus farraginis SL4-1 showed an antiproliferative effect against Caco-2 cell lines with non-toxicity to normal cell lines (Vero cells), while they had no effect against U937 cell lines. Five strains, including Lactobacillus namurensis KC78-5, L. farraginis SL4-1, Lactobacillus mucosae SL7-2, Lactobacillus salivarius MSMC120-2 and Pediococcus pentosaceus PC73-3 grew at pH 3. All isolates were tolerant at 1% bile. L. farraginis SL4-1, L. mucosae SL7-2 and P. pentosaceus PC73-3 were not statistically different when compared to the negative control in vitro adhesion assay. These results suggest that L. farraginis SL4-1, L. mucosae SL7-2 and P. pentosaceus PC73-3, which meet the general criteria of probiotics, represent very interesting candidates for further study as anti-cancer agents, especially L. farraginis SL4-1, which has an antiproliferative effect against Caco-2 cells and immunomodulatory ability. These results also highlight the need for further study, especially in appropriate in vivo animal models.  相似文献   

17.
Rotavirus is the leading worldwide cause of gastroenteritis in children under five years of age. Even though there are some available vaccines to prevent the disease, there are limited strategies for challenging diarrhea induced by rotavirus infection. For this reason, researchers are constantly searching for other approaches to control diarrhea by means of probiotics. In order to demonstrate the ability of some probiotic bacteria to interfere with the in vitro rotavirus infection in MA104 cells, strains of Lactobacillus sp. and Bifidobacterium sp. were tested in MA104 cells before the viral infection. As a preliminary assay, a blocking effect treatment was performed with viable bacteria. In this screening assay, four of initial ten bacteria showed a slight reduction of the viral infection (measured by percentage of infection). L. casei (Lafti L26-DSL), L. fermentum(ATCC 9338), B. adolescentis (DSM 20083), and B. bifidum (ATCC 11863) were used in further experiments. Three different treatments were tested in order to evaluate protein-based metabolites obtained from mentioned bacteria: (i) cell exposure to the protein-based metabolites before viral infection, (ii) exposure to protein-based metabolites after viral infection, and (iii) co-incubation of the virus and protein-based metabolites before viral infection to the cell culture. The best effect performed by protein-based metabolites was observed during the co-incubation assay of the virus and protein-based metabolites before adding them into the cell culture. The results showed 25 and 37% of infection in the presence of L. casei and B. adolescentis respectively. These results suggest that the antiviral effect may be occurring directly with the viral particle instead of making a blocking effect of the cellular receptors that are needed for the viral entrance.  相似文献   

18.
Apis mellifera L. is one of the most important natural pollinators of significant crops and flowers around the world. It can be affected by different types of illnesses: american foulbrood, nosemosis, varroasis, viruses, among others. Such infections mainly cause a reduction in honey production and in extreme situations, the death of the colony. Argentina is the world’s second largest honey exporter and the third largest honey producer, after China and Turkey. Given both the prominence of the honey bee in nature and the economic importance of apiculture in Argentina and the world, it is crucial to develop efficient and sustainable strategies to control honey bee diseases and to improve bee colony health. Gram-positive bacteria, such as lactic acid bacteria, mainly Lactobacillus, and Bacillus spp. are promising options. In the Northwest of Argentina, several Lactobacillus and Bacillus strains from the honey bee gut and honey were isolated by our research group and characterized by using in vitro tests. Two strains were selected because of their potential probiotic properties: Lactobacillus johnsonii CRL1647 and Bacillus subtilis subsp. subtilis Mori2. Under independent trials with both experimental and commercial hives, it was determined that each strain was able to elicit probiotic effects on bee colonies reared in the northwestern region of Argentina. One result was the increase in egg-laying by the queen which therefore produced an increase in bee number and, consequently, a higher honey yield. Moreover, the beneficial bacteria reduced the incidence of two important bee diseases: nosemosis and varroosis. These results are promising and extend the horizon of probiotic bacteria to the insect world, serving beekeepers worldwide as a natural tool that they can administer as is, or combine with other disease-controlling methods.  相似文献   

19.
The probiotic properties and inhibitory effect on Salmonella Typhimurium adhesion on human enterocyte-like HT-29-Luc cells of three Lactobacillus plantarum strains isolated from fermented fish, beach sand and a coastal plant were determined. Compared with the type strain L. plantarum NBRC 15891T, which was isolated from pickled cabbage, L. plantarum Tennozu-SU2 isolated from the acorn of a coastal tree showed high autoaggregation in de Man, Rogosa and Sharpe (MRS) broth and an antagonistic effect against S. Typhimurium in brain heart infusion (BHI) broth. Furthermore, heat-killed L. plantarum Tennozu-SU2 cells inhibited S. Typhimurium adhesion on HT-29-Luc cells. Both live and heat-killed L. plantarum Tennozu-SU2 cells showed an inhibitory effect on gut colonisation in BALB/c mice, as assessed by viable Salmonella count in faecal samples and by invasion into liver and spleen tissues. The properties shown in this study suggest that L. plantarum Tennozu-SU2 is useful as a starter and probiotic bacteria in functional food material.  相似文献   

20.
Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号