首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Widespread alteration of the genomic DNA is a hallmark of tumors, and alteration of genes involved in DNA maintenance have been shown to contribute to the tumorigenic process. The DNA polymerase zeta of Saccharomyces cerevisiae is required for error-prone repair following DNA damage and consists of a complex between three proteins, scRev1, scRev3, and scRev7. Here we describe a candidate human homolog of S. cerevisiae Rev7 (hREV7), which was identified in a yeast two-hybrid screen using the human homolog of S. cerevisiae Rev3 (hREV3). The hREV7 gene product displays 23% identity and 53% similarity with scREV7, as well as 23% identity and 54% similarity with the human mitotic checkpoint protein hMAD2. hREV7 is located on human chromosome 1p36 in a region of high loss of heterozygosity in human tumors, although no alterations of hREV3 or hREV7 were found in primary human tumors or human tumor cell lines. The interaction domain between hREV3 and hREV7 was determined and suggests that hREV7 probably functions with hREV3 in the human DNA polymerase zeta complex. In addition, we have identified an interaction between hREV7 and hMAD2 but not hMAD1. While overexpression of hREV7 does not lead to cell cycle arrest, we entertain the possibility that it may act as an adapter between DNA repair and the spindle assembly checkpoint.  相似文献   

2.
Lin W  Wu X  Wang Z 《Mutation research》1999,433(2):89-98
DNA damage can cause mutations which in turn may lead to carcinogenesis. In the yeast Saccharomyces cerevisiae, DNA damage-induced mutagenesis pathway requires the REV3 gene. It encodes the catalytic subunit of DNA polymerase zeta that specifically functions in translesion DNA synthesis. We have cloned a cDNA of the human homologue of REV3 (hREV3), which consists of 10,716 bp and codes for a protein of 3130 amino acid residues (352,737 Da). Its C-terminal 755 amino acids show extensive homology with the yeast protein at the C-terminus: 43% identity and 74% similarity. This region contains the six highly conserved DNA polymerase motifs. Furthermore, we have identified four sequence motifs in the N-terminal region outside the polymerase domain that are conserved in DNA polymerase delta from various sources. Three of which are present in DNA polymerase zeta encoded by human, yeast, and plant REV3 genes, indicating that this protein is a member of the DNA polymerase delta family. DNA polymerases delta and zeta are structurally distinguished by the presence of a specific delta IV motif in the former and motifs zeta I and zeta II in the latter, respectively. Human DNA polymerase zeta is ubiquitously expressed in various tissues, consistent with the notion that the hREV3 pathway may be a fundamental mechanism of damage-induced mutagenesis in humans.  相似文献   

3.
The progress of replicative DNA polymerases along the replication fork may be impeded by the presence of lesions in the genome. One way to circumvent such hurdles involves the recruitment of specialized DNA polymerases that perform limited incorporation of nucleotides in the vicinity of the damaged site. This process entails DNA polymerase switch between replicative and specialized DNA polymerases. Five eukaryotic proteins can carry out translesion synthesis (TLS) of damaged DNA in vitro, DNA polymerases zeta, eta, iota, and kappa, and REV1. To identify novel proteins that interact with hpol eta, we performed a yeast two-hybrid screen. In this paper, we show that hREV1 interacts with hpol eta as well as with hpol kappa and poorly with hpol iota. Furthermore, cellular localization analysis demonstrates that hREV1 is present, with hpol eta in replication factories at stalled replication forks and is tightly associated with nuclear structures. This hREV1 nuclear localization occurs independently of the presence of hpol eta. Taken together, our data suggest a central role for hREV1 as a scaffold that recruits DNA polymerases involved in TLS.  相似文献   

4.
REV1 protein is a eukaryotic member of the Y family of DNA polymerases involved in the tolerance of DNA damage by replicative bypass. The precise role(s) of REV1 in this process is not known. Here we show, by using the yeast two-hybrid assay and the glutathione S-transferase pull-down assay, that mouse REV1 can physically interact with ubiquitin. The association of REV1 with ubiquitin requires the ubiquitin-binding motifs (UBMs) located at the C terminus of REV1. The UBMs also mediate the enhanced association between monoubiquitylated PCNA and REV1. In cells exposed to UV radiation, the association of REV1 with replication foci is dependent on functional UBMs. The UBMs of REV1 are shown to contribute to DNA damage tolerance and damage-induced mutagenesis in vivo.  相似文献   

5.
Murakumo Y 《Mutation research》2002,510(1-2):37-44
Translesion DNA synthesis (TLS) is an important damage tolerance system which rescues cells from severe injuries caused by DNA damage. Specialized low fidelity DNA polymerases in this system synthesize DNA past lesions on the template DNA strand, that replicative DNA polymerases are usually unable to pass through. However, in compensation for cell survival, most polymerases in this system are potentially mutagenic and sometimes introduce mutations in the next generation. In yeast Saccharomyces cerevisiae (S. cerevisiae), DNA polymerase ζ, which consists of Rev3 and Rev7 proteins, and Rev1 are known to be involved in most damage-induced and spontaneous mutations. The human homologs of S. cerevisiae REV1, REV3, and REV7 were identified, and it is revealed that the human REV proteins have similar functions to their yeast counterparts, however, a large part of the mechanisms of mutagenesis employing REV proteins are still unclear. Recently, the new findings about REV proteins were reported, which showed that REV7 interacts not only with REV3 but also with REV1 in human and that REV7 is involved in cell cycle control in Xenopus. These findings give us a new point of view for further investigation about REV proteins. Recent studies of REV proteins are summarized and several points are discussed.  相似文献   

6.
hREV3基因对细胞增殖周期的影响   总被引:1,自引:1,他引:0  
徐方  李元杰 《遗传》2008,30(8):1003-1007
应用反义阻断REV3基因表达的人胚肾上皮细胞(HEK-293-M-REV3-)来研究人类REV3基因对细胞增殖周期的影响, 评价该基因在哺乳类细胞突变形成中的作用, 探讨其与肿瘤形成的关系。文章应用流式细胞技术分别对在自发或不同理化诱发条件[(紫外线, UVB)和(甲基甲烷磺酸酯, MMS)]下, 对体外培养的HEK-293-M-REV3-细胞进行细胞增殖周期和DNA含量的影响进行检测, 并计算细胞的增殖指数。结果显示: 自发状态下, HEK-293-M-REV3-细胞与对照组细胞相比S期延长; 而UVB和MMS不同理化因素诱导时, HEK-293-M-REV3-细胞的G2~M期或S期比例明显比对照组增加, PI值也相应增加。因此可以推测, 当REV3基因低表达时, 细胞无论在自发还是诱发情况下突变频率均降低, 原因可能与细胞周期的改变有关, 进而再引起DNA复制叉阻滞、合成减少, 导致细胞死亡或凋亡。  相似文献   

7.
D'Souza S  Waters LS  Walker GC 《DNA Repair》2008,7(9):1455-1470
The genes encoding Rev1 and DNA polymerase zeta (Rev3/Rev7) are together required for the vast majority of DNA damage-induced mutations in eukaryotes from yeast to humans. Here, we provide insight into the critical role that the Saccharomyces cerevisiae Rev1 C-terminus plays in the process of mutagenic DNA damage tolerance. The Rev1 C-terminus was previously thought to be poorly conserved and therefore not likely to be important for mediating protein-protein interactions. However, through comprehensive alignments of the Rev1 C-terminus, we have identified novel and hitherto unrecognized conserved motifs that we show play an essential role in REV1-dependent survival and mutagenesis in S. cerevisiae, likely in its post-replicative gap-filling mode. We further show that the minimal C-terminal fragment of Rev1 containing these highly conserved motifs is sufficient to interact with Rev7.  相似文献   

8.
Rajpal DK  Wu X  Wang Z 《Mutation research》2000,461(2):133-143
DNA damage can lead to mutations during replication. The damage-induced mutagenesis pathway is an important mechanism that fixes DNA lesions into mutations. DNA polymerase zeta (Pol zeta), formed by Rev3 and Rev7 protein complex, and Rev1 are components of the damage-induced mutagenesis pathway. Since mutagenesis is an important factor during the initiation and progression of human cancer, we postulate that this mutagenesis pathway may provide an inhibiting target for cancer prevention and therapy. In this study, we tested if UV-induced mutagenesis can be altered by molecular modulation of Rev3 enzyme levels using the yeast Saccharomyces cerevisiae as a eukaryotic model system. Reducing the REV3 expression in yeast cells through molecular techniques was employed to mimic Pol zeta inhibition. Lower levels of Pol zeta significantly decreased UV-induced mutation frequency, thus achieving inhibition of mutagenesis. In contrast, elevating the Pol zeta level by enhanced expression of both REV3 and REV7 genes led to a approximately 3-fold increase in UV-induced mutagenesis as determined by the arg4-17 mutation reversion assays. In vivo, UV lesion bypass by Pol zeta requires the Rev1 protein. Even overexpression of Pol zeta could not alleviate the defective UV mutagenesis in the rev1 mutant cells. These observations provide evidence that the mutagenesis pathway could be used as a target for inhibiting damage-induced mutations.  相似文献   

9.
Pessoa-Brandão L  Sclafani RA 《Genetics》2004,167(4):1597-1610
CDC7 and DBF4 encode the essential Cdc7-Dbf4 protein kinase required for DNA replication in eukaryotes from yeast to human. Cdc7-Dbf4 is also required for DNA damage-induced mutagenesis, one of several postreplicational DNA damage tolerance mechanisms mediated by the RAD6 epistasis group. Several genes have been determined to function in separate branches within this group, including RAD5, REV3/REV7 (Pol zeta), RAD30 (Pol eta), and POL30 (PCNA). An extensive genetic analysis of the interactions between CDC7 and REV3, RAD30, RAD5, or POL30 in response to DNA damage was done to determine its role in the RAD6 pathway. CDC7, RAD5, POL30, and RAD30 were found to constitute four separate branches of the RAD6 epistasis group in response to UV and MMS exposure. CDC7 is also shown to function separately from REV3 in response to MMS. However, they belong in the same pathway in response to UV. We propose that the Cdc7-Dbf4 kinase associates with components of the translesion synthesis pathway and that this interaction is dependent upon the type of DNA damage. Finally, activation of the DNA damage checkpoint and the resulting cell cycle delay is intact in cdc7Delta mcm5-bob1 cells, suggesting a direct role for CDC7 in DNA repair/damage tolerance.  相似文献   

10.
REV1 protein, a eukaryotic member of the Y family of DNA polymerases, is involved in the tolerance of DNA damage by translesion DNA synthesis. It is unclear how REV1 is recruited to replication foci in cells. Here, we report that mouse REV1 can bind directly to PCNA and that monoubiquitylation of PCNA enhances this interaction. The interaction between REV1 protein and PCNA requires a functional BRCT domain located near the N terminus of the former protein. Deletion or mutational inactivation of the BRCT domain abolishes the targeting of REV1 to replication foci in unirradiated cells, but not in UV-irradiated cells. In vivo studies in both chicken DT40 cells and yeast directly support the requirement of the BRCT domain of REV1 for cell survival and DNA damage-induced mutagenesis.  相似文献   

11.
DNA polymerase zeta (pol ζ) in higher eukaryotes   总被引:1,自引:0,他引:1  
Most current knowledge about DNA polymerase zeta (pol ζ) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol ζ consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Revl. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.  相似文献   

12.
Using sequence homology searches, yeast two-hybrid assays and glutathione S-transferase (GST)-pull-down approaches we have identified a series of glutamate receptor subunits that interact differentially with the PDZ proteins GRIP, PICK1, and syntenin. GST-pull-down experiments identified more interactions than detected by yeast two-hybrid assays. We report several receptor-protein interactions, strong ones include: (i) GRIP and syntenin with mGluR7a, mGluR4a, and mGluR6; (ii) PICK1 and GRIP with mGluR3; and (iii) syntenin with all forms of GluR1-4 and mGluR7b. We further characterized the novel mGluR7a-GRIP interaction found both in yeast two-hybrid and GST-pull-down assays and observed that mGluR7a localization overlapped with GRIP with in hippocampal neurons. The wide range of targets for PICK1, GRIP, and syntenin suggests they may represent a molecular mechanism that can concentrate and/or regulate a number of different receptors at a common site on a synapse. These data also suggest that the structural determinants involved in PDZ interactions are more complex than originally envisaged.  相似文献   

13.
The mammalian two-hybrid system MAPPIT allows the detection of protein-protein interactions in intact human cells. We developed a random mutagenesis screening strategy based on MAPPIT to detect mutations that disrupt the interaction of one protein with multiple protein interactors simultanously. The strategy was used to detect residues of the human cytidine deaminase Apobec3G that are important for its homodimerization and its interaction with the HIV-1 Gag and Vif proteins. The strategy is able to identify the previously described head-to-head homodimerization interface in the N-terminal domain of Apobec3G. Our analysis further detects two new potential interaction surfaces in the N-and C-terminal domain of Apobec3G for interaction with Vif and Gag or for Apobec3G dimerization.  相似文献   

14.
Sakai W  Wada Y  Naoi Y  Ishii C  Inoue H 《DNA Repair》2003,2(3):337-346
In a previous paper, we reported that the Neurospora crassa upr-1 gene is a homolog of the yeast gene REV3, which encodes the catalytic subunit of DNA polymerase zeta (polzeta). Characterization of the upr-1 mutant indicated that the UPR1 protein plays a role in DNA repair and mutagenesis. To help understand the mechanisms of mutagenic DNA repair in the N. crassa more extensively, we identified N. crassa homologs of yeast REV1 and REV7 and obtained mutants ncrev1 or ncrev7, which had similar phenotypes to the upr-1 mutant. Mutant carrying ncrev7 was more sensitive to UV and 4NQO, and slightly sensitive to MMS than the wild-type. The sensitivity to UV and MMS of the ncrev1 mutant was moderately higher than that of the wild-type, but the sensitivity to 4NQO of the mutant was similar to that of the wild-type. In reversion assay using testers with base substitution or frameshift mutation at the ad-3A locus, each of ncrev1 and ncrev7 mutants showed lower induced-mutability than the wild-type. Expression of ncrev1 and ncrev7 was found to be UV-inducible like the case of upr-1. Genetic analyses showed that the ncrev7 was identical to mus-26, which belongs to the upr-1 epistasis group, and that the ncrev1 was a newly identified DNA repair gene and designated as mus-42. Interestingly, all three mutants have a normal CPD photolyase gene, however, they showed a partial photoreactivation defect (PPD) phenotype, not completely defective but inefficient in photoreactivation. These results suggest that N. crassa REV homolog genes function in DNA repair and UV mutagenesis through the bypass of (6-4) photoproducts.  相似文献   

15.
16.
17.
18.
The Saccharomyces cerevisiae REV3/7-encoded polymerase zeta and Rev1 are central to the replicative bypass of DNA lesions, a process called translesion synthesis (TLS). While yeast polymerase zeta extends from distorted DNA structures, Rev1 predominantly incorporates C residues from across a template G and a variety of DNA lesions. Intriguingly, Rev1 catalytic activity does not appear to be required for TLS. Instead, yeast Rev1 is thought to participate in TLS by facilitating protein-protein interactions via an N-terminal BRCT motif. In addition, higher eukaryotic homologs of Rev1 possess a C terminus that interacts with other TLS polymerases. Due to a lack of sequence similarity, the yeast Rev1 C-terminal region, located after the polymerase domain, had initially been thought not to play a role in TLS. Here, we report that elevated levels of the yeast Rev1 C terminus confer a strong dominant-negative effect on viability and induced mutagenesis after DNA damage, highlighting the crucial role that the C terminus plays in DNA damage tolerance. We show that this phenotype requires REV7 and, using immunoprecipitations from crude extracts, demonstrate that, in addition to the polymerase-associated domain, the extreme Rev1 C terminus and the BRCT region of Rev1 mediate interactions with Rev7.  相似文献   

19.
Proliferating cell nuclear antigen (PCNA) plays an essential role in eukaryotic DNA replication, and numerous DNA replication proteins have been found to interact with PCNA through a conserved eight-amino acid motif called the PIP-box. We have searched the genome of the yeast Saccharomyces cerevisiae for open reading frames that encode proteins with putative PIP-boxes and initiated testing of 135 novel candidates for their ability to interact with PCNA-conjugated agarose beads. The first new PCNA-binding protein identified in this manner is the 5' to 3' DNA helicase RRM3. Yeast two-hybrid tests show that N-terminal deletions of RRM3, which remove the PIP-box but leave the helicase motifs intact, abolish the interaction with PCNA. In addition, mutating the two phenylalanine residues in the PIP-box to alanine or aspartic acid reduces binding to PCNA, confirming that the PIP-box in RRM3 is responsible for interaction with PCNA. The results presented here suggest that the RRM3 helicase functions at the replication fork.  相似文献   

20.
The conversion of putrescine to spermidine in the biosynthetic pathway of plant polyamines is catalyzed by two closely related spermidine synthases, SPDS1 and SPDS2, in Arabidopsis. In the yeast two-hybrid system, SPDS2 was found to interact with SPDS1 and a novel protein, SPMS (spermine synthase), which is homologous with SPDS2 and SPDS1. SPMS interacts with both SPDS1 and SPDS2 in yeast and in vitro. Unlike SPDS1 and SPDS2, SPMS failed to suppress the speDelta3 deficiency of spermidine synthase in yeast. However, SPMS was able to complement the speDelta4 spermine deficiency in yeast, indicating that SPMS is a novel spermine synthase. The SPDS and SPMS proteins showed no homodimerization but formed heterodimers in vitro. Pairwise coexpression of hemagglutinin- and c-Myc epitope-labeled proteins in Arabidopsis cells confirmed the existence of coimmunoprecipitating SPDS1-SPDS2 and SDPS2-SPMS heterodimers in vivo. The epitope-labeled SPDS and SPMS proteins copurified with protein complexes ranging in size from 650 to 750 kD. Our data demonstrate the existence of a metabolon involving at least the last two steps of polyamine biosynthesis in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号