首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 964 毫秒
1.
Grange, R. I. 1987. Carbon partitioning in mature leaves ofpepper: Effects of transfer to high or low irradiance.—J.exp. Bot. 38: 77–83. Pepper plants were grown at an irradiance of either 55 W m–2or 90 W m–2 PAR. Changes in net photosynthesis, carbonexport, starch and sugar contents in a single mature leaf weremeasured at intervals for 8 d following transfer of plants betweenthe two irradiances. On transfer from low to high irradiance,the net photosynthesis rate increased immediately but exportrate increased only slowly, to a maximum after 3 d. While assimilationexceeded export more starch and sucrose accumulated in the dayand remained in the leaf at the end of each night. Hexose contentsat the end of night remained low and constant, but the daytimemaximum rose during the first 2 d from transfer, thereafterreturning to pre-transfer contents. Following transfer of leaves from high to low irradiance starchpresent in the leaf provided sufficient reserves to maintainthe rate of export for one day. Subsequently, the sucrose contentfell and the export rate declined to near that in leaves grownin low irradiance. Sucrose and hexose accumulation following transfer from lowto high irradiance suggests a limitation to export ‘downstream’from sucrose synthesis, probably in the loading step from mesophyllto phloem. Key words: Pepper, export, starch, loading  相似文献   

2.
Carbon Partitioning and Export in Mature Leaves of Pepper (Capsicum annuum)   总被引:1,自引:0,他引:1  
The partitioning of recently fixed carbon by mature pepper leaveshas been examined over a 10 h photoperiod using a constant specificradioactivity 14CO2 labelling technique. Changes in the ratesof carbon partitioning into export, starch, sucrose and hexoseswere examined following changes in irradiance during the photoperiod.Leaves grown under 80 W m–2 PAR were exposed to this irradiancefor the first 4 h of the photoperiod then the iiradiance wasdecreased. Leaves accumulated sufficient reserves in the first4 h to maintain export at the initial rate (approximately 20µg carbon cm–2 leaf h–1) over the following6 h of the photoperiod when the net photosynthesis rate (Pn)was decreased to 10% of the initial rate by the decreased irradiance.Export was initially maintained by the depletion of sucroseand hexose and then by carbon from the degradation of starchin the light. If leaves were exposed to low irradiance at the beginning ofthe photoperiod, then the export rate was linearly related tothe Pn during that period. When Pn exceeded that required tomaintain an export rate of approximately 20 µg carboncm–2 h–1, then more carbon was partitioned intostarch. At low initial irradiance, a greater proportion of photosynthatewas partitioned into export rather than starch and at high initialirradiancc the reverse occurred. There was a linear relationship between starch accumulationrate and Pn for all leaves but the relationship between Pn andexport rate was only significant for leaves with low levelsof reserve carbon. The results show that mature pepper leaves subjected to differentirradiances maintain constant export rates through alterationsof carbon partitioning. Export at low Pn is maintained at theexpense of sugar and starch reserves, with partitioning in highirradiance being predominantly to starch. Key words: Carbon partitioning, Starch, Export, Pepper (Capsicum annuum L.)  相似文献   

3.
The role of the mature leaf in supplying carbon for growth inother parts of the plant was examined using a steady-rate 14CO2labelling technique. The pattern of events occurring in theleaf during one complete 24 h cycle was compared in plants grownin, and adapted to long and short photoperiods. The rates ofleaf photosynthesis, night respiration and daytime loss of carbonfrom the growing regions of the plant Were similar in long orshort photoperiods. As a percentage of the total carbon fixedduring the photoperiod, total respiration was c. 50% for shortday plants but only 25% for long day plants. Thirty to forty per cent of the carbon fixed during the photoperiodwas retained in the leaf for export during darkness—therest was exported immediately. In leaves of short day plantssucrose and starch were the main form of the stored carbon.By the end of the dark period these compounds had been almostcompletely depleted. In leaves of long day plants there weremuch larger basal levels of sucrose and starch, upon which thediurnal variations were superimposed. These leaves also accumulatedfructosans. The delay in starch remobilization previously foundin leaves of short day plants was also evident in leaves oflong day plants even though large concentrations of sucroseand fructosans were present This suggests the presence of distinctpools of sucrose in the leaf.  相似文献   

4.
Short-day photoperiods can increase the partitioning of assimilatesto filling seeds of soybean (Glycine max L. Merr.), resultingin higher seed growth rates. The plant growth substance ABAhas been implicated in the regulation of assimilate transferwithin filling soybean seeds. Thus, we hypothesized that anincreased concentration of endogenous ABA in seeds may enhancesucrose accumulation and seed growth rate of soybeans exposedto short-day photoperiods. Plants of cv. Hood 75 were grownin a greenhouse under an 8-h short-day photoperiod (SD) until11 d after anthesis (DAA) of the first flower, when half ofthe plants were transferred to a night-interruption (NI) treatment(3 h of low-intensity light inserted into the middle of thedark period). Plants remaining in SD throughout seed developmenthad seed growth rates 43% higher than that of plants shiftedto NI (7·6 mg seed–1 d–1 vs. 5·3 mgseed–1 d–1). On a tissue-water basis, the concentrationof ABA in SD seeds increased rapidly from 7.6 µmol l–1at 11 DAA to 65·2 µmol l–1 at 18 DAA, butthen declined to 6·6 µmol l–1 by 39 DAA.In contrast, the concentration of ABA increased more slowlyin NI seeds, reaching only 47·4 µmol l–1by 18 DAA, peaking at 57·0 µmol l–1 on 25DAA, and declining to 10·2 µmol l–1 by 39DAA. The concentration of sucrose in SD embryos peaked at 73·5mmol l–1 on 25 DAA and remained relatively constant forthe remainder of the seed-filling period. In NI, the concentrationof sucrose reached only 38·3 mmol 1–1 by 25 DAA,and peaked at 61·5 µmol l–1 on 32 DAA. Thusin both SD and NI, sucrose accumulated in embryos only afterthe peak in ABA concentration, suggesting that ABA may havestimulated sucrose movement to the seeds. The earlier accumulationof ABA and sucrose in SD suggests that ABA may have increasedassimilate availability during the critical cell-division period,thus regulating cotyledon cell number and subsequent seed growthrate for the remainder of the seed-filling period. Glycine max L. Merr. cv. Hood 75, soybean, assimilate partitioning, abscisic acid, photoperiod, source-sink  相似文献   

5.
The size, shape and number of starch grains have been determinedin mature pepper leaves taken from plants grown under definedconditions of daylength and irradiance. Starch grains were 0.2–7.0 µm diameter and 02–1.5µm in thickness. Grain diameter was positively relatedto daylength and the number of grains per unit leaf area inverselyrelated to daylength. Mean grain diameter was also positivelyrelated to leaf area. Analysis of starch grains from leaves having a wide range ofstarch contents showed that grain diameter was linearly relatedto leaf starch content. However, mean diameter only doubledwith a 10-fold increase in starch content. The number of grainsincreased from approximately 5 ? 1010 m–2 of leaf to over200 ? 1010 m–2 with increasing starch content. The totalsurface area of grains increased from less than 1.0 m2 m–2leaf to over 20 m2 m–2 leaf. Leaf starch grain shape and size are compatible with both efficientstorage as disc-shaped chloroplasts and the maintenance of hightotal grain surface area by increasing grain number more thandiameter. Possible mechanisms for the control of grain initiation,growth and degradation are suggested. Key words: Starch grains, size, shape, pepper leaves  相似文献   

6.
The bloom-forming marine dinoflagellate Gyrodinium cf. aureolumwas grown in batch cultures over a range of irradiances (35–380µmolm–2 s–1 and growth, photosynthesis and respirationrates determined. Saturation of growth occurred at irradiancesof 100µmol m–2 s–1 Below this light level,decreases in growth rates and cell size, and a relative increasein carbon specific respiration rates, were observed. On theother hand, photosynthesis-irradiance relationships determinedfrom dissolved oxygen incubations showed that on a cellularand carbon basis, cultures grown at low irradiances had higherrates of light-limited and light-saturated photosynthesis, mainlyas a result of large increases in cell chlorophyll content.This adaptation strategy enables low-light-grown organisms toexploit available high irradiance through a relatively highphotosynthetic capacity. In cells grown at higher light levels(>100µmol m–2 s–1), excess photosynthatemay be diverted to storage rather than used for growth.  相似文献   

7.
For Gyrodinium aureolum significant irradiance and daylengtheffects were found on the division rate and on the growth-relevantChla-normalized photosynthetic rate (gPB). Optimum conditionsof irradiance and daylength were found at 230 µmol m–2s–1 and 14 h for the division rate, and at >260 µmolm–2 s–1 and <6 h for gPB.gPB showed no photoinhibition,while the division rate decreased markedly at irradiances abovesaturation. This difference and the difference in optimum irradiancebetween the division rate and gPB are explained by a decreasein cellular Chla/carbon ratio with increasing irradiance. Thecellular content of carbon and nitrogen decreased significantlywith increasing irradiance. Total phosphorus was independentof irradiance and daylength. Below the saturation irradiancefor gPB the daily Chla-normalized carbon yield may be describedas an exponential function of the daily irradiance (irradiancex daylength).  相似文献   

8.
The dependence of photosynthetic capacity on imported and locally-assimilatedsupplies of carbon during leaf development under different irradianceswas investigated in Glycine max. The potential export of carbonto the developing, mainstem trifoliate leaf (source-potential)was restricted non-destructively by shading all lower, sourceleaves (source-shading), while local photosynthesis was modifiedconcurrently by exposing the young leaf to different light levelsduring development. When source-shading was applied below the2nd mainstem trifoliate leaf at the bud stage of development,photosynthetic capacity was unaffected in leaves which had developedunder moderate and low irradiances (500 and 250 µmol PARm –2 s–1 respectively), but was reduced significantlyin leaves developed under a high irradiance (900 µmolPAR m –2 s–1). If source-shading was applied beneaththe 2nd leaf at unfolding, the reduction of photosynthetic capacityunder the high irradiance was relatively minor. The photosyntheticcapacity attained by the 2nd leaf during development under differentirradiances was influenced by the previous light environmentof the whole plant. In contrast to the 2nd leaf, the photosyntheticcapacities of the 1st and 4th mainstem leaves were relativelyunaffected by source-shading, even under the highest light regime.While photosynthetic capacity showed a widespread insensitivityto the light level of the lower region of the canopy, source-shadingreduced final leaf size irrespective of node position or localirradiance during leaf development. These effects were not relatedto differences in daily photosynthesis by the expanding leaf,and are discussed in terms of the source/sink balance of thedeveloping leaf. Key words: Glycine max, source-shading, photosynthetic capacity  相似文献   

9.
Nitrate Accumulation and its Relation to Leaf Elongation in Spinach Leaves   总被引:6,自引:0,他引:6  
The leaf elongation rate (LER) of spinach leaves during theday was twice that during the night when grown at a photon fluxdensity of 145 µmol m–2 s–1. All leaves showedthe same LER-pattern over 24 h. Due to low turgor, LER was lowin the afternoon and in the first hours of the night until wateruptake restored full turgor. Osmotic potential remained constantdue to increased nitrate uptake and starch degradation in thisperiod. LER increased to high rates in the second part of thenight and in the morning. The lower rate in the dark comparedto the light was not caused by the lower night temperatures,as increased photon flux density during growth resulted in equalrates in the light and the dark. Increased relative humiditydecreased LER and afternoon rates were most sensitive to waterstress. A ‘low light’ night period did not changeLER-pattern during the night or on the following day. We concludethat nitrate is not an obligatory osmoticum during the nightand can be exchanged for organic osmotica without decreasingLER. During the night the turgor is first restored by increasingwater uptake, nitrate uptake and starch degradation. This resultedin increased leaf fresh weight in this period. Thereafter, elongationincreased by simultaneous uptake of nitrate and water. Nitrateconcentration was, therefore, constant in the older leaves.In the younger leaves nitrate concentration increased to replacesoluble carbohydrates. The vacuoles of the old leaves were filledwith nitrate before those of the young leaves. Key words: Spinacia oleracea L., nitrate accumulation, osmotic potential, organic acids  相似文献   

10.
The rate of carbon transport based on the carbon balance overa 6-h period from a mature tomato leaf was measured overa rangeof net photosynthetic rates from 0.1 to 4.9 mg C dm–2h–1 under light flux densities from 4 to 140 W m–2.A proportional relationship was demonstrated between the rateof carbon transport and carbon fixation when the carbon fixationrate was higher than 2 mg C dm–2 h–1.Below a carbonfixation rate of 1 mg C dm–2 h–1, the rate of carbonexport was maintained at 1 mg C dm–2 h–1 at theexpense of the breakdown of starch. A highly significant correlationwas observed between sucrose concentration and the rate of carbontransport. The sucrose concentration in the leaf appears tobe the factor controlling carbon export.  相似文献   

11.
Spring wheat plants were grown in a cage with a glass roof untilthree days after anthesis and then subjected to treatments inconstant environment rooms with any one of all combinationsof four irradiances and two concentrations of carbon dioxide.The photoperiod was 16 h and day/night temperatures 19?C/14?C.Growth and yield of grain were saturated at the two brightestirradiances. Carbon dioxide enrichment from 350 to 1200 mm3dm–3 increased shoot dry weight and grain yield at finalharvest at all irradiances, by averages of 10.5 (not significant)and 23.5 (significant) percent respectively. However, increasingthe irradiance from 150 to 613 µE m–2 s–1caused much larger yield increases (approximately 3-fold). Increasedgrain production by increased light was caused by both increasesin dry weight per grain and by increases in grain number perspikelet. The increase caused by CO2 enrichment was mainly becauseof increased dry weight per grain. Increase in ear dry weightcaused by CO2 enrichment took place between 30 and 60 d afteranthesis. The increase in shoot dry weight took place immediatelyafter exposure to increased CO2 from 3 to 15 d after anthesis.Net photosynthesis by flag leaves on the main shoots was almostdoubled 16 d after anthesis by the CO2 enrichment even thoughstomatal resistance was also doubled. However, this increasewas not reflected by a proportional increase in yield, probablybecause increased mutual shading by bigger stems and late tillersreduced total assimilation and because of increased respirationby the shoots. The increase in photosynthesis was not due toa decrease in photorespiration but to an increase in gross photosynthesis. Key words: CO2enrichment, Photosynthesis, Photorespiration  相似文献   

12.
Spring wheat (Triticum aestivum cv. Warimba) plants were grownin a controlled environment (20°C) in two photoperiods (8or 16 h). In the first instance, plants were maintained in eachof the photoperiods from germination onwards at the same irradiance(375 µE m–2 s–1). In the second case, allplants were grown in a long photoperiod until 4 days after double-ridgeinitiation when half the plants were transferred to a shortphotoperiod with double the irradiance (16 h photoperiod at225 or 8 h at 475 µE –2 s–1). The rates of growth and development of the apices were promotedby the longer photoperiod in both experiments. Shoot dry weightgain was proportional to the total light energy received perday whereas the dry weight of the shoot apex increased withincreasing photoperiod even when the total daily irradiancewas constant. The principal soluble carbohydrate present in the shoot apexwas sucrose, although low concentrations of glucose and fructosewere found in the apices of long photoperiod plants late indevelopment. Sucrose concentration was invariably greater inthe slow-growing apices of short photoperiod plants, but roseto approach this level in the long photoperiod plants when theterminal spikelet had been initiated. Triticum aestivum, wheat, apex, spikelet initiation, photoperiod, flower initiation  相似文献   

13.
Seedlings of Stylosanthes guianensis var. guianensis were grownin long (14 h) days in five temperature regimes for varyingperiods before transfer to short (11 h) days at 30 ?C/21 ?C.The juvenile phase before seedlings responded to inductive conditionswas c. 45–50 d, 50–60 d and 60–70 d for cv.Schofield, cv. Cook and C.P.I. 34906 respectively, which ispositively related to their critical photoperiod for flowering.Temperatures favourable for growth (e.g. 30 ?C/26 ?C) reducedthe juvenile phase in C.P.I. 34906 and in Cook, which did notflower in 11 h days unless previously exposed to more than 18long days. In a second experiment cv. Cook was confirmed as a long-shortday plant. Seedlings were grown for 50 d in a glasshouse withnatural daylength extended to 13, 14, 16 or 24 h before transferto 12 h photoperiods. Cook floral development was positivelyrelated to daylength provenance before transfer and plants incontinuous 12 h did not flower. Shortening daylength after 48 cycles of 12 h to 11.75 h didnot result in continued floral development in Cook plants butcv. Graham plants were initiated or transitional by 75 d. Key words: Stylosanthes guianensis, Photoperiod, Temperature, Flowering  相似文献   

14.
The photosynthetic rate measured at 20°C was higher in ricegrown under 20/18°C day/night temperature and 350 µmoIquanta m–2s–1 than in rice grown under 25/20°Cand 1,000 µmol quanta m–2s–1, whereas therewas no difference in the photosynthetic rate measured at 25°Cbetween rice grown in these two ways. This difference was suggestedto be caused by an enhanced ribulose-l,5-bis-phosphate-regenerationcapacity in the low-temperature/ir-radiance-grown rice. (Received July 14, 1998; Accepted September 25, 1998)  相似文献   

15.
Six potato genotypes with different degrees of heat tolerancewere grown in pots at 38/25 'b0C maximum/minimum temperatureat 14 h daylength under natural light glasshouse conditions.Prior to sampling, the plants were given a 14 h dark period.Photosynthesis was measured at 28 'b0C and at a saturating lightintensity of more than 1200 µEm-2 s-1. During the optimumphotosynthetic period (09.00–12.30 h), the leaves of heat-tolerantpotato genotypes (DTO-28, Norchip, and Desiree) had 4–5times more soluble sugars (mainly sucrose) and higher sucrose-phosphatesynthase activity than the leaves of the heat-susceptible genotypes(Kufri Jyoti, Kufri Chandramukhi, and Kufri Muthu). However,starch accumulation in leaves of susceptible genotypes was abouttwice that in tolerant genotypes. All susceptible genotypesshowed a low rate of assimilate transport from leaves and ahigher shoot/root ratio which indicated that the shoot remainedthe predominant sink for photosynthate. Activities of amylaseand invertase in leaves were also higher in susceptible genotypes.It is suggested that the poor yield of heat-susceptible genotypesat high temperature and long day conditions is related to insufficientavailability of the transportable sugar, sucrose. Key words: Solarium tuberosum, carbon partitioning, heat stress  相似文献   

16.
Uniculm barley plants were grown in 8 h photoperiods at a quantumflux density of 655 µE m–2 s–1. Groups ofplants were transferred to four different light environmentsfor one 8 h photoperiod (106, 270, 665, and 975 µE m–2s–1) and harvested at intervals throughout the succeedingdark period for subsequent carbohydrate analysis of the youngestmature leaf. Sucrose was the predominant carbohydrate in the leaves (attaininga level of c. 100 mg dm–2 after 8 h at 975 µE m–2s–1) but starch was also of significance (20 mg dm–2after 8 h at 975 µE m–2 s–1). During the dark period, following a photoperiod at the threehighest light levels (270, 665, and 975 µE m–2 s–1),sucrose was exported first while the starch level remained fairlyconstant. When the-sucrose level fell to 15–20 mg dm–2starch degradation began. This critical sucrose level was reachedearlier in those plants subjected to lower quantum flux densitiesduring the preceding photoperiod. The delay in the remobilizationof starch suggests an important regulatory mechanism which maybe dependent upon the sucrose level. At 106 µE m–2s–1 the sucrose level rose to only 10 mg dm–2. Herethere was no discernible delay in the depletion of sucrose orstarch.  相似文献   

17.
Whitehead, D. C. and Lockyer, D. R. 1986. The influence of theconcentration of gaseous ammonia on its uptake by the leavesof Italian ryegrass, with and without an adequate supply ofnitrogen to the roots.—J. exp. Bot. 38: 818–827. Plants of Italian ryegrass (Lolium multiflorum Lam.) were grownin pots of soil with two rates of 15N-labclled nitrate, oneproviding adequate, and the other less than adequate, N formaximum growth. After 25 d in a controlled environment cabinet,the plants were transferred to chambers and exposed for 33 dto NH3in the air at one of nine concentrations ranging from14 to 709 µg NH3 m–3. Increasing the concentrationof NH3 in the air increased the dry weight of the shoots ofplants grown at the lower but not the higher rate of nitrate.The content of total N in the plant shoots (% dry weight) waslinearly related to NH3 concentration; at 709 µg NH3 andin both sets of plants it was more than double the content at14 µg NH3 m–3. Calculations, based on 15N enrichment,indicated that the amount of N taken up from the NH3 per unitleaf area increased linearly with increasing concentration ofNH3 in the air uptake (µg dm–2 h–1) = 0.1009xat the lower rate of nitrate and 0-0829x at the higher rateof nitrate, where x is the concentration of NH3 in the air expressedas µg NH3m–3. The proportion of the total plant N that was derived from theNH3 ranged from 4?0% at a concentration of 14 µg NH3 m–3with the higher rate of nitrate addition to 77?5% at a concentrationof 709 µg m–3 with the lower rate of nitrate addition.The proportions of the total N in the water-insoluble proteinof the leaf tissue that were derived from nitrate and gaseousNH3 were similar to the proportions in the whole leaf material. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

18.
The puhrinule of the terminal leaflet in the trifoliate leafof bean (Phaseolus vulgaris L.) responds to its continuous exposureto directional overhead light by increasing the elevation ofits attached lamina. Blue light drives this response, but theeffectiveness of unfiltered white light equalled, or exceededthe effectiveness of blue light at equivalent irradiances (200–800µmol m–2 s–1). Adding red light to blue lightenhanced the initial rate of response, and increased its steady-state.These effects of red light increased with irradiance. Adding200–800 µmol m–2 s–1 red light to 50µmol m–2 s–1 blue light was more effectivein enhancing the initial rate of response than adding blue lightat equivalent irradiances, whereas added blue light was moreeffective in increasing the steady-state. In continuous bluelight the initial (maximal) angular velocity of laminar reorientation,as well as the eventual steady-state of the response increasedlinearly with log PFD (up to 800 µmol m–2s–2).Laminar reorientation also took place in continuous red lightby itself, and the angular velocity of the response was initiallyhigh, then became considerably slower. The initial phase wasapparently independent of irradiance up to PFD 100 µmolm–2 s–1 but increased progressively with log PFDat higher irradiances. During the second phase, the rate increasedlinearly with irradiance, becoming saturated at PFD 200 µmolm–2 s–1. Key words: Phaseolus, phototropism, pulvinule, spectral dependence, trifoliate leaf movements  相似文献   

19.
We grew water hyacinth [Eichhornia crassipes (Mart.) Solms]for 60 days in a greenhouse under natural light and in a controlledenvironment room at 31/25?C day/night temperatures and 90, 320and 750/µEm–2sec–1. We then determined maximumphotosynthetic rates in 21% and 1% oxygen, stomatal diffusionresistances, contents of chlorophyll and soluble protein, andthe size and density of the photosynthetic units (PSU) in representativeleaves from the four treatments. In air containing 21% oxygen,maximum photosynthetic rates were 14, 27 and 29 mg CO2 dm–2hr–1for plants grown in artificial light at 90, 320 and 750µEm–2sec–1,respectively. Plants grown in natural light (maximum of 2000µEm–2sec–1) had maximum photosynthetic ratesof 34 mg CO2 dm–2hr–1. In all treatments, photosyntheticrates in 1% oxygen were about 50% greater than rates in normalair, indicating the presence of photorespiration in water hyacinth.There was no apparent relationship between maximum photosyntheticrate per unit leaf area and stomatal conductance, chlorophyllcontent per unit area, or PSU density per unit area. However,the higher maximum photosynthetic rates were associated withgreater mesophyll conductances, specific leaf weights and proteincontents per unit area. When plants grown at 90µEm–2sec–1for 120 days were transferred to 750µEm–2sec–1for 5 days, only young leaves that were just beginning to expandat the time of transfer exhibited adaptation to the higher irradiance.The 40% increase in light-saturated photosynthetic rate in theseyoung leaves was associated with increases in mesophyll conductance,soluble protein content per unit area, and specific leaf weight. 1 Mississippi Agricultural and Forestry Experiment Station cooperating. (Received July 19, 1978; )  相似文献   

20.
BESFORD  R.T. 《Annals of botany》1979,44(2):153-161
The relation between tomato leaf acid phosphatase activity andleaf tissue P content has been examined, and a study made ofthe effects of leaf development, variation in nitrogen supply,and variation in the growing medium on this relationship. Tomatoplants were grown in sand and given various concentrations ofphosphate. Plants were also grown for an initial period in peatcontaining an adequate level of phosphate, then transferredto peat to which was added 0 or 2.3 kg superphosphate m–3and supplied with either 50 of 300 µg N ml–1. Expressed on a unit tissue f. wt basis, acid phosphatase activityin the control plants in sand (given 41 µg P mlminus;1)was highest in extracts from the expanding leaves and decreasedwith leaf maturity. However, when given a reduced supply ofphosphate, the enzyme activity in the more mature leaves wasequal to, or greater than, that in the expanding leaves. Thephosphatase activity increased first in the young, fully-expandedleaves and in the mature leaves (with 4.1 µg P ml–1),but did not increase in the expanding leaves until the supplywas restricted to 2.1 µg P ml–1. On closer examination,the increase in enzyme activity appeared to be associated withthe P level in the leaf tissues, the activity increasing whenthe level fell below about 0.25 per cent (g P per 100 g drywt tissue). The same relation was found with the plants grownin peat, and was independent of the concentration of nitrogensupplied to the plants. The fully expanded leaves showed the best enzyme response whenthe phosphate supply was restricted and the activity reflectedclosely the local levels of tissue P. The assay of the enzymein unpurified leaf extracts is simple and rapid, and could beused in a test to detect P-deficiency in tomato plants. Lycopersicon esculentum L, tomato, acid phosphatase activity, phosphorus status  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号