首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Twenty Lactococcus lactis strains with an L. lactis subsp. lactis phenotype isolated from five traditional cheeses made of raw milk with no added starters belonging to the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes (lactis and cremoris genotypes, respectively; 10 strains each) were subjected to a series of phenotypic and genetic typing methods, with the aims of determining their phylogenetic relationships and suitability as starters. Pulsed-field gel electrophoresis (PFGE) analysis of intact genomes digested with SalI and SmaI proved that all strains were different except for three isolates of the cremoris genotype, which showed identical PFGE profiles. Multilocus sequence typing (MLST) analysis using internal sequences of seven loci (namely, atpA, rpoA, pheS, pepN, bcaT, pepX, and 16S rRNA gene) revealed considerable intergenotype nucleotide polymorphism, although deduced amino acid changes were scarce. Analysis of the MLST data for the present strains and others from other dairy and nondairy sources showed that all of them clustered into the cremoris or lactis genotype group, by using both independent and combined gene sequences. These two groups of strains also showed distinctive carbohydrate fermentation and enzyme activity profiles, with the strains in the cremoris group showing broader profiles. However, the profiles of resistance/susceptibility to 16 antibiotics were very similar, showing no atypical resistance, except for tetracycline resistance in three identical cremoris genotype isolates. The numbers and concentrations of volatile compounds produced in milk by the strains belonging to these two groups were clearly different, with the cremoris genotype strains producing higher concentrations of more branched-chain, derived compounds. Together, the present results support the idea that the lactis and cremoris genotypes of phenotypic Lactococcus lactis subsp. lactis actually represent true subspecies. Some strains of the two subspecies in this study appear to be good starter candidates.  相似文献   

3.
Aims:  We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture.
Methods and Results:  In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l -arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate.
Conclusions:  Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described.
Significance and Impact of the Study:  The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.  相似文献   

4.
A highly efficient, rapid, and reliable PCR-based method for distinguishing Lactococcus lactis subspecies (L. lactis subsp. lactis and L. lactis subsp. cremoris) is described. Primers complementary to positions in the glutamate decarboxylase gene have been constructed. PCR analysis with extracted DNA or with cells of different L. lactis strains resulted in specific fragments. The length polymorphism of the PCR fragments allowed a clear distinction of the L. lactis subspecies. The amplified fragment length polymorphism with the primers and the restriction fragment length polymorphism of the amplified products agreed perfectly with the identification based on genotypic and phenotypic analyses, respectively. Isolates from cheese starters were investigated by this method, and amplified fragments of genetic variants were found to be approximately 40 bp shorter than the typical L. lactis subsp. cremoris fragments.  相似文献   

5.
Aims:  Genotypic and technological characterization of wild lactococci isolated from artisanal Manchego cheese during the ripening process for selection of suitable starter cultures.
Methods and Results:  A total of 114 isolates of lactococci were typed using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Sixteen distinct RAPD-PCR patterns, at a similarity level of 73%, were obtained. On the basis of species-specific PCR reaction, the isolates were assigned to the species Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris with L. lactis subsp. lactis being predominant at both dairies. Twenty-six isolates were technologically characterized to select those with the best properties. Most of them showed good technological properties although some could produce tyramine.
Conclusions:  The presence of coincident genotypes at both dairies has been demonstrated, which would suggest that they are well adapted to the Manchego cheese environment. Interesting differences were found in the technological characterization and the potential role of autochthonous lactococci strains as starter culture has been displayed.
Significance and Impact of the Study:  The great economic importance of Manchego cheese encouraged a deeper knowledge of its microbiota, to select strains with the best properties to use as starter cultures in industrial Manchego cheeses, preserving the autochthonous characteristics.  相似文献   

6.
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.  相似文献   

7.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

8.
AIMS: Five species of the Gram-positive bacterial genus Lactococcus (Lactococcus lactis, L. garvieae, L. plantarum, L. piscium and L. raffinolactis) are currently recognized. The aim of this work was to develop a simple approach for the identification of these species, as well as to differentiate the industrially important dairy subspecies L. lactis subsp. lactis and L. lactis subsp. cremoris. METHODS AND RESULTS: Methods were devised based on specific polymerase chain reaction (PCR) amplifications that exploit differences in the sequences of the 16S ribosomal RNA genes of each species, followed by restriction enzyme cleavage of the PCR products. The techniques developed were used to characterize industrial cheese starter strains of L. lactis and the results were compared with biochemical phenotype and DNA sequence data. CONCLUSIONS: The PCR primers designed can be used simultaneously, providing a simple scheme for screening unknown isolates. Strains of L. lactis show heterogeneity in the 16S ribosomal RNA gene sequence. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides an integrated set of methods for differentiation and identification of lactococcal species associated with agricultural, veterinary, medical and processed food industries.  相似文献   

9.
Defined starter systems, consisting of bacteriocin-tolerant Lactococcus lactis subsp. lactis H6 alone or in combination with bacteriocin-sensitive L. lactis subsp. cremoris H1, and low amounts of a bacteriocin-producing culture, were developed and used for the manufacture of semi-hard cheese. Aminopeptidase activity and proteolysis were increased and acidification retarded in cheeses made from milk inoculated with lactococci and the bacteriocin-producing culture with respect to cheeses from milk inoculated with only lactococci. Cheeses made with a defined-strain starter system consisting of L. lactis subsp. lactis H6 and the bacteriocin-producing culture received the highest scores for flavour intensity and quality.  相似文献   

10.
A hydrophobic grid membrane filtration (HGMF) colony hybridization assay was developed that allows strain-specific differentiation of defined bacterial populations. The randomly amplified polymorphic DNA (RAPD) fingerprinting technique was used to identify potential signature nucleic acid sequences unique to each member of a commercial cheese starter culture blend. The blend consisted of two closely related Lactococcus lactis subsp. cremoris strains, 160 and 331, and one L. lactis subsp. lactis strain, 210. Three RAPD primers (OPX 1, OPX 12, and OPX 15) generated a total of 32 products from these isolates, 20 of which were potential strain-specific markers. Southern hybridization analyses revealed, that the RAPD-generated signature sequences OPX15-0.95 and a 0.36-kb HaeIII fragment of OPX1-1.0b were specific for strains 331 and 210, respectively, within the context of the test starter culture blend. These strain-specific probes were used in a HGMF colony hybridization assay. Colony lysis, hybridization, and nonradioactive detection parameters were optimized to allow specific differentiation and quantitation of the target strains in the mixed starter culture population. When the 210 and 331 probes were tested at their optimal hybridization temperatures against single cultures, they detected 100% of the target strain CFUs, without cross-reactivity to the other strains. The probes for strains 210 and 331 also successfully detected their targets in blended cultures even with a high background of the other two strains.  相似文献   

11.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of alpha-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced alpha-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

12.
Lactococcus lactis subsp. cremoris is widely used in the manufacture of fermented milk products. Despite numerous attempts, efforts to isolate new strains by traditional plating and identification methods have not been successful. Previously, we described oligonucleotide probes for 16S rRNAs which could be used to discriminate L. lactis subsp. cremoris from related strains. These probes were used in colony hybridization experiments to screen large numbers of colonies obtained from enrichment cultures. A total of 170 strains of L. lactis were isolated from six milk samples, two colostrum samples, and one corn sample by using oligonucleotide probe 212RLa specific for the species L. lactis. Fifty-nine of these isolates also hybridized to L. lactis subsp. cremoris-specific probe 68RCa, and 26 of the strains which hybridized to the L. lactis subsp. cremoris-specific probe had the L. lactis subsp. cremoris phenotype.  相似文献   

13.
We report the complete genome sequence of Lactococcus lactis subsp. cremoris A76, a dairy strain isolated from a cheese production outfit. Genome analysis detected two contiguous islands fitting to the L. lactis subsp. lactis rather than to the L. lactis subsp. cremoris lineage. This indicates the existence of genetic exchange between the diverse subspecies, presumably related to the technological process.  相似文献   

14.
M P Ryan  M C Rea  C Hill    R P Ross 《Applied microbiology》1996,62(2):612-619
Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products.  相似文献   

15.
AIMS: The aim of this study was to obtain new Lactococcus lactis strains from nondairy materials for use as milk fermentation starters. The genetic and phenotypic traits of the obtained strains were characterized and compared with those of L. lactis strains derived from milk. It was confirmed that the plant-derived bacteria could be used as milk fermentation starters. METHODS AND RESULTS: About 2600 lactic acid bacteria were subjected to screening for L. lactis with species-specific PCR. Specific DNA amplification was observed in 106 isolates. Forty-one strains were selected, including 30 strains of milk-derived and 11 of plant-derived, and their phenotypic traits and genetic profiles were determined. The plant-derived strains showed tolerance for high salt concentration and high pH value, and fermented many more kinds of carbohydrates than the milk-derived strains. There were no remarkable differences in the profiles of enzymes, such as lipases, peptidases and phosphatases. Isolates were investigated by cluster analysis based on randomly amplified polymorphic DNA profiles. There were no significant differences between isolates from milk and those from plant. The L. lactis subsp. cremoris strains were clustered into two distinct groups, one composed of the strains having the typical cremoris phenotype and the other composed of strains having a phenotype similar to subsp. lactis. Fermented milk manufactured using the plant-derived strains were not inferior in flavour to that manufactured using the milk-derived strains. CONCLUSIONS: Plant-derived L. lactis strains are genetically close to milk-derived strains but have various additional capabilities, such as the ability to ferment many additional kinds of carbohydrates and greater stress-tolerance compared with the milk-derived strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The lactic acid bacteria obtained from plants in this study may be applicable for use in the dairy product industry.  相似文献   

16.
The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (10(5) to 10(6) CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 10(4) CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.  相似文献   

17.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

18.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

19.
AIMS: The major cell envelope proteinase (lactocepin; EC 3.4.21.96) produced by Lactococcus lactis cheese starter bacteria is required for starter growth and acid production in milk. The aim of this study was to characterize a lactocepin plasmid from a L. lactis subsp. cremoris cheese starter strain. METHODS AND RESULTS: A restriction map of the lactocepin plasmid pHP003 from strain HP was constructed, fragments were cloned in Escherichia coli vectors, and the complete DNA sequence (13,433 bp) was determined. Among 120 industrial L. lactis starter strains screened, five contained the same specificity-type lactocepin as pHP003. The lactocepin gene in these strains was invariably linked with a partially-deleted abiB gene. CONCLUSION: The lactocepin specificity type of strain HP, conferred by a known configuration of key residues, is relatively uncommon. The gene is invariably linked with a partially deleted abiB gene on each lactocepin plasmid. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first complete sequence reported for a lactocepin plasmid, and provides the basis for better understanding, or manipulation, of lactocepin production.  相似文献   

20.
【目的】比较16S rRNA和recA、groEL基因部分序列用于乳酸乳球菌乳酸亚种和乳脂亚种分类鉴定的效果。【方法】对已鉴定的8株分离自传统发酵乳的乳酸乳球菌, 选取recA和groEL基因片段, 通过PCR扩增、测序, 将测序得到的序列比对后构建系统发育树, 并与16S rRNA基因序列分析技术进行比较。【结果】比较分析不同菌株16S rRNA和recA、groEL基因的亲缘关系, recA、groEL基因可以准确地完成乳酸乳球菌乳酸亚种和乳脂亚种的区分和鉴定。【结论】recA和groEL基因序列分析可以实现乳酸乳球菌乳酸亚种和乳脂亚种的区分, 因其具有快速、准确、稳定的特点, 可适合于乳酸乳球菌乳酸亚种和乳脂亚种间的快速分类鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号