首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a new computational technique to predict conformationally switching elements in proteins from their amino acid sequences. The method, called ASP (Ambivalent Structure Predictor), analyzes results from a secondary structure prediction algorithm to identify regions of conformational ambivalence. ASP identifies ambivalent regions in 16 test protein sequences for which function involves substantial backbone rearrangements. In the test set, all sites previously described as conformational switches are correctly predicted to be structurally ambivalent regions. No such regions are predicted in three negative control protein sequences. ASP may be useful as a guide for experimental studies on protein function and motion in the absence of detailed three-dimensional structural data.  相似文献   

2.
In order to elucidate the molecular basis of energy transduction by myosin as a molecular motor, a fluorescent ribose-modified ATP analog 2'(3')-O-[6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl]-ATP (NBD-ATP), was utilized to study the conformational change of the myosin motor domain during ATP hydrolysis using the fluorescence resonance energy transfer (FRET) method. The FRET efficiency from the fluorescent probe, BD- or AD-labeled at the reactive cysteine residues, SH1 (Cys 707) or SH2 (Cys697), respectively, to the NBD fluorophore in the ATP binding site was measured for several transient intermediates in the ATPase cycle. The FRET efficiency was greater than that using NBD-ADP. The FRETs for the myosin.ADP.AlF4- and myosin.ADP.BeFn ternary complexes, which mimic the M*.ADP.P(i) state and M.ATP state in the ATPase cycle, respectively, were similar to that of NBD-ATP. This suggests that both the SH1 and SH2 regions change their localized conformations to move closer to the ATPase site in the M*.ATP state and M**.ADP.P(i) state than in the M*.ADP state. Furthermore, we measured energy transfer from BD in the essential light chain to NBD in the active site. Assuming the efficiency at different states, myosin adopts a conformation such that the light chain moves closer to the active site by approximately 9 A during the hydrolysis of ATP.  相似文献   

3.
Kinesin, a microtubule-based motor, and myosin, an actin-based motor, share a similar core structure, indicating that they arose from a common ancestor. However, kinesin lacks the long lever-arm domain that is believed to drive the myosin power stroke. Here, we present evidence that a much smaller region of ca. 10-40 amino acids serves as a mechanical element for kinesin motor proteins. These 'neck regions' are class conserved and have distinct structures in plus-end and minus-end-directed kinesin motors. Mutagenesis studies also indicate that the neck regions are involved in coupling ATP hydrolysis and energy into directional motion along the microtubule. We suggest that the kinesin necks drive motion by undergoing a conformational change in which they detach and re-dock onto the catalytic core during the ATPase cycle. Thus, kinesin and myosin have evolved unique mechanical elements that amplify small, nucleotide-dependent conformational changes that occur in their similar catalytic cores.  相似文献   

4.
MOTIVATION: Conformational flexibility is essential to the function of many proteins, e.g. catalytic activity. To assist efforts in determining and exploring the functional properties of a protein, it is desirable to automatically identify regions that are prone to undergo conformational changes. It was recently shown that a probabilistic predictor of continuum secondary structure is more accurate than categorical predictors for structurally ambivalent sequence regions, suggesting that such models are suited to characterize protein flexibility. RESULTS: We develop a computational method for identifying regions that are prone to conformational change directly from the amino acid sequence. The method uses the entropy of the probabilistic output of an 8-class continuum secondary structure predictor. Results for 171 unique amino acid sequences with well-characterized variable structure (identified in the 'Macromolecular movements database') indicate that the method is highly sensitive at identifying flexible protein regions, but false positives remain a problem. The method can be used to explore conformational flexibility of proteins (including hypothetical or synthetic ones) whose structure is yet to be determined experimentally. AVAILABILITY: The predictor, sequence data and supplementary studies are available at http://pprowler.itee.uq.edu.au/sspred/ and are free for academic use.  相似文献   

5.
An analysis of peptide segments with identical sequence but that differ significantly in structure was performed over non-redundant databases of protein structures. We focus on those peptides, which fold into an alpha-helix in one protein but a beta-strand in another. While the study shows that many such structurally ambivalent peptides contain amino acids with a strong helical preference collocated with amino acids with a strong strand preference, the results overwhelmingly indicate that the peptide's environment ultimately dictates its structure. Furthermore, the first naturally occurring structurally ambivalent nonapeptide from evolutionary unrelated proteins is described, highlighting the intrinsic plasticity of peptide sequences. We even find seven proteins that show structural ambivalence under different conditions. Finally, a computer algorithm has been implemented to identify regions in a given sequence where secondary structure prediction programs are likely to make serious mispredictions.  相似文献   

6.
The 1979 amino acid sequence of embryonic chicken gizzard smooth muscle myosin heavy chain (MHC) have been determined by cloning and sequencing its cDNA. Genomic Southern analysis and Northern analysis with the cDNA sequence show that gizzard MHC is encoded by a single-copy gene, and this gene is expressed in the gizzard and aorta. The encoded protein has a calculated Mr of 229 X 10(3), and can be divided into a long alpha-helical rod and a globular head. Only 32 to 33% of the amino acid residues in the rod and 48 to 49% in the head are conserved when compared with nematode or vertebrate sarcomeric MHC sequences. However, the seven residue hydrophobic periodicity, together with the 28 and 196 residue repeat of charge distribution previously described in nematode myosin rod, are all present in the gizzard myosin rod. Two of the trypsin-sensitive sites in gizzard light meromyosin have been mapped by partial peptide sequencing to 99 nm and 60 nm from the tip of the myosin tail, where these sites coincide with the two "hinges" for the 6 S/10 S transition. In the head sequence, several polypeptide segments, including the regions around the putative ATP-binding site and the reactive thiol groups, are highly conserved. These areas presumably reflect conserved structural elements important for the function of myosin. A multi-domain folding model of myosin head is proposed on the basis of the conserved sequences, information on the topography of myosin in the literature, and the predicted secondary structures. In this model, Mg2+ ATP is bound to a pocket between two opposing alpha/beta domains, while actin undergoes electrostatic interactions with lysine-rich surface loops on two other domains. The actin-myosin interactions are thought to be modulated through relative movements of the domains induced by the binding of ATP.  相似文献   

7.
Highsmith S  Polosukhina K  Eden D 《Biochemistry》2000,39(40):12330-12335
We have investigated coupling of lever arm rotation to the ATP binding and hydrolysis steps for the myosin motor domain. In several current hypotheses of the mechanism of force production by muscle, the primary mechanical feature is the rotation of a lever arm that is a subdomain of the myosin motor domain. In these models, the lever arm rotates while the myosin motor domain is free, and then reverses the rotation to produce force while it is bound to actin. These mechanical steps are coupled to steps in the ATP hydrolysis cycle. Our hypothesis is that ATP hydrolysis induces lever arm rotation to produce a more compact motor domain that has stored mechanical energy. Our approach is to use transient electric birefringence techniques to measure changes in hydrodynamic size that result from lever arm rotation when various ligands are bound to isolated skeletal muscle myosin motor domain in solution. Results for ATP and CTP, which do support force production by muscle fibers, are compared to those of ATPgammaS and GTP, which do not. Measurements are also made of conformational changes when the motor domain is bound to NDP's and PP(i) in the absence and presence of the phosphate analogue orthovanadate, to determine the roles the nucleoside moieties of the nucleotides have on lever arm rotation. The results indicate that for the substrates investigated, rotation does not occur upon substrate binding, but is coupled to the NTP hydrolysis step. The data are consistent with a model in which only substrates that produce a motor domain-NDP-P(i) complex as the steady-state intermediate make the motor domain more compact, and only those substrates support force production.  相似文献   

8.
Muscle contraction is caused by directed movement of myosin heads along actin filaments. This movement is triggered by ATP hydrolysis, which occurs within the motor domain of myosin. The mechanism for this intramolecular process remains unknown owing to a lack of ways to observe the detailed motions of each atom in the myosin molecule. We carried out 10-ns all-atom molecular dynamics simulations to investigate the types of dynamic conformational changes produced in the motor domain by the energy released from ATP hydrolysis. The results revealed that the thermal fluctuations modulated by perturbation of ATP hydrolysis are biased in one direction that is relevant to directed movement of the myosin head along the actin filament.  相似文献   

9.
BACKGROUND: Recent iterative methods for sequence alignment have indicated that the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. These alignments indicate that the core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. RESULTS: We report predicted structures for the six AAA modules in the beta heavy chain of axonemal dynein, based upon their homology to a template of structurally conserved regions derived from three AAA proteins with experimentally determined structures (pdb:1A5T, pdb:1DOO, and pdb:1NSF). The secondary structural elements of the AAA modules in dynein correspond to regions of sequence that are relatively well conserved in different dynein isoforms. The tertiary structure of each AAA module comprises a major alpha/beta N domain from which a smaller all-alpha C domain protrudes at an angle, as part of the putative nucleotide binding cavity. The structures of the six modules are assembled into a ring, approximately 125 A in diameter, that resembles the structure of the dynein motor unit observed by electron microscopy. CONCLUSION: The predicted structures are supported by procedures that assess global, regional, and local quality, with the module containing the hydrolytic ATP binding site being supported the most strongly. The structural resemblance of the dynein motor to the hexameric assembly of AAA modules in the hsp100 family of chaperones suggests that the basic mechanism underlying the ATP-dependent translocation of dynein along a microtubule may have aspects in common with the ATP-dependent translocation of polypeptides into the interior compartment of chaperones.  相似文献   

10.
The structure of an ATP-bound kinesin motor domain is predicted and conformational differences relative to the known ADP-bound form of the protein are identified. The differences should be attributed to force-producing ATP hydrolysis. Candidate ATP-kinesin structures were obtained by simulated annealing, by placement of the ATP gamma-phosphate in the crystal structure of ADP-kinesin, and by interatomic distance constraints. The choice of such constraints was based on mutagenesis experiments, which identified Gly-234 as one of the gamma-phosphate sensing residues, as well as on structural comparison of kinesin with the homologous nonclaret disjunctional (ncd) motor and with G-proteins. The prediction of nucleotide-dependent conformational differences reveals an allosteric coupling between the nucleotide pocket and the microtubule binding site of kinesin. Interactions of ATP with Gly-234 and Ser-202 trigger structural changes in the motor domain, the nucleotide acting as an allosteric modifier of kinesin's microtubule-binding state. We suggest that in the presence of ATP kinesin's putative microtubule binding regions L8, L12, L11, alpha4, alpha5, and alpha6 form a face complementary in shape to the microtubule surface; in the presence of ADP, the microtubule binding face adopts a more convex shape relative to the ATP-bound form, reducing kinesin's affinity to the microtubule.  相似文献   

11.
The crystal structure of the motor domain of Dictyostelium discoideum myosin-IE, a monomeric unconventional myosin, was determined. The crystallographic asymmetric unit contains four independently resolved molecules, highlighting regions that undergo large conformational changes. Differences are particularly pronounced in the actin binding region and the converter domain. The changes in position of the converter domain reflect movements both parallel to and perpendicular to the actin axis. The orientation of the converter domain is approximately 30 degrees further up than in other myosin structures, indicating that MyoE can produce a larger power stroke by rotating its lever arm through a larger angle. The role of extended loops near the actin-binding site is discussed in the context of cellular localization. The core regions of the motor domain are similar, and the structure reveals how that core is stabilized in the absence of an N-terminal SH3-like domain.  相似文献   

12.
The crystal structures of threonyl-tRNA synthetase (ThrRS) from Staphylococcus aureus, with ATP and an analogue of threonyl adenylate, are described. Together with the previously determined structures of Escherichia coli ThrRS with different substrates, they allow a comprehensive analysis of the effect of binding of all the substrates: threonine, ATP and tRNA. The tRNA, by inserting its acceptor arm between the N-terminal domain and the catalytic domain, causes a large rotation of the former. Within the catalytic domain, four regions surrounding the active site display significant conformational changes upon binding of the different substrates. The binding of threonine induces the movement of as much as 50 consecutive amino acid residues. The binding of ATP triggers a displacement, as large as 8A at some C(alpha) positions, of a strand-loop-strand region of the core beta-sheet. Two other regions move in a cooperative way upon binding of threonine or ATP: the motif 2 loop, which plays an essential role in the first step of the aminoacylation reaction, and the ordering loop, which closes on the active site cavity when the substrates are in place. The tRNA interacts with all four mobile regions, several residues initially bound to threonine or ATP switching to a position in which they can contact the tRNA. Three such conformational switches could be identified, each of them in a different mobile region. The structural analysis suggests that, while the small substrates can bind in any order, they must be in place before productive tRNA binding can occur.  相似文献   

13.
The molecular motor, myosin, undergoes conformational changes in order to convert chemical energy into force production. Based on kinetic and structural considerations, we assert that three crystal forms of the myosin V motor delineate the conformational changes that myosin motors undergo upon detachment from actin. First, a motor domain structure demonstrates that nucleotide-free myosin V adopts a specific state (rigor-like) that is not influenced by crystal packing. A second structure reveals an actomyosin state that favors rapid release of ADP, and differs from the rigor-like state by a P-loop rearrangement. Comparison of these structures with a third structure, a 2.0 angstroms resolution structure of the motor bound to an ATP analog, illuminates the structural features that provide communication between the actin interface and nucleotide-binding site. Paramount among these is a region we name the transducer, which is composed of the seven-stranded beta-sheet and associated loops and linkers. Reminiscent of the beta-sheet distortion of the F1-ATPase, sequential distortion of this transducer region likely controls sequential release of products from the nucleotide pocket during force generation.  相似文献   

14.
We isolated a cDNA encoding a novel unconventional myosin from scallop mantle tissue (scallop unconventional myosin: ScunM) and determined the nucleotide sequence. It comprises 2,739 bp with 5' and 3'-noncoding sequences and has an open reading frame of 2,334 bp that encodes 778 amino acids. While ScunM has a motor domain and a short tail domain without having light chain-binding IQ motifs like myosin XIV, the deduced amino acid sequence exhibits low homology, 30-36%, to known myosins. Phylogenetic analysis of the motor domain suggested that ScunM belongs to a novel unconventional myosin class. ScunM has an insertion of 67 amino acids in the putative actin-binding site (loop2 site). Western blot analysis with an antibody produced against the N-terminal region revealed that ScunM was strongly expressed in the mantle and mantle pallial cell layer of scallop.  相似文献   

15.
《FEBS letters》2014,588(24):4754-4760
We determined the crystal structure of the motor domain of human non-muscle myosin 2B (NM-2B) in a nucleotide-free state and at a resolution of 2.8 Å. The structure shows the motor domain with an open active site and the large cleft that divides the 50kDa domain in a closed state. Compared to other rigor-like myosin motor domain structures, our structure shows subtle but significant conformational changes in regions important for actin binding and mechanochemical coupling. Moreover, our crystal structure helps to rationalize the impact of myosin, heavy chain 9 (MYH9)-related disease mutations Arg709Cys and Arg709His on the kinetic and functional properties of NM-2B and of the closely related non-muscle myosin 2A (NM-2A).  相似文献   

16.
17.
The role of the interaction between actin and the secondary actin binding site of myosin (segment 565-579 of rabbit skeletal muscle myosin, referred to as loop 3 in this work) has been studied with proteolytically generated smooth and skeletal muscle myosin subfragment 1 and recombinant Dictyostelium discoideum myosin II motor domain constructs. Carbodiimide-induced cross-linking between filamentous actin and myosin loop 3 took place only with the motor domain of skeletal muscle myosin and not with those of smooth muscle or D. discoideum myosin II. Chimeric constructs of the D. discoideum myosin motor domain containing loop 3 of either human skeletal muscle or nonmuscle myosin were generated. Significant actin cross-linking to the loop 3 region was obtained only with the skeletal muscle chimera both in the rigor and in the weak binding states, i.e., in the absence and in the presence of ATP analogues. Thrombin degradation of the cross-linked products was used to confirm the cross-linking site of myosin loop 3 within the actin segment 1-28. The skeletal muscle and nonmuscle myosin chimera showed a 4-6-fold increase in their actin dissociation constant, due to a significant increase in the rate for actin dissociation (k(-)(A)) with no significant change in the rate for actin binding (k(+A)). The actin-activated ATPase activity was not affected by the substitutions in the chimeric constructs. These results suggest that actin interaction with the secondary actin binding site of myosin is specific for the loop 3 sequence of striated muscle myosin isoforms but is apparently not essential either for the formation of a high affinity actin-myosin interface or for the modulation of actomyosin ATPase activity.  相似文献   

18.
In order to investigate systematically substrate and cofactor-induced conformational changes in the enzyme dehydroquinate synthase (DHQS), eight structures representing a series of differently liganded states have been determined in a total of six crystal forms. DHQS in the absence of the substrate analogue carbaphosphonate, either unliganded or in the presence of NAD or ADP, is in an open form where a relative rotation of 11-13 degrees between N and C-terminal domains occurs.Analysis of torsion angle difference plots between sets of structures reveals eight rearrangements that appear relevant to domain closure and a further six related to crystal packing. Overlapping 21 different copies of the individual N and C-terminal DHQS domains further reveals a series of pivot points about which these movements occur and illustrates the way in which widely separated secondary structure elements are mechanically inter-linked to form "composite elements", which propagate structural changes across large distances.This analysis has provided insight into the basis of DHQS ligand-initiated domain closure and gives rise to the proposal of an ordered sequence of events involving substrate binding, and local rearrangements within the active site that are propagated to the hinge regions, leading to closure of the active-site cleft.  相似文献   

19.
Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ~72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ~40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(B)T of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va.  相似文献   

20.
Kinesin motor proteins drive intracellular transport by coupling ATP hydrolysis to conformational changes that mediate directed movement along microtubules. Characterizing these distinct conformations and their interconversion mechanism is essential to determining an atomic-level model of kinesin action. Here we report a comprehensive principal component analysis of 114 experimental structures along with the results of conventional and accelerated molecular dynamics simulations that together map the structural dynamics of the kinesin motor domain. All experimental structures were found to reside in one of three distinct conformational clusters (ATP-like, ADP-like and Eg5 inhibitor-bound). These groups differ in the orientation of key functional elements, most notably the microtubule binding α4–α5, loop8 subdomain and α2b-β4-β6-β7 motor domain tip. Group membership was found not to correlate with the nature of the bound nucleotide in a given structure. However, groupings were coincident with distinct neck-linker orientations. Accelerated molecular dynamics simulations of ATP, ADP and nucleotide free Eg5 indicate that all three nucleotide states could sample the major crystallographically observed conformations. Differences in the dynamic coupling of distal sites were also evident. In multiple ATP bound simulations, the neck-linker, loop8 and the α4–α5 subdomain display correlated motions that are absent in ADP bound simulations. Further dissection of these couplings provides evidence for a network of dynamic communication between the active site, microtubule-binding interface and neck-linker via loop7 and loop13. Additional simulations indicate that the mutations G325A and G326A in loop13 reduce the flexibility of these regions and disrupt their couplings. Our combined results indicate that the reported ATP and ADP-like conformations of kinesin are intrinsically accessible regardless of nucleotide state and support a model where neck-linker docking leads to a tighter coupling of the microtubule and nucleotide binding regions. Furthermore, simulations highlight sites critical for large-scale conformational changes and the allosteric coupling between distal functional sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号