首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chen PY  Lee KT  Chi WC  Hirt H  Chang CC  Huang HJ 《Planta》2008,228(3):499-509
Cross tolerance is a phenomenon that occurs when a plant, in resisting one form of stress, develops a tolerance to another form. Pretreatment with nonlethal heat shock has been known to protect cells from metal stress. In this study, we found that the treatment of rice roots with more than 25 muM of Cu(2+) caused cell death. However, heat shock pretreatment attenuated Cu(2+)-induced cell death. The mechanisms of the cross tolerance phenomenon between heat shock and Cu(2+) stress were investigated by pretreated rice roots with the protein synthesis inhibitor cycloheximide (CHX). CHX effectively block heat shock protection, suggesting that protection of Cu(2+)-induced cell death by heat shock was dependent on de novo protein synthesis. In addition, heat pretreatment downregulated ROS production and mitogen-activated protein kinase (MAPK) activities, both of which can be greatly elicited by Cu(2+) stress in rice roots. Moreover, the addition of purified recombinant GST-OsHSP70 fusion proteins inhibited Cu(2+)-enhanced MAPK activities in an in vitro kinase assay. Furthermore, loss of heat shock protection was observed in Arabidopsis mkk2 and mpk6 but not in mpk3 mutants under Cu(2+) stress. Taken together, these results suggest that the interaction of OsHSP70 with MAPKs may contribute to the cellular protection in rice roots from excessive Cu(2+) toxicity.  相似文献   

2.
3.
Bacteria have developed mechanisms to sequester host iron via chelators such as deferoxamine (DFO). Interestingly, DFO has been shown to stimulate acute intestinal epithelial cell inflammatory cytokine production in the absence of bacteria; however, this mechanism has not been elucidated. Intestinal epithelial cell production of IL-6 and TNF-alpha is elevated in various gastrointestinal pathologies, including acute intestinal ischemia. Similarly, VEGF and HGF are essential to intestinal epithelial cell integrity. Therapeutic strategies that decrease IL-6 and TNF-alpha while increasing VEGF and HGF therefore have theoretical appeal. We hypothesized that 1) fetal human intestinal epithelial cells acutely produce increased IL-6, TNF-alpha, VEGF, and HGF during iron chelation and 2) the MAPK pathway mediates these effects. Fetal human intestinal epithelial cells were stimulated by iron chelation (1 mM DFO) with and without p38 MAPK, ERK, or JNK inhibition. Supernatants were harvested after 24 h of incubation, and IL-6, TNF-alpha, VEGF, and HGF levels were quantified by ELISA. Activation of MAPK pathways was confirmed by Western blot analysis. DFO stimulation resulted in a significant increase in epithelial cell IL-6 and VEGF production while yielding a decrease in HGF production (P<0.05). Unexpectedly, TNF-alpha was not detectable. p38 MAPK, ERK, and JNK inhibition significantly decreased IL-6, VEGF, and HGF production (P<0.05). In conclusion, DFO acutely increases fetal human intestinal epithelial cell IL-6 and VEGF expression while causing an unexpected decrease in HGF expression and no detectable TNF-alpha production. Furthermore, chelator-induced intestinal epithelial cell cytokine expression depends on p38, ERK, and JNK MAPK pathways.  相似文献   

4.
5.
6.
7.
8.
9.
Macrophage migration inhibitory factor (MIF) has a key role in regulation of innate and adaptive immunity and is implicated in sepsis, tumorigenesis, and autoimmune disease. MIF deficiency or immunoneutralization leads to protection against fatal endotoxic, exotoxic, and infective shock, and anti-inflammatory effects in other experimental models of inflammatory disease. We report a novel regulatory role of MIF in type 1 IL-1R and p55 TNFR expression and function. Compared with wild-type cells, MIF-deficient cells were hyporesponsive to IL-1- and TNF-induced MAPK activity, AP-1 activity, and cellular proliferation, while NF-kappaB function was preserved. Hyporesponsiveness of MIF-deficient cells was associated with down-regulation of cytokine receptor expression, which was restored by reconstitution of either an upstream kinase of MAPK, MAPK/ERK kinase, or MIF. These data suggest that endogenous MIF is required for cytokine activation of MAPK/AP-1 and cytokine receptor expression. This autocrine regulatory pathway defines an important amplifying role of endogenous MIF in cytokine-mediated immune and inflammatory diseases and provides further molecular evidence for the critical role of MIF in cellular activation.  相似文献   

10.
Little is known about the pathogenesis of Entamoeba histolytica and how epithelial cells respond to the parasite. Herein, we characterized the interactions between E. histolytica and colonic epithelial cells and the role macrophages play in modulating epithelial cell responses. The human colonic epithelial cell lines Caco-2 and T84 were grown either as monoculture or co-cultured in transwell plates with differentiated human THP-1 macrophages for 24 h before stimulation with soluble amebic proteins (SAP). In naive epithelial cells, prolonged stimulation with SAP reduced the levels of heat shock protein (Hsp) 27 and 72. However in THP-1 conditioned intestinal epithelial cells SAP enhanced Hsp27 and Hsp72, which was dependent on the activation of ERK MAP kinase. Hsp synthesis induced by SAP conferred protection against oxidative and apoptotic injuries. Treatment with SAP inhibited NF-kappaB activation induced by interleukin-1beta; specifically, the NF-kappaB-DNA binding, nuclear translocation of p65 subunit, and phosphorylation of IkappaB-alpha were reduced. Gene silencing by small interfering RNA confirmed the role of Hsp27 in suppressing NF-kappaB activation at IkappaB kinase (IKK) level. By co-immunoprecipitation studies, we found that Hsp27 interacts with IKK-alpha and IKK-beta, and this association was increased in SAP-treated conditioned epithelial cells. Overexpression of wild type Hsp27 amplified the effects of SAP, whereas a phosphorylation-deficient mutant of Hsp27 abrogated SAP-induced NF-kappaB inhibition. In conditioned epithelial cells, Hsp27 was phosphorylated at serine 15 after prolonged exposure to SAP. This mechanism may explain the absence of colonic inflammation seen in the majority of individuals infected with E. histolytica.  相似文献   

11.
Liang X  Ji Y 《Cellular microbiology》2007,9(7):1809-1821
Staphylococcus aureus causes suppurative infections which are often associated with tissue destruction and cell death. In the present study, we investigated the molecular and cellular basis of S. aureus-induced apoptosis and death in a human lung epithelial cell line (A549). We found that staphylococcal alpha-toxin is an important mediator of cytotoxicity in these epithelial cells. Specifically, we found that downregulating alpha-toxin production eliminated the cytotoxicity of S. aureus, whereas the addition of alpha-toxin to the cell culture medium significantly increased cell death in a dose-dependent manner. Importantly, we found that alpha-toxin-mediated cell death may partially function through alpha5beta1-integrin, because both the beta1-integrin antibody and the ligand fibronectin inhibited the cytotoxicity of alpha-toxin. Furthermore, we found that the overexpression of the inflammatory cytokine interferon (TNF)-alpha is associated with alpha-toxin-induced cell death, because both the TNF-alpha release inhibitor and antibody effectively inhibited the cytotoxicity of alpha-toxin. In contrast, the cytotoxicity of alpha-toxin was enhanced by the inhibition of the MAPK p38 and NF-kappaB pathways. Taken together, our results suggest that the activation of the MAPK p38 and NF-kappaB pathways are stress responses for survival, rather than direct contributes to alpha-toxin-induced cell death, and that the interaction of alpha-toxin with alpha5beta1-integrin and overproduction of TNF-alpha may contribute to destruction of epithelial cells during S. aureus infection.  相似文献   

12.
NO produced by inducible NO synthase (iNOS) has been implicated in various pathophysiological processes including inflammation. Therefore, inhibitors of NO synthesis or iNOS gene expression have been considered as potential anti-inflammatory agents. We have previously demonstrated that heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) decreases proinflammatory cytokine IL-8 and NO production in cytokine-stimulated intestinal epithelial cells by interfering with the NF-kappaB signaling pathway. However, the upstream signaling mechanisms involved in these responses have not yet been defined. In this report, we show that in intestinal epithelial cells, HB-EGF triggered PI3K-dependent phosphorylation of Akt. Inhibition of PI3K reversed the ability of HB-EGF to block NF-kappaB activation, expression of iNOS, and NO production. Small interfering RNA of PI3K also reversed the inhibitory effect of HB-EGF on iNOS expression. Alternatively, transient expression of constitutively active PI3K decreased NO production by approximately 2-fold more than treatment with HB-EGF alone. This PI3K effect was HB-EGF dependent. Thus, activation of PI3K is essential but not sufficient for decreased NO synthesis. PI3K and HB-EGF act synergistically to decrease NO synthesis. Neither overexpression or inhibition of MEK, Ras, or Akt affected HB-EGF-mediated inhibition of NF-kappaB activation. These data demonstrate that HB-EGF decreases proinflammatory cytokine-stimulated NF-kappaB activation and NO production via activation of the PI3K signaling pathway. These results also suggest that inhibition of NF-kappaB and activation of the PI3K-dependent signaling cascade by HB-EGF may represent key signals responsible for the anti-inflammatory effects of HB-EGF.  相似文献   

13.
Previous studies suggest that adenosine possesses anti-inflammatory properties, however, the mechanisms by which adenosine affects immune function remain unclear, particularly in the intestine. In this study, we hypothesized that adenosine directly affects pro-inflammatory gene expression in intestinal epithelial cells through modulation of NF-kappaB signaling. HT-29 cells were treated with adenosine prior to incubation with various stimuli and pro-inflammatory gene expression and signal transduction analyzed. Adenosine pretreatment resulted in a reduction in IL-8 expression and secretion in response to TNF-alpha, IL-1, LPS, and PMA. This effect was paralleled by inhibition of kappaB-driven luciferase expression and a reduction in recruitment of NF-kappaB to the IL-8 promoter. Pretreatment of HT-29 cells also resulted in reduced ERK, p38, and JNK MAPK phosphorylation, following TNF-alpha treatment. The observed effects in this study occurred independently of known surface adenosine receptors. This study identifies adenosine as a potent negative regulator of pro-inflammatory signaling in intestinal epithelial cells.  相似文献   

14.
IL-6, a proinflammatory cytokine, has been implicated in the development of vascular diseases. We previously demonstrated that mechanical stress can initiate signaling pathways leading to smooth muscle cell (SMC) proliferation and apoptosis, but little is known concerning cyclic stress-induced inflammatory response. To explore the role of stretch in the upregulation of cytokine expression in SMCs we performed RNase protection assay for a panel of cytokines and found that mechanical stress resulted in a time-dependent induction of IL-6 mRNA but not other cytokines, e.g., IL-1alpha, IL-1beta, IL-6, IL-10, IL-12p35, IL-12p40, IL-18, IFN-gamma, and macrophage migration inhibitory factor (MIF). This induction also correlated with elevated IL-6 protein levels in the supernatant. Pretreatment of the cells with NF-kappaB inhibitors inhibited NF-kappaB activity and resulted in marked inhibition (50%) of IL-6 protein. Moreover, SMC lines stably expressing dominant-negative Ras (RasN17) or Rac (RacN17) exhibited a remarkable decrease in p38 MAPK activity and IL-6 mRNA induction by mechanical stress. Furthermore, a significant inhibition of 30 and 40% in IL-6 protein was observed in SMCs pretreated with inhibitors of p38 MAPK and ERK1/2, respectively, but not JNK. Interestingly, SMCs isolated from PKC-delta-deficient mice exhibited higher levels of IL-6 compared with wild-type cells. Finally, high levels of IL-6 expression were observed in atherosclerotic lesions of vein bypass grafts, which are related to altered biomechanical stress. Our findings demonstrate that biomechanical stress-induced IL-6 expression occurs via a mechanism that involves Ras/Rac/p38 MAPK/NF-kappaB/NF-IL6 signaling pathways, which is downregulated by PKC-delta, and suggest that modulation of this event contributes to the pathogenesis of atherosclerosis.  相似文献   

15.
Probiotic bacteria are microorganisms that benefit the host through improvement of the balance of intestinal microflora and possibly by augmentation of host defense systems. We examined the mechanisms for the up-regulation of innate immune responses by a probiotic Lactobacillus casei ATCC27139, in vivo. Using mouse models of systemic Listeria monocytogenes infection and MethA fibrosarcoma tumorigenesis in combination with BALB/c and SCID mice, we found that parenteral administration of L. casei ATCC27139 confers a protective effect against L. monocytogenes infection and anti-tumor activity against MethA fibrosarcoma by activation of innate immunity, while L. casei ATCC27139-J1R strains, which are J1 phage-resistant strains that have been selected from MNNG-treated clones, lacked these activities. Substantial differences between ATCC27139 and ATCC27139-J1R strains were observed in the capacity to induce innate cytokines such as TNF-alpha, IL-12, IL-18, and IFN-gamma, and pathogen-associated molecular pattern receptors, TLR2 and Nod2, by spleen cells. In addition, although phosphorylation of NF-kappaB p65 in spleen was equally enhanced in the ATCC27139- and the ATCC27139-J1R-treated groups, phosphorylation of both p38 MAPK and MAPKAPK-2 was significantly induced only by ATCC27139. Furthermore, inhibitors of NF-kappaB (sulfasalazine) and p38 MAPK (SB203580) significantly reduced cytokine production by the spleen cells of the mice treated with L. casei ATCC27139, suggesting that both NF-kappaB and p38 MAPK signaling pathways play important roles in the augmentation of innate immunity by the probiotic L. casei.  相似文献   

16.
17.
Oxidative stress and inflammation are implicated in the pathogenesis of many age-related diseases. Stress-induced overproduction of inflammatory cytokines, such as interleukin-8 (IL-8), is one of the early events of inflammation. The objective of this study was to elucidate mechanistic links between oxidative stress and overproduction of IL-8 in retinal pigment epithelial (RPE) cells. We found that exposure of RPE cells to H(2)O(2), paraquat, or A2E-mediated photooxidation resulted in increased expression and secretion of IL-8. All of these oxidative stressors also inactivated the proteasome in RPE cells. In contrast, tert-butylhydroperoxide (TBH), a lipophilic oxidant that did not stimulate IL-8 production, also did not inactivate the proteasome. Moreover, prolonged treatment of RPE cells with proteasome-specific inhibitors recapitulated the stimulation of IL-8 production. These data suggest that oxidative inactivation of the proteasome is a potential mechanistic link between oxidative stress and up-regulation of the proinflammatory IL-8. The downstream signaling pathways that govern the production of IL-8 include NF-kappaB and p38 MAPK. Proteasome inhibition both attenuated the activation and delayed the turnoff of NF-kappaB, resulting in biphasic effects on the production of IL-8. Prolonged proteasome inhibition (>2 h) resulted in activation of p38 MAPK via activation of MKK3/6 and increased the production of IL-8. Chemically inhibiting the p38 MAPK blocked the proteasome inhibition-induced up-regulation of IL-8. Together, these data indicate that oxidative inactivation of the proteasome and the related activation of the p38 MAPK pathway provide a potential link between oxidative stress and overproduction of proinflammatory cytokines, such as IL-8.  相似文献   

18.
IL-12-mediated type 1 inflammation confers host protection against the parasitic protozoan Toxoplasma gondii. However, production of IFN-γ, another type 1 inflammatory cytokine, also drives lethality from excessive injury to the intestinal epithelium. As mechanisms that restore epithelial barrier function following infection remain poorly understood, this study investigated the role of trefoil factor 2 (TFF2), a well-established regulator of mucosal tissue repair. Paradoxically, TFF2 antagonized IL-12 release from dendritic cells (DCs) and macrophages, which protected TFF2-deficient (TFF2(-/-)) mice from T. gondii pathogenesis. Dysregulated intestinal homeostasis in naive TFF2(-/-) mice correlated with increased IL-12/23p40 levels and enhanced T cell recruitment at baseline. Infected TFF2(-/-) mice displayed low rates of parasite replication and reduced gut immunopathology, whereas wild-type (WT) mice experienced disseminated infection and lethal ileitis. p38 MAPK activation and IL-12p70 production was more robust from TFF2(-/-)CD8(+) DC compared with WT CD8(+) DC and treatment of WT DC with rTFF2 suppressed TLR-induced IL-12/23p40 production. Neutralization of IFN-γ and IL-12 in TFF2(-/-) animals abrogated resistance shown by enhanced parasite replication and infection-induced morbidity. Hence, TFF2 regulated intestinal barrier function and type 1 cytokine release from myeloid phagocytes, which dictated the outcome of oral T. gondii infection in mice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号