首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.  相似文献   

2.
Sleep homeostasis and circadian rhythmicity interact to determine the timing of behavioral activity. Circadian clock genes contribute to circadian rhythmicity centrally and in the periphery, but some also have roles within sleep regulation. The clock gene Period3 (Per3) has a redundant function within the circadian system and is associated with sleep homeostasis in humans. This study investigated the role of PER3 in sleep/wake activity and sleep homeostasis in mice by recording wheel-running activity under baseline conditions in wild-type (WT; n = 54) and in PER3-deficient (Per3(-/-); n = 53) mice, as well as EEG-assessed sleep before and after 6 h of sleep deprivation in WT (n = 7) and Per3(-/-) (n = 8) mice. Whereas total activity and vigilance states did not differ between the genotypes, the temporal distribution of wheel-running activity, vigilance states, and EEG delta activity was affected by genotype. In Per3(-/-) mice, running wheel activity was increased, and REM sleep and NREM sleep were reduced in the middle of the dark phase, and delta activity was enhanced at the end of the dark phase. At the beginning of the baseline light period, there was less wakefulness and more REM and NREM sleep in Per3(-/-) mice. Per3(-/-) mice spent less time in wakefulness and more time in NREM sleep in the light period immediately after sleep deprivation, and REM sleep accumulated more slowly during the recovery dark phase. These data confirm a role for PER3 in sleep-wake timing and sleep homeostasis.  相似文献   

3.
We have studied the effects of an 8-h advance of the environmental light-dark (LD) cycle on the sleep-wake rhythm in the rat. Electroencephalograms and electromyograms were recorded simultaneously on chart paper through a two-channel telemetry system for 3 days before phase shift (baseline) and 8 days during and after phase shift. Phase advance of the LD cycle led to an increase in both non-rapid eye movement (NREM) and REM sleep. The amount of NREM sleep in the light period correlated positively with that in the preceding dark period for 4 days after phase advance. The duration of REM sleep in the light period correlated negatively with that in the preceding dark period. The results suggest that homeostatic control of the amount of NREM sleep between the preceding dark period and the following light period is disturbed by phase advance of the LD cycle.  相似文献   

4.
We have studied the effects of an 8-h advance of the environmental light-dark (LD) cycle on the sleep-wake rhythm in the rat. Electroencephalograms and electromyograms were recorded simultaneously on chart paper through a two-channel telemetry system for 3 days before phase shift (baseline) and 8 days during and after phase shift. Phase advance of the LD cycle led to an increase in both non-rapid eye movement (NREM) and REM sleep. The amount of NREM sleep in the light period correlated positively with that in the preceding dark period for 4 days after phase advance. The duration of REM sleep in the light period correlated negatively with that in the preceding dark period. The results suggest that homeostatic control of the amount of NREM sleep between the preceding dark period and the following light period is disturbed by phase advance of the LD cycle.  相似文献   

5.
A quantitative analysis of spindles and spindle-related EEG activity was performed in C57BL/6 mice. The hypothesis that spindles are involved in sleep regulatory mechanisms was tested by investigating their occurrence during 24 h and after 6 h sleep deprivation (SD; n = 7). In the frontal derivation distinct spindle events were characterized as EEG oscillations with a dominant frequency approximately at 11 Hz. Spindles were most prominent during NREM sleep and increased before NREM-REM sleep transitions. Whereas spindles increased concomitantly with slow wave activity (SWA, EEG power between 0.5 and 4.0 Hz) at the beginning of the NREM sleep episode, these measures showed an opposite evolution prior to the transition to REM sleep. The 24-h time course of spindles showed a maximum at the end of the 12-h light period, and was a mirror image of SWA in NREM sleep. After 6 h SD the spindles in NREM sleep were initially suppressed, and showed a delayed rebound. In contrast, spindles occurring immediately before the transition to REM sleep were enhanced during the first 2 h of recovery. The data suggest that spindles in NREM sleep may be involved in sleep maintenance, while spindles heralding the transition to REM sleep may be related to mechanisms of REM sleep initiation.  相似文献   

6.
Daily rhythms in sleep and waking performance are generated by the interplay of multiple external and internal oscillators. These include the light-dark and social cycles, a circadian hypothalamic oscillator oscillating virtually independently of behavior, and a homeostatic oscillator driven primarily by sleep-wake behavior. Both internal oscillators contribute to variation in many aspects of sleep and wakefulness (e.g., sleep timing and duration, REM sleep, non-REM sleep, REM density, sleep spindles, slow-wave sleep, electroencephalographic oscillations during wakefulness and sleep, and performance parameters, including attention and memory). The relative contribution of the oscillators varies greatly between these variables. Sleep and performance cannot be predicted by either oscillator independently but critically depend on their phase relationship and amplitude. The homeostatic oscillator feeds back onto the central pacemaker or its outputs. Thus, the amplitude of observed circadian variation in sleep and performance depends on how long we have been asleep or awake. During entrainment to external 24-h cycles, the opposing interplay between circadian and homeostatic changes in sleep propensity consolidates sleep and wakefulness. Some physiological correlates and mediators of both the circadian process (e.g., melatonin and hypocretin rhythms) and the homeostat (e.g., EEG, slow-wave activity, and adenosine release) have been established, offering targets for the development of countermeasures for circadian sleep and performance disorders. Interindividual differences in sleep timing, duration, and morning or evening preference are associated with changes of circadian or sleep homeostatic processes or both. Molecular genetic correlates, including polymorphisms in clock genes, of some of these interindividual differences are emerging.  相似文献   

7.
Summary Sleep was studied by continuous 24-h recordings in adult male Syrian hamsters, chronically implanted with EEG and EMG electrodes. Three vigilance states were determined using visual scoring and EEG power spectra (0.25–25 Hz) computed for 4-s episodes.The effects of two methods of total sleep deprivation (SD) were examined on vigilance states and the EEG power spectrum. The animals were subjected to 24 h SD by: (1) forced locomotion in a slowly rotating drum, (2) gentle handling whenever the hamsters attempted a sleeping posture. In addition, the hamsters were subjected to SD by handling during the first 3 h of the L period.Sleep predominated in the L period (78.2% of 12 h) and the D period (51.2%). The power spectra of the 3 vigilance states were similar during the L and D period. In NREM sleep, power density values in the low frequency range (0.25–6.0 Hz) exceeded those of REM sleep and W by a maximum factor of 8.3 and 2.8, respectively. At frequencies above 16 Hz, NREM and REM sleep power density values were significantly lower than during W. A progressive decrease in power density for low EEG frequencies (0.25–7 Hz) during NREM sleep was seen in the course of the L period. Power density values of higher frequencies (8–25 Hz) increased at the end of the L period and remained high during the first hours of the D period.The effect of prolonged SD on vigilance states and EEG spectra was similar by both methods and strikingly small compared to similar results in rats. In contrast, 3 h SD induced a large and more prolonged effect. The similarities and differences of sleep and sleep regulation are summarized for the hamster, rat and man.Abbreviations EEG electroencephalogram - LD light dark - REM rapid eye movements - NREM sleep non REM sleep - W waking - SD sleep deprivation - TST total sleep time - L light - D dark  相似文献   

8.

We examined the effects of ornithine on the sleep-wake cycle by monitoring the electroencephalo-gram, electromyogram, and locomotor activity of freely moving mice after oral administration of it at lights-off time (18:00). Ornithine (1.0 and 3.0 g/kg of body weight) increased the amount of non-rapid eye movement (non-REM, NREM) sleep for 2 h after its administration, with a peak at 60 min post administration, to 164% and 198%, respectively, of that of the vehicle-administered mice, without changing the amount of REM sleep. The administration of ornithine at a lower dose (0.3 g/kg of body weight) did not increase the amount of NREM sleep compared with the vehicle administration. Ornithine did not affect the power spectrum density of NREM sleep but increased the number of episodes of wakefulness and NREM sleep and that of transitions between wakefulness and NREM sleep, and decreased the mean duration of wake episodes in a dose-dependent manner for 2 h after the oral administration. These results indicate that ornithine increased the amount of NREM sleep without reducing the power spectrum density of NREM sleep.

  相似文献   

9.
The hypothesis of a predominance of the right hemisphere in stage REM as compared to NREM has been tested through a spectral analysis of the EEG recorded from left (T3) and right (T4) temporal sites in 5 young healthy right-handed male subjects. Variations in the asymmetry coefficient R - L/R + L in different sleep stages have been analyzed by one way ANOVAs and Sheffé's tests. The hypothesis of a progressive increase in left hemisphere activity throughout different REM cycles as one approaches final awakenings have been investigated by comparing variations in the asymmetry coefficient for epochs of REM and stage 2 NREM sampled in different phases of the REM cycle. EEG results do not support either the hypothesized stage dependent or cycle dependent variation in EEG activity during sleep. We question whether variations in EEG amplitude and synchronization can be used as indices of hemispheric asymmetries during sleep.  相似文献   

10.
Immune signaling is known to regulate sleep. miR-155 is a microRNA that regulates immune responses. We hypothesized that miR-155 would alter sleep regulation. Thus, we investigated the potential effects of miR-155 deletion on sleep-wake behavior in adult female homozygous miR-155 knockout (miR-155KO) mice and littermate controls (WT). Mice were implanted with biotelemetry units and EEG/EMG biopotentials were recorded continuously for three baseline days. miR-155KO mice had decreased bouts of NREM and REM sleep compared with WT mice, but no differences were observed in the length of sleep bouts or total time spent in sleep-wake states. Locomotor activity and subcutaneous temperature did not differ between WT and miR-155KO mice. Following baseline recordings, mice were sleep-deprived during the first six hours of the rest phase (light phase; ZT 0–6) followed by an 18 h recovery period. There were no differences between groups in sleep rebound (% sleep and NREM δ power) after sleep deprivation. Following recovery from sleep deprivation, mice were challenged with a somnogen (viz., lipopolysaccharide (LPS)) one hour prior to the initiation of the dark (active) phase. Biopotentials were continuously recorded for the following 24 h, and miR-155KO mice displayed increased wakefulness and decreased NREM sleep during the dark phase following LPS injection. Additionally, miR-155KO mice had reduced EEG slow-wave responses (0.5–4 Hz) compared to WT mice. Together, our findings indicate that miR-155 deletion attenuates the somnogenic and EEG delta-enhancing effects of LPS.

Abbreviations: ANOVA: analysis of variance; EEG: electroencephalogram; EMG: electromyogram; h: hour; IL-1: interleukin-1; IL-6: interleukin-6; IP: intra-peritoneal; LPS: lipopolysaccharide; miR/miRNA: microRNA; miR-155KO: miR-155 knockout; NREM: non-rapid eye movement; REM: rapid eye movement; TNF: tumor necrosis factor; SWS: slow-wave sleep; WT: wild-type.  相似文献   


11.
Sleep is generally considered to be a recovery from prior wakefulness. The architecture of sleep not only depends on the duration of wakefulness but also on its quality in terms of specific experiences. In the present experiment, we studied the effects of restraint stress on sleep architecture and sleep electroencephalography (EEG) in different strains of mice (C57BL/6J and BALB/cJ). One objective was to determine if the rapid eye movement (REM) sleep-promoting effects of restraint stress previously reported for rats would also occur in mice. In addition, we examined whether the effects of restraint stress on sleep are different from effects of social defeat stress, which was found to have a non-REM (NREM) sleep-promoting effect. We further measured corticosterone and prolactin levels as possible mediators of restraint stress-induced changes in sleep. Adult male C57BL/6J and BALB/cJ mice were subjected to 1 h of restraint stress in the middle of the light phase. To control for possible effects of sleep loss per se, the animals were also kept awake for 1 h by gentle handling. Restraint stress resulted in a mild increase in NREM sleep compared with baseline, but, overall, this effect was not significantly different from sleep deprivation by gentle handling. In contrast, restraint stress caused a significant increase in REM sleep compared with handling in the C57BL/6J mice but not in BALB/cJ mice. Corticosterone levels were significantly and similarly elevated after restraint in both strains, but prolactin was increased only in the C57BL/6J mice. In conclusion, this study shows that the restraint stress-induced increase in REM sleep in mice is strongly strain dependent. The concomitant increases in prolactin and REM sleep in the C57BL/6J mice, but not in BALB/cJ mice, suggest prolactin may be involved in the mechanism underlying restraint stress-induced REM sleep. Furthermore, this study confirms that different stressors differentially affect NREM and REM sleep. Whereas restraint stress promotes REM sleep in C57BL/6J mice, we previously found that in the same strain, social defeat stress promotes NREM sleep. As such, studying the consequences of specific stressful stimuli may be an important tool to unravel both the mechanism and function of different sleep stages.  相似文献   

12.
Upper airway dilator activity during sleep appears to be diminished under conditions of enhanced sleep propensity, such as after sleep deprivation, leading to worsening of obstructive sleep apnea (OSA). Non-rapid eye movement (NREM) sleep propensity originates in sleep-active neurons of the preoptic area (POA) of the hypothalamus and is facilitated by activation of POA warm-sensitive neurons (WSNs). We hypothesized that activation of WSNs by local POA warming would inhibit activity of the posterior cricoarytenoid (PCA) muscle, an airway dilator, during NREM sleep. In chronically prepared unrestrained cats, the PCA exhibited inspiratory bursts in approximate synchrony with inspiratory diaphragmatic activity during waking, NREM, and REM. Integrated inspiratory PCA activity (IA), peak activity (PA), and the lead time (LT) of the onset of inspiratory activity in PCA relative to diaphragm were significantly reduced in NREM sleep and further reduced during REM sleep compared with waking. Mild bilateral local POA warming (0.5-1.2 degrees C) significantly reduced IA, PA, and LT during NREM sleep compared with a prewarming NREM baseline. In some animals, effects of POA warming on PCA activity were found during waking or REM. Because POA WSN activity is increased during spontaneous NREM sleep and regulates sleep propensity, we hypothesize that this activation contributes to reduction of airway dilator activity in patients with OSA.  相似文献   

13.
One of the most significant problems facing older individuals is difficulty staying asleep at night and awake during the day. Understanding the mechanisms by which the regulation of sleep/wake goes awry with age is a critical step in identifying novel therapeutic strategies to improve quality of life for the elderly. We measured wake, non-rapid eye movement (NREM) and rapid-eye movement (REM) sleep in young (2–4 months-old) and aged (22–24 months-old) C57BL6/NIA mice. We used both conventional measures (i.e., bout number and bout duration) and an innovative spike-and-slab statistical approach to characterize age-related fragmentation of sleep/wake. The short (spike) and long (slab) components of the spike-and-slab mixture model capture the distribution of bouts for each behavioral state in mice. Using this novel analytical approach, we found that aged animals are less able to sustain long episodes of wakefulness or NREM sleep. Additionally, spectral analysis of EEG recordings revealed that aging slows theta peak frequency, a correlate of arousal. These combined analyses provide a window into the mechanisms underlying the destabilization of long periods of sleep and wake and reduced vigilance that develop with aging.  相似文献   

14.
We hypothesize that sleep apnea-hypopnea alters interaction between cardiac vagal modulation and sleep delta EEG. Sleep apnea-hypopnea syndrome (SAHS) is related to cardiovascular complications in men. SAHS patients show higher sympathetic activity than normal subjects. In healthy men, non-rapid eye movement (NREM) sleep is associated with cardiac vagal influence, whereas rapid eye movement (REM) sleep is linked to cardiac sympathetic activity. Interaction between cardiac autonomic modulation and delta sleep EEG is not altered across a life span nor is the delay between appearances of modifications in both signals. Healthy controls, moderate SAHS, and severe SAHS patients were compared across the first three NREM-REM cycles. Spectral analysis was applied to ECG and EEG signals. High frequency (HF) and low frequency (LF) of heart rate variability (HRV), ratio of LF/HF, and normalized (nu) delta power were obtained. A coherency analysis between HF(nu) and delta was performed, as well as a correlation analysis between obstructive apnea index (AI) or hypopnea index (HI) and gain, coherence, or phase shift. HRV components were similar between groups. In each group, HF(nu) was larger during NREM, while LF(nu) predominated across REM and wake stages. Coherence and gain between HF(nu) and delta decreased from controls to severe SAHS patients. In SAHS patients, the delay between modifications in HF(nu) and delta did not differ from zero. AI and HI correlated negatively with coherence, while HI correlated negatively with gain only. Apneas-hypopneas affect the link between cardiac sympathetic and vagal modulation and delta EEG demonstrated by the loss of cardiac autonomic activity fluctuations across shifts in sleep stages. Obstructive apneas and hypopneas alter the interaction between both signals differently.  相似文献   

15.
Brain stem transection studies suggest that pontine neurons play a key role in regulating the mammalian sleep cycle. The serotonin (5-HT) hypothesis originally postulated that pontine 5-HT containing neurons directly initiated and maintained synchronized or NREM sleep and "primed" rapid eye movement (REM) sleep. Contrary to the predictions of this hypothesis, single unit recordings from the serotonergic dorsal raphe nucleus (DRN) have uniformly shown that DRN discharge rate is positively correlated with behavioral arousal but negatively correlated with both the NREM and REM phases of sleep. These findings required revision of the original 5-HT hypothesis and suggested instead that DRN discharge may influence the maintenance of behavioral arousal and, by ceasing to discharge, may contribute to the generation of NREM and REM sleep. The purpose of this paper was to quantitatively assess the strength of the correlation between DRN discharge, REM sleep, and PGO waves following the experimental perturbations of the sleep cycle. Since forced locomotor activity is known to powerfully alter the timing of sleep and wakefulness, the present experiments used forced activity in an attempt to dissociate DRN discharge from the sleep cycle. It was hypothesized that such dissociations would suggest DRN discharge is not involved in sleep cycle regulation. Contrastingly, preserved correlations would support the hypothesis of a possible causal relationship between DRN discharge, PGO waves activity, and the timing of sleep and wakefulness. Extracellular recordings were obtained from single cells in the DRN of intact, undrugged cats across greater than 300 sleep cycles with durations ranging from about 8 to 80 mins. Forced activity significantly reduced the amount of time spent in wakefulness and increased the number but not the duration of REM sleep epochs. The results revealed that DRN discharge rate was altered as a function of sleep cycle duration. In no case, however, was forced activity able to completely dissociate the characteristic DRN discharge rates from PGO waves or the ultradian sleep cycle. The inability of forced activity to disrupt the faithful relationships between DRN discharge, PGO waves, and sleep cycle phase thus provides a new form of correlative evidence consistent with the hypothesis that the DRN is involved in sleep cycle regulation.  相似文献   

16.
Polysomnograms of most homeothermic species distinguish two states, rapid eye movement (REM) and non-REM (NREM) sleep. These alternate several times during the night for reasons and following rules that remain poorly understood. It is unknown whether each state has its own function and regulation or whether they represent two facets of the same process. The present study compared the mean REM/NREM sleep ratio and the mean number of NREM-REM sleep cycles across 3 consecutive nights. The rationale was that, if REM and NREM sleep are tightly associated, their ratio should be comparable whatever the cycle frequency in the night. Twenty-six healthy subjects of both sexes were recorded at their home for 4 consecutive nights. The correlation between the REM/NREM sleep ratio and the number of cycles was highly significant. Of the two sleep components, REM sleep was associated to the number of cycles, whereas NREM sleep was not. This suggests that the relationship between REM sleep and NREM sleep is rather weak within cycles, does not support the concept of NREM-REM sleep cycles as miniature units of the sleep process, and favors the concept of distinct mechanisms of regulation for the two components.  相似文献   

17.
To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.  相似文献   

18.
We recorded sleep electroencephalogram longitudinally across ages 9-18 yr in subjects sleeping at home. Recordings were made twice yearly on 4 consecutive nights: 2 nights with the subjects maintaining their ongoing school-night schedules, and 2 nights with time in bed extended to 12 h. As expected, school-night total sleep time declined with age. This decline was entirely produced by decreasing non-rapid eye movement (NREM) sleep. Rapid eye movement (REM) sleep durations increased slightly but significantly. NREM and REM sleep durations also exhibited different age trajectories when sleep was extended. Both durations exceeded those on school-night schedules. However, the elevated NREM duration did not change with age, whereas REM durations increased significantly. We interpret the adolescent decline in school-night NREM duration in relation to our hypothesis that NREM sleep reverses changes produced in plastic brain systems during waking. The "substrate" produced during waking declines across adolescence, because synaptic elimination decreases the intensity (metabolic rate) of waking brain activity. Declining substrate reduces both NREM intensity (i.e., delta power) and NREM duration. The absence of a decline in REM sleep duration on school-night sleep and its age-dependent increase in extended sleep pose new challenges to understanding its physiological role. Whatever their ultimate explanation, these robust findings demonstrate that the two physiological states of human sleep respond differently to the maturational brain changes of adolescence. Understanding these differences should shed new light on both brain development and the functions of sleep.  相似文献   

19.
In mammals, sleep is categorized by two main sleep stages, rapid eye movement (REM) and non-REM (NREM) sleep that are known to fulfill different functional roles, the most notable being the consolidation of memory. While REM sleep is characterized by brain activity similar to wakefulness, the EEG activity changes drastically with the emergence of K-complexes, sleep spindles and slow oscillations during NREM sleep. These changes are regulated by circadian and ultradian rhythms, which emerge from an intricate interplay between multiple neuronal populations in the brainstem, forebrain and hypothalamus and the resulting varying levels of neuromodulators. Recently, there has been progress in the understanding of those rhythms both from a physiological as well as theoretical perspective. However, how these neuromodulators affect the generation of the different EEG patterns and their temporal dynamics is poorly understood. Here, we build upon previous work on a neural mass model of the sleeping cortex and investigate the effect of those neuromodulators on the dynamics of the cortex and the corresponding transition between wakefulness and the different sleep stages. We show that our simplified model is sufficient to generate the essential features of human EEG over a full day. This approach builds a bridge between sleep regulatory networks and EEG generating neural mass models and provides a valuable tool for model validation.  相似文献   

20.
Sleep EEG spectral analysis in a diurnal rodent:Eutamias sibiricus   总被引:2,自引:0,他引:2  
1. Sleep was studied in the diurnal rodent Eutamias sibiricus, chronically implanted with EEG and EMG electrodes. Analysis of the distribution of wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep over the 24 h period (LD 12:12) showed that total sleep time was 27.5% of recording time during the 12 h light period and 74.4% during the 12 h dark period. Spectral analysis of the sleep EEG revealed a progressive decay in delta power density in NREM sleep during darkness. Power density of the higher frequencies increased at the end of darkness. Power density of the higher frequencies decreased and that of the lower frequencies increased during light. 2. Analysis of the distribution of vigilance states under three different photoperiods (LD 18:6; 12:12; 6:18) revealed that changes in daylength mainly resulted in a redistribution of sleep and wakefulness over light and darkness. Under long days the percentage of sleep during light was enhanced. The time course of delta power density in NREM sleep was characterized by a long rising part and a short falling part under long days, while a reversed picture emerged under short days. As a consequence, the power density during days. As a consequence, the power density during light was relatively high under long days. 3. After 24 h sleep deprivation by forced activity, no significant changes in the percentages of wakefulness and NREM were observed, whereas REM sleep was slightly enhanced. EEG power density, however, was significantly increased by ca. 50% in the 1.25-10.0 Hz range in the first 3 h of recovery sleep. This increase gradually decayed over the recovery night. 4. The same 24 h sleep deprivation technique led to a ca. 25% increase in oxygen consumption during recovery nights. While the results of the EEG spectral analysis are compatible with the hypothesis that delta power density reflects the 'intensity' of NREM sleep as enhanced by prior wakefulness and reduced by prior sleep, such enhanced sleep depth after sleep deprivation is not associated with reduced energy expenditure as might be anticipated by some energy conservation hypotheses on sleep function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号