首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I Vass  S Styring 《Biochemistry》1991,30(3):830-839
The effect of protonation events on the charge equilibrium between tyrosine-D and the water-oxidizing complex in photosystem II has been studied by time-resolved measurements of the EPR signal IIslow at room temperature. The flash-induced oxidation of YD by the water-oxidizing complex in the S2 state is a monophasic process above pH 6.5 and biphasic at lower pHs, showing a slow and a fast phase. The half-time of the slow phase increases from about 1 s at pH 8.0 to about 20 s at pH 5.0, whereas the half-time of the fast phase is pH independent (0.4-1 s). The dark reduction of YD+ was followed by measuring the decay of signal IIslow at room temperature. YD+ decays in a biphasic way on the tens of minutes to hours time scale. The minutes phase is due to the electron transfer to YD+ from the S0 state of the water-oxidizing complex. The half-time of this process increases from about 5 min at pH 8.0 to 40 min at pH 4.5. The hours phase of YD+ has a constant half-time of about 500 min between pH 4.7 and 7.2, which abruptly decreases above pH 7.2 and below pH 4.7. This phase reflects the reduction of YD+ either from the medium or by an unidentified redox component of PSII in those centers that are in the S1 state. The titration curve of the half-times for the oxidation of YD reveals a proton binding with a pK around 7.3-7.5 that retards the electron transfer from YD to the water-oxidizing complex. We propose that this monoprotic event reflects the protonation of an amino acid residue, probably histidine-190 on the D2 protein, to which YD is hydrogen bonded. The titration curves for the oxidation of YD and for the reduction of YD+ show a second proton binding with pK approximately 5.8-6.0 that accelerates the electron transfer from YD to the water-oxidizing complex and retards the process in the opposite direction. This protonation most probably affects the water-oxidizing complex. From the measured kinetic parameters, the lowest limits for the equilibrium constants between the S0YD+ and the S1YD as well as between the S1YD+ and S2YD states were estimated to be 5 and 750-1000, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. The properties of P700 and cytochrome f have been studied at sub-zero temperatures in chloroplasts suspended in a medium containing 50% (v/v) ethylene glycol. The dark reduction of these components after a period of illumination provided information about the rate-limiting step of photosynthetic electron transport under these conditions. 2. The oxidation of P700 on illumination in the presence of methyl viologen and its subsequent dark reduction can be observed at -35 degrees C. This cycle of reactions could be repeated many times. The rate of reduction was increased by NH4Cl and reduction was inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea. 3. The oxidation and reduction of cytochrome f could also be observed under similar conditions. The activation energies for the reduction of cytochrome f and P700 are similar (about 75 kJ mol-1) and the reduction of cytochrome f is also inhibited by dichlorophenyldimethylurea and stimulated by NH4Cl. 4. The reduction of both cytochrome f and P700 seemed to follow first-order kinetics, but the t1/2 for the redcution of the cytochrome was at least three times that for the reduction of P700 at the same temperature. It was concluded that the results were only compatible with a model in which the main pathway of electrons from plastoquinone to P700 involved cytochrome f if the equilibrium constant between the cytochrome and P700 was very much less than that expected from their redox potentials.  相似文献   

3.
The questions of whether the stoichiometry of the turnover of cytochrome f, and the time-course of its reduction subsequent to a light flash, are consistent with efficient function in noncyclic electron transport have been investigated. Measurements were made of the absorbance change at the 553-nm alpha-band maximum relative to a reference wavelength. In the dark cytochrome f is initially fully reduced, oxidized by a 0.3-s flash, and reduced again in the dark period after the flash. In the presence of gramicidin at 18 degrees C, the dark reduction was characterized by a half-time of 25-30 ms, stoichiometries of cytochrome f:chlorophyll and P700:chlorophyll of 1:670 and 1:640, respectively, and a short time delay. The time delay in the dark reduction of cytochrome f, which is expected for a component in an intermediate position in the chain, becomes more apparent in the presence of valinomycin and K+. Under these conditions the half-time for cytochrome f dark reduction is 130-150 ms, and the delay is approximately equal to 20 ms. The measured value for the activation energy of the dark reduction of cytochrome f (11 +/- 1 kcal/mol) is the same as that for noncyclic electron transport in steady-state light. A sigmoidal time-course for the reduction of cytochrome f has been calculated for a simple linear electron transport chain. The kinetics for reduction of cytochrome f predicted by the calculation, in the presence of valinomycin and K+, are in reasonably good agreement with the experimental data. There is an appreciable amount of data in the literature to document complex properties of cytochrome f after illumination with short flashes, and evidence for complexity in a light-minus-dark transition. The data presented here, obtained after a long flash that should establish steady-state conditions, either fulfill or are consistent with the basic criteria for efficient function of cytochrome f in noncyclic electron transport.  相似文献   

4.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. To understand the possible role of DCCD in inhibiting the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores. DCCD has two distinct effects on phase III of the electrochromic bandshift of carotenoids reflecting the electrogenic reactions of the bc(1) complex. At low concentrations, DCCD increases the magnitude of the electrogenic process because of a decrease in the permeability of the membrane, probably through inhibition of F(o)F(1). At higher concentrations (>150 microM), DCCD slows the development of phase III of the electrochromic shift from about 3 ms in control preparations to about 23 ms at 1.2 mM DCCD, without significantly changing the amplitude. DCCD treatment of chromatophores also slows down the kinetics of flash-induced reduction of both cytochromes b and c, from 1.5-2 ms in control preparations to 8-10 ms at 0.8 mM DCCD. Parallel slowing of the reduction of both cytochromes indicates that DCCD treatment modifies the reaction of QH(2) oxidation at the Q(o) site. Despite the similarity in the kinetics of both cytochromes, the onset of cytochrome c re-reduction is delayed 1-2 ms in comparison to cytochrome b reduction, indicating that DCCD inhibits the delivery of electrons from quinol to heme c(1). We conclude that DCCD treatment of chromatophores leads to modification of the rate of Q(o)H(2) oxidation by the iron-sulfur protein (ISP) as well as the donation of electrons from ISP to c(1), and we discuss the results in the context of the movement of ISP between the Q(o) site and cytochrome c(1).  相似文献   

5.
A study is presented of the kinetics and stoichiometry of fast proton translocation associated to aerobic oxidation of components of the mitochondrial respiratory chain. 1. Aerobic oxidation of ubiquinol and b cytochromes is accompanied in EDTA particles, obtained by sonication of beef-heart mitochondria, by synchronous proton uptake. 2. The rapid proton uptake associated to oxidation and b cytochromes is greatly stimulated by valinomycin plus K+, but is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 3. 4 gion H+ are taken up per mol ubiquinol oxidized by oxygen. This H+/2e- ratio, measured in the rapid anaerobic-aerobic transition of the particles is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 4. Intact mitochondria aerobic oxidation of oxygen-terminal electron carriers is accompanied by antimycin-insensitive synchronous proton release, oxidation of ubiquinol and reduction of b cytochromes. The amount of protons released is in excess with respect to the amount of ubiquinol oxidized. 5. It is concluded that electron flow along complex III, from ubiquinol to cytochrome c, is directly coupled to vectorial proton translocation. The present data suggest that there exist(s) between ubiquinol and cytochrome c one (or two) respiratory carrier(s), whose oxido-reduction is directly linked to effective transmembrane proton translocation.  相似文献   

6.
On dark-adapted Chlorella, after one flash, plastocyanin (PC) undergoes reduction with a half-time of 7 ms. After 4 or 5 flashes, the reduction of PC+ in the 10 ms range is suppressed, and the level of oxidized plastocyanin increases during the next few flashes before reaching a stationary value. Cytochrome f exhibits approximately the same pattern. The reduction of PC+ and cytochrome f+ in the 10 ms range is correlated with an increase of the electrice field named phase b (Joliot, P. and Delosme, R., Biochim. Biophys. Acta 357 (1974) 267-284). Both need the presence of a compound R' in the reduced state. A dark electron transfer involving a carrier of electrons across the membrane, a proton carrier, R' as terminal reducant, PC+ and cytochrome f+ as terminal oxidants, would account for this field generation. Cooperation between the electron transfer chains is implied at the level of plastocyanin oxidation. An equilibrium constant of about 2 is observed between cytochrome f and plastocyanin before 1 ms and after 500 ms after the photochemical reactions. We observe that cytochrome f and plastocyanin are not connected from 1 to 100 ms after a photochemical reaction. The equilibrium constant between plastocyanin and P-700 remains large [20] under these conditions.  相似文献   

7.
The kinetics of respiration-dependent proton efflux and membrane energization have been studied in intact cells of logarithmic-phase Escherichia coli. Parallel measurements of the rate and extent of proton efflux into the external medium (half-time, about 10 s; ratio of H(+) to O, about 0.5) and the oxidation of E. coli cytochrome b (half-time, 相似文献   

8.
The reduction of P-700 by its electron donors shows two fast phases with half-times of 20 and 200 μs in isolated spinach chloroplasts. We have studied this electron transfer and the oxidation kinetics of cytochrome f.

Incubation of chloroplasts with KCN or HgCl2 decreased the amplitude of the 20 μs phase. This provides evidence for a function of plastocyanin as the immediate electron donor of P-700.

At low concentrations of salt and sugar the fast phases of P-700+ reduction were largely inhibited. Increasing concentrations of MgCl2, KCl and sorbitol (up to 5, 150 and 200 mM, respectively) were found to increase the relative amplitudes of the fast phases to about one-third of the total P-700 signal. Addition of both 3 mM MgCl2 and 200 mM sorbitol increased the relative amplitude of the 20 μs phase to 70%. The interaction between P-700 and plastocyanin is concluded to be favoured by a low internal volume of the thylakoids and compensation of surface charges of the membrane.

The half-time of 20 μs was not changed when the amplitude of this phase was altered either by salt and sorbitol, or by inhibition of plastocyanin. This is evidence for the existence of a complex between plastocyanin and P-700 with a lifetime long compared to the measuring time. The 200 μs phase exhibited changes in its half-time that indicated the participation of a more mobile pool of plastocyanin.

Cytochrome f was oxidized with a biphasic time course with half-times of 70–130 μs and 440–860 μs at different salt and sorbitol concentrations. The half-time of the faster phase and a short lag of 30–50 μs in the beginning of the kinetics indicate an oxidation of cytochrome f via the 20 μs electron transfer to P-700. An inhibition of this oxidation by MgCl2 suggests that the electron transfer from cytochrome f to complexed plastocyanin is not controlled by negative charges in contrast to that from plastocyanin to P-700.  相似文献   


9.
The flash-induced oxidation kinetics of the primary acceptor of light Reaction II (X-320) and the reduction kinetics of chlorophyll aI (P-700) after far-red preillumination have been studied with high time resolution in spinach chloroplasts. 1. The kinetics of chlorophyll aI exhibits a pronounced lag phase of 2--3 ms at the onset of reduction as would be expected for the final product of consecutive reactions. Because the oxidation of the plastoquinone pool is the rate-limiting step for the electron transport between the two light reactions, the lag indicates the maximal electron transfer time over all preceding reactions after light Reaction II. 2. The observation that the lag phase decreases with decreasing pH is evidence of an electron transfer step coupled to a proton uptake reaction. 3. Protonation of X-320 after reduction in the flash is excluded because a slight increase of the decay time is found at decreasing pH values. 4. The time course of plastohydroquinone formation is deduced from the first derivative of the reduction kinetics of chlorophyll aI. This approach covers those plastohydroquinone molecules being available to the electron carriers of System I via the rate-limiting step. Direct measurements of absorbance changes would not allow to discriminate between these and functionally different plastohydroquinone molecules. 5. The derived time course of plastohydroquinone at different pH gives evidence for an additional electron transfer step with a half time of about 1 ms following the proton uptake and preceding the rate-limiting step. It is tentatively attributed to the diffusion of neutral plastohydroquinone across the hydrophobic core of the thylkaloid membrane. 6. The lower limit of the rate constant for proton uptake by an electron carrier, consistent with the lag of chlorophyll aI reduction, is estimated as greater than 10(11) M-1s-1. The value is higher than that of the fastest diffusion controlled protonations of organic molecules in solution. Possible mechanisms of linear electron transport between light Reaction II and the rate-limiting oxidation of neutral plastohydroquinone are thoroughly discussed.  相似文献   

10.
We have investigated dynamic events after flash photolysis of CO from reduced cytochrome cd(1) nitrite reductase (NiR) from Paracoccus pantotrophus (formerly Thiosphaera pantotropha). Upon pulsed illumination of the cytochrome cd(1)-CO complex, at 460 nm, a rapid (<50 ns) absorbance change, attributed to dissociation of CO, was observed. This was followed by a biphasic rearrangement with rate constants of 1.7 x 10(4) and 2.5 x 10(3) s(-1) at pH 8.0. Both parts of the biphasic rearrangement phases displayed the same kinetic difference spectrum in the region of 400-660 nm. The slower of the two processes was accompanied by proton uptake from solution (0.5 proton per active site at pH 7.5-8.5). After photodissociation, the CO ligand recombined at a rate of 12 s(-1) (at 1 mM CO and pH 8.0), accompanied by proton release. The crystal structure of reduced cytochrome cd(1) in complex with CO was determined to a resolution of 1.57 A. The structure shows that CO binds to the iron of the d(1) heme in the active site. The ligation of the c heme is unchanged in the complex. A comparison of the structures of the reduced, unligated NiR and the NiR-CO complex indicates changes in the puckering of the d(1) heme as well as rearrangements in the hydrogen-bonding network and solvent organization in the substrate binding pocket at the d(1) heme. Since the CO ligand binds to heme d(1) and there are structural changes in the d(1) pocket upon CO binding, it is likely that the proton uptake or release observed after flash-induced CO dissociation is due to changes of the protonation state of groups in the active site. Such proton-coupled structural changes associated with ligand binding are likely to affect the redox potential of heme d(1) and may regulate the internal electron transfer from heme c to heme d(1).  相似文献   

11.
Deniau C  Rappaport F 《Biochemistry》2000,39(12):3304-3310
We have studied the effect of protium/deuterium substitution on different kinetics associated with the turnovers of cytochrome b(6)f complex in whole cells of Chlamydomonas reinhardtii. Both the oxidation of cytochrome f and the reduction of hemes b were only little affected by the isotopic substitution. Contrasting with this, the initial slope of the electrogenic phase associated with cytochrome b(6)f turnover was slowed by a factor of 4 by H(2)O/D(2)O substitution. Whereas in the presence of H(2)O the electrogenic phase developed concomitantly with cytochrome b reduction, it lagged for a few hundreds of microseconds after cytochrome b reduction in the presence of D(2)O. We propose that a proton pump is triggered by the oxidation of plastoquinol at the Q(o) site. The proton transfer is specifically delayed upon isotopic substitution, accounting for the lack of significant effect on the electron-transfer reaction as well as for the strong decrease of the initial rate of the electrogenic phase.  相似文献   

12.
Changes in pH during the reactions of the fully reduced and mixed-valence cytochrome oxidase with molecular oxygen have been followed in flow-flash experiments, using the pH indicator phenol red. Solubilized enzyme as well as enzyme reconstituted into phospholipid vesicles has been studied. With the solubilized enzyme, a biphasic uptake of one proton from the medium was observed, whereas the reconstituted enzyme gave release of 1.3 protons to the extravesicular medium. It is concluded from these results that a total of two to three protons are taken up during oxidation of the fully reduced enzyme. Kinetic analysis suggests that the proton uptake is initiated by the transfer of the third electron to the oxygen binding site. A reaction scheme that integrates proton transfers and oxygen chemistry is presented.  相似文献   

13.
Stoichiometries of electron transport complexes in spinach chloroplasts   总被引:9,自引:0,他引:9  
The stoichiometric relationship among photosystem II complexes, photosystem I complexes, cytochrome b/f complexes, high-potential cytochrome b-559, and chlorophyll in spinach chloroplasts has been determined. Two features of this data stand out, in contrast to currently proposed stoichiometries in which the ratio of photosystem II to photosystem I is reported to be 2:1 and the chlorophyll to reaction center ratio to be as low as 260:1. Using a variety of techniques it was found that the stoichiometry of photosystem II:photosystem I:cytochrome b/f complex was 1:1:1, within 10%, and that the ratio of total chlorophyll to these components was 600:1, also within 10%. A ratio of two high-potential cytochrome b-559 molecules per 640 chlorophyll, or two molecules per photosystem II reaction center, was found. These ratios were remarkably constant regardless of the time of year or the source of the spinach. The concentration of photosystem II complexes was determined using a pH electrode to measure the flash-induced proton release resulting from water oxidation. The photosystem I reaction center concentration was measured by two different techniques that compared favorably. In the first method a pH electrode was used to measure the amount of flash-induced proton consumption associated with the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive oxidation of N,N,N',N'- tetramethylphenylenediamine , resulting in the production of hydrogen peroxide. In the second method the amount of P700 oxidized by far-red light was determined using dual-wavelength spectroscopy. The concentration of the cytochrome b/f complex was determined assuming 1 mol of cytochrome f per complex. The concentration of cytochrome f was measured spectroscopically by its light-induced turnover and by chemical difference spectra. The concentration of high-potential cytochrome b-559 was determined by chemical difference spectra. In addition to these studies, the light-induced absorbance change exhibiting a peak at 323 nm that has been attributed to the reduction of the primary quinone acceptor of photosystem II has been investigated. This measurement frequently has been used to quantitate the photosystem II to chlorophyll ratio. However, in view of these results it is argued that this technique significantly overestimates the photosystem II concentration.  相似文献   

14.
S. Papa  M. Lorusso  F. Guerrieri 《BBA》1975,387(3):425-440
A study is presented of the kinetics and stoichiometry of fast proton translocation associated to aerobic oxidation of components of the mitochondrial respiratory chain.

1. 1. Aerobic oxidation of ubiquinol and b cytochromes is accompanied in EDTA particles, obtained by sonication of beef-heart mitochondria, by synchronous proton uptake.

2. 2. The rapid proton uptake associated to oxidation of ubiquinol and b cytochromes is greatly stimulated by valinomycin plus K+, but is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone.

3. 3. 4 gion H+ are taken up per mol ubiquinol oxidized by oxygen. This H+/2e− ratio, measured in the rapid anaerobic-aerobic transition of the particles is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone.

4. 4. In intact mitochondria aerobic oxidation of oxygen-terminal electron carriers is accompanied by antimycin-insensitive synchronous proton release, oxidation of ubiquinol and reduction of b cytochromes. The amount of protons released is in excess with respect to the amount of ubiquinol oxidized.

5. 5. It is concluded that electron flow along complex III, from ubiquinol to cytochrome c, is directly coupled to vectorial proton translocation. The present data suggest that there exist(s) between ubiquinol and cytochrome c one (or two) respiratory carrier(s), whose oxido-reduction is directly linked to effective transmembrane proton translocation.

Abbreviations: FCCP; carbonyl cyanide p-trifluoromethoxyphenylhydrazone  相似文献   


15.
Wolfgang Haehnel   《BBA》1976,440(3):506-521
The flash-induced oxidation kinetics of the primary acceptor of light Reaction II (X-320) and the reduction kinetics of chlorophyll a1 (P-700) after far-red preilluination have been studied with high time resolution in spinach chloroplasts.

1. 1. The kinetics of chlorophyll a1 exhibits a pronounced lag phase of 2–3 ms at the onset of reduction as would be expected for the final product of consecutive reactions. Because the oxidation of the plastoquinone pool is the rate-limiting step for the electron transport between the two light reactions, the lag indicates the maximal electron transfer time over all preceding reactions after light Reaction II.

2. 2. The observation that the lag phase decreases with decreasing pH is evidence of an electron transfer step coupled to a proton uptake reaction.

3. 3. Protonation of X-320 after reduction in the flash is excluded because a slight increase of the decay time is found at decreasing pH values.

4. 4. The time course of plastohydroquinone formation is deduced from the first derivative of the reduction kinetics of chlorophyll a1. This approach covers those plastohydroquinone molecules being available to the electron carriers of System I via the rate-limiting step. Direct measurements of absorbance changes would not allow to discriminate between these and functionally different plastohydroquinone molecules.

5. 5. The derived time course of plastohydroquinone at different pH gives evidence for an additional electron transfer step with a half time of about 1 ms following the proton uptake and preceding the rate-limiting step. It is tentatively attributed to the diffusion of neutral plastohydroquinone across the hydrophobic core of the thylakoid membrane.

6. 6. The lower limit of the rate constant for proton uptake by an electron carrier, consistent with the lag of chlorophyll a1 reduction, is estimated as > 1011 M−1 · s−1. The value is higher than that of the fastest diffusion controlled protonations of organic molecules in solution.

Possible mechanisms of linear electron transport between light Reaction II and the rate-limiting oxidation of neutral plastohydroquinone are thoroughly discussed.  相似文献   


16.
Laser-Activated Electron Transport in a Chlamydomonas Mutant   总被引:3,自引:3,他引:0  
Following laser activation of electron transport in the pale green mutant of Chlamydomonas reinhardii, the following kinetics are observed: 1) A rapid absorption decrease at 421 mmu (half-time < 2 x 10(-6) sec) recovering with a half-time of approximately 7 x 10(-3) sec. 2) Oxidation of cytochrome f at 554 mmu with a half-time of 1 x 10(-4) sec. 3) Oxidation of cytochrome of type b, at 432 and 564 mmu, with a half-time of approximately 6 x 10(-3) sec, following a 2 x 10(-3) sec lag.THE RESULTS ARE INTERPRETED ACCORDING TO A LINEAR ELECTRON TRANSPORT SEQUENCE: system I trap <-- cytochrome f <-- <-- cytochrome b with an additional molecule of cytochrome b in the cyclic photophosphorylation pathway. Experiments with uncouplers provide evidence for a site of photophosphorylation between cytochrome f and cytochrome b.Additional studies involve inhibitors of electron transport, the temperature dependence and quantum efficiency of cytochrome oxidation, and the effect of oxygen and pre-illumination on the laser-induced absorption changes.  相似文献   

17.
Shinkarev VP  Crofts AR  Wraight CA 《Biochemistry》2001,40(42):12584-12590
The cytochrome bc(1) complex is the central enzyme of respiratory and photosynthetic electron-transfer chains. It couples the redox work of quinol oxidation and cytochrome reduction to the generation of a proton gradient needed for ATP synthesis. When the quinone processing Q(i)- and Q(o)-sites of the complex are inhibited by both antimycin and myxothiazol, the flash-induced kinetics of the b-heme chain, which transfers electrons between these sites, are also expected to be inhibited. However, we have observed in Rhodobacter sphaeroides chromatophores, that when a fraction of heme b(H) is reduced, flash excitation induces fast (half-time approximately 0.1 ms) oxidation of heme b(H), even in the presence of antimycin and myxothiazol. The sensitivity of this oxidation to ionophores and uncouplers, and the absence of any delay in the onset of this reaction, indicates that it is due to a reversal of electron transfer between b(L) and b(H) hemes, driven by the electrical field generated by the photosynthetic reaction center. In the presence of antimycin A, but absence of myxothiazol, the second and following flashes induce a similar ( approximately 0.1 ms) transient oxidation of approximately 10% of the cytochrome b(H) reduced on the first flash. From the observed amplitude of the field-induced oxidation of heme b(H), we estimate that the equilibrium constant for sharing one electron between hemes b(L) and b(H) is 10-15 at pH 7. The small value of this equilibrium constant modifies our understanding of the thermodynamics of the Q-cycle, especially in the context of a dimeric structure of bc(1) complex.  相似文献   

18.
The flash-induced formation of transmembrane electric potential differences (measured by carotenoid bandshift) and redox changes of cytochrome bh (b561) were monitored spectrophotometrically in Rb. sphaeroides chromatophores in a pH range from 7.5 to 10.0. It is shown that in the presence of antimycin A and at pH less than 8.3 the myxothiazol-sensitive, antimycin-insensitive component of the carotenoid bandshift is kinetically coupled to cytochrome bh reduction. The kinetics of both processes can be described by a single exponent with a rise time of about 10 ms. Alkalization of the medium (8.3 less than or equal to pH less than or equal to 9.2) causes the appearance of an additional constituent in this phase of the carotenoid response with the rise time varying in the range of 100-300 ms. With a further pH increase (pH greater than 9.2), the electrogenic constituent, kinetically linked to cytochrome bh reduction, diminishes. The obtained data are discussed within the framework of the scheme, assuming that the electron transfer between bl and bh hemes in the bc1 complex is, under certain conditions, accompanied by proton transfer in the same direction.  相似文献   

19.
In the presence of a high concentration of carbonyl cyanide m-chlorophenylhydrazone (CCCP) (4-10(-6) M), the S2 and S3 dark decays are accelerated and become biphasic with a first half-time of 0.6 s. The first fast phase of the decays does not correspond to a simple reduction of S2, S3 back to S0, S1 (i.e. to an acceleration of the deactivation reaction), but to a decrease in the number of oxygen-evolving System II centers. This photo-inactivation produced by CCCP is rapidly reversible in the dark.  相似文献   

20.
In cytochrome c oxidase, oxido-reductions of heme a/Cu(A) and heme a3/Cu(B) are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e- cooperative linkage at Fe(a3)/Cu(B) is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e- linkage at heme a (and Cu(A)). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/Cu(A) and heme a3/Cu(B) in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R-->O transition), reductive (O-->R transition) and a full catalytic cycle (R-->O-->R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e- linkage at heme a/Cu(A) and heme a3/Cu(B) with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号