首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Mass occurrence of macroalgae is a phenomenon attributed to eutrophication, and can lead to drastic changes in the benthic communities on soft bottoms. While the negative effects of macroalgal blooms on the macrozoobenthos have been studied extensively, the effects of the infauna on the macroalgal material have not previously been studied in the northern Baltic Sea. The impact of the infaunal species Nereis diversicolor and Saduria entomon on the burial and biomass of Enteromorpha spp., Cladophora glomerata and Fucus vesiculosus, was assessed through a series of microcosm experiments. Results show that S. entomon did not significantly affect the biomass of the algae, nor actively relocate them. N. diversicolor redistributed the filamentous green algae into the sediment, down to 4 cm at most, and decreased the biomass of the filamentous algae by 140-360%. Furthermore, the loss of biomass promoted in presence of polychaetes proved to be a density dependent process. The effect on the perennial macroalgal species, F. vesiculosus, was less clear, as no redistribution or significant change in macroalgal biomass was observed. Our findings show that infauna can contribute to a loss in macroalgal biomass through feeding and burrowing activities leading to the redistribution and incorporation of the detritus into bioturbated sediment.  相似文献   

2.
Paalme  Tiina  Kukk  Henn  Kotta  Jonne  Orav  Helen 《Hydrobiologia》2002,(1):469-476
The decomposition of two macroalgal species Cladophora glomerata (CHLOROPHYTA) and Pilayella littoralis (PHAEOPHYTA) was studied in the laboratory and field conditions. These species are known to cause the extensive macroalgal blooms in the whole coastal range of the Baltic Sea. The objective of the experiments was to determine decomposition rates of the macroalgae, follow the changes in tissue nutrient content and validate the role of benthic invertebrates in this process. In the laboratory conditions, the differences in the decomposition rates of the algae were mainly due to the oxygen conditions. The weight loss of C. glomerata was slightly higher in anaerobic conditions than in aerobic conditions. If 99% of initial dry weight of P. littoralis was lost in aerobic conditions then only 20% was lost in anaerobic conditions. In general, the loss of phosphorus and nitrogen in algal tissues followed the weight loss. As an exception, the amount of nitrogen changed very little during the decomposition of C. glomerata. In field conditions, the photosynthetic activity exceeded the decomposition rate of C. glomerata at lower temperatures in spring. The decomposition of P. littoralis was estimated at 49% of its initial dry weight. The addition of benthic invertebrates had no effect on the decomposition process. In summer, the decomposition rates were estimated at 65% for C. glomerata and 68% for P. littoralis being in the same order of magnitude as observed in laboratory conditions. If the decomposition of C. glomerata was faster at the end of the experiment, the most significant losses of weight of P. littoralis took place during the first 2 weeks of deployment. Idotea baltica significantly contributed to the loss of C. glomerata. The decomposition rate of P. littoralis was reduced by the presence of Mytilus edulis and increased by Gammarus oceanicus.  相似文献   

3.
Bolam  S.G.  Fernandes  T.F. 《Hydrobiologia》2002,(1):437-448
The growth of green macro-algae in response to nutrient inputs is a common phenomenon in marine estuaries and sheltered bays. While the ecological effects of the growth of the most commonly occurring macroalgal taxa (Enteromorpha, Chaetomorpha, Ulva, Cladophora) have been well studied, the effects of a morphologically very different species, Vaucheria subsimplex, have not been investigated. This study investigated the ecological effects of the establishment of V. subsimplex on a relatively exposed intertidal sandflat, Drum Sands, Firth of Forth, Scotland. Because of the spatially heterogeneous development of the weed, the short term (4 weeks) and long term (20 weeks) effects of the weed could be studied using a survey approach in which the weed-affected and weed-free plots were interspersed. After 4 weeks, V. subsimplex significantly increased the mean number of individuals and diversity of the macrofauna, eight of the ten most abundant species showed significant increases in abundance compared to weed-free areas. After 20 weeks, mean number of species and individuals were significantly higher under weed patches, while species diversity was reduced due to the numerical dominance of Pygospio elegans (Claparède). The weed, therefore, had an enriching effect on the macrofaunal communities on Drum Sands. The increased numbers of P. elegans, the numerical dominant infaunal species on Drum Sands, resulted mainly from enhanced larval recruitment to weed-affected areas. The effects of V. subsimplex on sediment characteristics were similar to those reported for other macroalgal taxa, i.e., increased water, organic and silt/clay contents, medium particle size and sorting coefficients, and reduced redox potentials. The results from this study are compared to those for other, morphologically different macroalgal species, with particular reference to an Enteromorpha-implanted experiment on the same sandflat. Since the general effect of such macroalgal taxa on macrofaunal communities is a detrimental one, the present study supports the contention that macroalgal morphology is an important feature in algal–faunal interactions.  相似文献   

4.
The diatom population structure of a salt marsh epiphytic community growing on Enteromorpha intestinalis was studied at one station throughout the summer. A total of 218 species or varieties were recognized. Six species— Fragilaria construens, Cocconeis scutellum, Cocconeis placentula, Achnanthes hauckiana varieties, Achnanthes pinnata, and Amphora coffeaeformis (var. acutiuscula)–dominated the Enteromorpha epiphytic community during the summer months and comprised ∼ 40% of the total populations. Melosira nummuloides, Opephora martyi, Synedra fasiculata var. tabulata, S. affinis, Navicula platyventris, and N. pavillardi were also very common species (13% of the total population). The distribution of many species in the community was seasonal. A series of differential media have been developed which are effective as tools for the isolation and nutritional characterization of the algae and bacteria from the community. Many diatom species can be recognized by their colony type or growth pattern on solidified media. A key and illustrated plates aid in identification. Changes in population structure of the community were reflected by changes in the nutritional patterns as judged by differences in the growth of diatoms and bacteria on the differential media tested. The nutritional requirements, selectivity, and rank order of media for individual species is given. Almost half of the colony types (32–33) grew on either unenriched seawater from the collection site or basal synthetic seawater. Erdschreiber was a poorer medium for the isolation of algae than seawater alone. Few algal colonies grew on either marine nutrient agar or trypticase soy agar. Nitrite inhibited algal growth. Media enriched with thiamine, biotin, or nitrate, phosphate, and B12 were stimulatory. Soil extract or an acetone extract of Enteromorpha tripled growth; a complex vitamin mixture, or glycerol, or mannitol, or an autoclaved extract of Enteromorpha doubled colony numbers. The greatest numbers of diatom types (43) and total colonies (655) were recovered on media enriched with acetone extract of Enteromorpha, suggesting a possible nutritional relationship between Enteromorpha and its epiphytes. The representativeness of the isolations from the natural community as a function of time was also considered. Concentrations of selected dissolved potential growth-stimulating nutrients were measured within and external to Enteromorpha communities. We conclude that the algal assemblage growing epiphytically on Enteromorpha intestinalis has a diverse auxotrophic profile which contributes to the productivity and stability within this important component of the epiphytic community and that much of the organic substrates used by individual species originate within and are recycled among the community members.  相似文献   

5.
Benthic epifauna was sampled in six areas from the German Bight towards the Norwegian Sea using a 2-m standard beam trawl. Nine replicates were taken in each area and year from 1999 to 2006. This data set (60–67 replicates per area) was used to describe the spatial variability in local species composition and to assess the effect of increasing sampling effort on species richness and community structure. Our results confirmed the importance of the 50-m depth contour for the separation of benthic fauna in the North Sea. Low species richness, sparse sessile fauna and high abundances of scavenging species such as Asterias rubens, Liocarcinus holsatus, Astropecten irregularis and Ophiura albida were characteristic of the low-water area south of the 50-m contour. Differences in community structure were less conspicuous in deeper waters north of the 50-m contour, but distribution patterns and abundances of single species such as Echinus elegans, Hyalinoecia tubicola, Ophiothrix fragilis, Scaphander lignarius as well as several hermit crabs resulted in well-defined epifaunal communities. One replicate caught 17–28% of the species found in 60–67 samples and was sufficient to separate the community in the German Bight from those in the central and northern North Sea by using multidimensional scaling. Nine replicates sampled a proportion of 53–60% and provided additional information on the spatial variability of community structure in the central and northern North Sea. Our study indicates that appropriate replication enhances the quality of the data and can partly overcome the constraints of sampling with a 2-m beam trawl. This might be helpful for future monitoring programmes.  相似文献   

6.
An account is given of the use of Enteromorpha to monitor zinc, cadmium, mercury and lead pollution in six estuaries and the British North Sea coast. The ranges for each element were: Zn, 19–437 µg g–1; µg g–1 Cd, 0.07–4.8 µg g–1; Hg, 0.02–0.23 µg g–1. It is suggested that tissue analysis of Enteromorpha is one of the most useful biological techniques available in estuaries for pin-pointing aqueous (as opposed to sediment) metal contamination, and also for providing data suitable for world-wide comparisons. Provisional values are given for concentrations corresponding to moderate and high pollution.Deceased  相似文献   

7.
In rocky littoral communities, intense herbivory allows for the occurrence of trophic cascades where higher trophic levels influence producer communities. Invasive predators can be especially effective in imposing trophic cascades. The North American mud crab Rhithropanopeus harrisii is a recent invader in the Baltic Sea, with an expanding distribution range. Here, we document the effects of mud crab on the native invertebrate community associated with the key foundation species Fucus vesiculosus. During the initial 3 years of invasion, mud crab abundance in F. vesiculosus increased from 2 % to about 25 % of the algae being inhabited by crabs. Simultaneously, the invertebrate community underwent a major transition: Species richness and diversity dropped as a consequence of decreasing abundance and the loss of certain taxa. The abundance of gastropods decreased by 99 % and that of crustaceans by 75 %, while chironomids completely disappeared. Consequently, the community dominated earlier by herbivorous and periphyton-grazing gastropods and crustaceans shifted to a mussel dominated community with overall low abundances of herbivores. At the same time filamentous epiphytic algae prospered and the growth rate of F. vesiculosus decreased. We suggest that this shift in the invertebrate community may have far reaching consequences on ecosystem functioning. These arise through changes in the strength of producer–herbivore interaction, caused by mud crab predation on the dominating grazer taxa. This interaction is a major determinant of ecological function of ecosystems, i.e. productivity and energy flow to higher trophic levels. Therefore, the decrease in herbivory can be expected to have a major structuring role in producer communities of the rocky littoral macroalgal assemblages.  相似文献   

8.
In Potter Cove, Antarctica, newly ice-free areas appeared due to glacial retreat. Simultaneously, the inflow of sediment increased, reducing underwater photosynthetically active radiation (PAR, 400–700 nm). The aim of this study was to determine the photosynthetic characteristics of two macroalgal species colonizing three newly ice-free areas, A1, A2 and A3, with increasing degree of glacial influence from A1 to A3. Turbidity, salinity and temperature were measured, and light attenuation coefficients (K d) calculated and considered as a proxy for glacial sediment input. The lower depth distribution of the red alga Palmaria decipiens and the brown alga Himantothallus grandifolius was 10 m in A3, 20 m in A2 and 30 m in A1. Both species were then collected, at 5 and 10 m at all areas. Photosynthetic parameters and the daily metabolic carbon balance (CB) were determined. K d was significantly higher in A3 compared with A1 and A2. The CB of P. decipiens was significantly higher in A1 followed by A2 and A3, and significantly higher at shallower than at greater depth. For H. grandifolius CB was significantly lower in A3 and in A2 at deeper depths compared with the rest of areas and depths. The lower distribution limit of the algae was positively correlated to the light penetration. An increase in the sediment run-off due to global warming might lead to an elevation of the lower depth distribution limit but retreating glaciers can open new space for macroalgal colonization. These changes will probably affect macroalgal primary productivity in Potter Cove with consequences for the coastal ecosystem.  相似文献   

9.
To determine and compare innate preferences of the parasitoid speciesCotesia glomerata andC. rubecula for different plant-herbivore complexes, long-range (1-m) foraging behavior was studied in dual-choice experiments in a wind tunnel. In this study we tested the hypothesis that naive females of the specialistC. rubecula should show more pronounced preferences for different plant-herbivore complexes than females of the generalistC. glomerata. The herbivore species used were the pieridsPieris brassicae, P. rapae, P. Napi, andAporia crataegi and the nonhostsPlutella xylostella andMamestra brassicae. All herbivore species feed mainly on cabbage and wild crucifers, exceptAporia crataegi, which feeds on species of Rosaceae. Both parasitoid species preferred herbivore-damaged plants over nondamaged plants. NeitherC. rubecula norC. glomerata discriminated between plants infested by different caterpillar species, not even between plants infested by host-and nonhost species. Both parasitoid species showed preferences for certain cabbage cultivars and plant species. No differences were found in innate host-searching behavior betweenC. glomerata andC. rubecula. The tritrophic system cabbage-caterpillars-Cotesia sp. seems to lack specificity on the herbivore level, whereas on the plant level differences in attractiveness to parasitoids were found.  相似文献   

10.
A continuous micropropagation was established from protoplasts of thegreen alga Enteromorpha intestinalis. The effects of two differentcrude enzymes and the osmolarity at different concentrations of the enzymesolution on algal protoplast yields were tested. The optimal enzymecomposition for cell wall digestion and protoplast viability was 2%cellulase R 10 Onozuka and 2% Aplysie with 0.5 m mannitol. Largenumbers of Enteromorpha protoplasts were released (10.0 × 106protoplasts from 1 g fresh thalli) and settled on a rangeof substrata. Regeneration of the protoplasts followed the normal patternfor this species. Conditions for pure cultures and efficient systems offloating supports with nets were determined to optimise the product qualityof plantlets of Enteromorpha. A promising storage process has beendeveloped which involves including protoplasts in beads of alginic acid gel.Plants regenerated from protoplasts may also be used as seedstock tofacilitate propagation for macroalgal culture.  相似文献   

11.
A site in the western part of Long Island Sound was monitored from January 2000 to May 2002. The littoral was divided into five different zones from the supra-littoral fringe (A) to the infra-littoral fringe (E). The midshore was dominated by Fucus vesiculosus L. and the sublittoral fringe by Chondrus crispus Stackh. There was a significant change in community structure over the years and the predominant change occurred between 2001 and 2002. The alternation in community structure was caused by an increase in abundance of species like Porphyra suborbiculata Kjellm., Porphyra leucosticta Type A and C (Neefus et al. 2000), Ceramium virgatum Roth, and Codium fragile subsp. tomentosoides (van Goor)Silva and a decrease in abundance in Fucus vesiculosus, Blidingia minima (Nägeli ex Kütz.) Kylin and Ulva lactuca L. The changes in community structure coincided with the change in environmental conditions. Air temperature as well as surface seawater temperature (depth <2 m) were the most important factors of those analyzed. Temperature seems to be the bottom-up force regulating the community structure.  相似文献   

12.
Foundation species can provide habitat that modify abiotic and biotic processes that contribute to ecosystem function. While many studies have focused on the processes and consequences of a focal foundation species, understanding the ecological equivalence of co‐occurring foundation species is important to identify key species responsible for ecosystem function. Here, we investigated the relative contributions of co‐occurring foundation species on abiotic (temperature) and biotic responses of invertebrate species (recruitment, persistence, growth and survival). In a series of experimental field studies, we manipulated foundation species to measure invertebrate recruitment, persistence, and predation. A laboratory experiment measured foundation species effects on herbivore growth. Results demonstrated that macroalgal (Fucus vesiculosus ecad and Ascophyllum nodosum ecad scorpioides) intermediate foundation species provide habitat, food, and alleviate abiotic stress for dominant littorinid herbivores that surpass that provided by the primary species (Spartina alterniflora). These foundation effects were species‐specific with F. vesiculosus ecad important for early life‐history stages (enhanced recruitment and early growth of littorinid snails) and A. nodosum ecad important later on as a refuge from predators (Carcinus meanas) and stressful temperature. Understanding of the different effects of co‐occurring foundation species on population and community processes is necessary for predicting community response to natural disturbance, species invasion, and ecosystem‐based management actions.  相似文献   

13.
A study of the epilithic diatom, macroalgal and macrophyte communities from a spring-fed stream in Ontario, Canada was undertaken from September 1996 to July 1997. The relative abundance of the epilithic diatom flora, percent cover of macroalgal and macrophyte taxa, and several physical and chemical stream conditions were monitored along a 20-m stretch at each of four sites, approximately every 2 months. Several stream conditions were relatively constant over the sampling period (pH, maximum width and maximum depth), while others exhibited a distinct seasonal pattern (water temperature, specific conductance and daylength) and some fluctuated strongly with no discernable seasonal pattern (turbidity, current velocity). A total of 124 taxa were identified from the four sites, including 79 epilithic diatoms, three macroalgal diatom species (large gelatinous masses), one cyanobacterium, two red algae, eight green algae, one chrysophyte alga, one tribophyte alga, three mosses, three horsetails and 23 angiosperm taxa. Species richness was positively correlated to stream channel maximum width and depth, indicating that the total number of species tends to increase in a downstream direction. Distribution of several diatom and macroalgal species was significantly correlated to stream conditions (e.g. Gomphonema parvulum and Phormidium subfuscum with current velocity); however, the vast majority of species did not display seasonal variation in abundance that could be explained by changes in stream conditions. Many of the taxa identified from Blue Springs Creek are common elsewhere in North America.  相似文献   

14.
Time scales of change in the San Francisco Bay benthos   总被引:8,自引:8,他引:0  
Results from multi-year investigations in the San Francisco Bay estuary show that large abundance fluctuations within benthic macroinvertebrate populations reflect both (1) within-year periodicity of reproduction, recruitment, and mortality that is not necessarily coincident with seasonal changes of the environment (e.g., the annual temperature cycle), and (2) aperiodic density changes (often larger than within-year fluctuations) following random perturbations of the environment.Density peaks of the small, short-lived estuarine invertebrates that comprise the vast majority of individuals in the bay's relatively homogeneous benthic community normally occur between spring and autumn depending on the species, in large part a reflection of reproductive periodicity. However, because mild winters permit reproductive activity in some of the common species throughout much of the year, other factors are important to within-year density fluctuations in the community. Seasonally predictable changes in freshwater inflow, wind and tidal mixing, microalgal biomass, and sediment erosion/deposition patterns all contribute to observed seasonal changes in abundance. For example, the commonly observed decline in abundance during winter reflects both short-lived species that die after reproducing and the stress of winter conditions (e.g., inundation by less saline, sediment-laden water and the decline in both planktonic and benthic algal biomass — a direct source of food for the shallow-water benthos). On the other hand, data from several studies suggest that observed recruitment and mortality may in fact be the migration of juveniles and adults to and from study sites. For example, the common amphipod Ampelisca abdita apparently moves from shallow to deep water, or from up-estuary to down-estuary locations, coincident with periods of high river runoff in winter. Growth of individuals within the few studied species populations is also highly seasonal, and appears to be coincident with seasonal increases in the abundance of planktonic and/or benthic microalgae.Two multi-year studies have shown that, in addition to within-year periodicity, major restructuring of the benthic community can occur as a result of anomalous (usually climate-related) perturbations of the benthic habitat. For example, during wet years freshwater-intolerant species disappear from the upper part of the estuary and from shallow areas of the bay. During a two-year drought these same species colonized the extreme upper end of the estuary in large numbers. Other aperiodic perturbations include localized instances of sediment erosion or deposition and algal mat accumulations that greatly depress abundance. Additionally, there is evidence (observations that the clam Macoma balthica establishes large populations only when the amphipod A. abdita is not abundant) that species interactions can contribute greatly to interannual variations. Thus, while community composition may change little over the long term, year-to-year predictability of species abundances is low.  相似文献   

15.
The communities of gammaridean amphipods associated with eight dominant macroalgal species were examined near Palmer Station, Western Antarctic Peninsula. A total of 78,415 individuals belonging to 32 amphipod taxa were identified with mean densities ranging up to 20 individuals/g algal wet wt. The most abundant amphipod taxon, Metaleptamphopus pectinatus, was found to associate predominately with the brown alga Desmarestia menziesii, while the second most common taxon, Jassa spp. occurred primarily on the red alga Gigartina skottsbergii. Non-metric multidimensional scaling analysis demonstrated that the population densities of each amphipod species and amphipod species composition were similar on the same algal species but dissimilar on different species of algae. Comparisons of amphipod communities associated with a given algal species but from different sampling sites indicated that although the structure of species-specific macroalgal-associated amphipod communities can vary across spatial scales of 3 km, 50% of the macroalgal species examined showed no significant inter-site differences in associated amphipod community structure. Spearman rank correlation analyses showed that higher abundances of amphipods occurred on the macroalgae with the highest number of branches. As many Antarctic amphipods are known consumers of macroalgae, their remarkable abundances are likely to play a significant role in mediating energy and nutrient transfer in nearshore Antarctic Peninsular macroalgal communities.  相似文献   

16.
The deep-water macroalgal community of the continental shelf off the east coast of Florida was sampled by lock-out divers from two research submersibles as part of the most detailed year-round study of a macroalgal community extending below routine SCUBA depths. A total of 208 taxa (excluding crustose corallines) were recorded; of these, 42 (20.2%), 19 (9.1%), and 147 (70.7%) belonged to the Chlorophyta, Phaeophyta, and Rhodophyta, respectively. Taxonomic diversity was maximal during late spring and summer and minimal during late fall and winter. The number of reproductive taxa closely followed the number of taxa present; when reproductive frequency was expressed as a percentage of the species present during each month, two peaks (January and August) were observed. Most perennial species had considerable depth ranges, with the greatest number of taxa observed from 31 to 40 m in depth. Although most of the taxa present also grow in shallow water (i.e. <10 m), there were some species whose distribution is limited to deeper water. The latter are strongly dominated by rhodophytes. This community has a strong tropical affinity, but over half the taxa occur in warm-temperate areas. Forty-two new records (20% of the taxa identified) for Florida were listed; this includes 15 taxa which previously had been considered distributional disjuncts in this area. The phaeophyteHalopteris filicina is a new addition to the flora of the western Atlantic. Although more studies are needed, it appears that the deep-water flora may be relatively continuous over a large portion of the tropical and subtropical western North Atlantic. The traditional practice of considering Cape Canaveral as a biogeographical boundary may only be appropriate for shallow water. This study demonstrates the need for additional floristic work on macroalgal communities, especially from deep water, before more detailed biogeographical analyses can be performed and suggests that deep-water species could be important in experimental approaches to macroalgal biogeography.  相似文献   

17.
RAPDs were employed as genetic markers to detect interspecific hybridization between the closely related oak speciesQuercus robur andQ. petraea. Fourteen primers were used in order to check the genetic status (pure or hybrid) of individuals classified morphologically. Among the 147 PCR fragments obtained 11 appear to be species-specific. In the phenotypically intermediate individuals different combinations of these species-specific bands were obtained. The patterns in these putative hybrids were not additive, which may be either the result of repeated backcrossing and introgression between the two species or of heterozygosity within the parental species. The results of the RAPD study are consistent with morphological analyses and allozyme data obtained for theGot-2 locus. Thus the RAPD markers used in this study may provide a powerful genetic tool for the identification of hybrids and the discrimination between the two pure species.  相似文献   

18.
Human‐induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+?5°C, +?700 μatm CO2) using multifactorial long‐term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12‐week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti‐fouling and anti‐herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti‐microfouling activity was highest during winter under warming, while anti‐macrofouling and anti‐herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti‐fouling and anti‐herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.  相似文献   

19.
Many (palaeo-)environmental parameters can be deduced from ecological and chemical analyses of ostracods. However, the specific ecology of each taxon has a great impact on its reaction to changing environmental conditions. As a consequence, each taxon records these changes differently. The mean penetration depth (MPD) and relative individual abundances have been documented along sediment depth profiles for the dominant sub-littoral to profundal species of ostracods in western Lake Geneva, Switzerland, and this data can be used to estimate their preferential habitat in terms of sediment depths. Isocypris beauchampi, Limnocytherina sanctipatricii, Cypria ophtalmica forma lacustris at 13-m water depths, Limnocythere inopinata, and a winter generation of Herpetocypris reptans have the shallowest habitat preferences at the study sites (MPDs of 0.45, 0.48, 0.49, 0.60, and 0.81 cm, respectively). These results suggest that these populations may be regarded as being preferentially epifaunal forms. Populations of Cytherissa lacustris (MPDs of 0.61, 0.73, and 0.82 cm at 13-, 33-, and 70-m water depths, respectively), Cypria ophtalmica forma lacustris at 70 m (MPD = 0.96 cm), Fabaeformiscandona caudata (MPD = 0.99 cm), and a summer generation of Herpetocypris reptans (MPD = 1.03 cm) were identified as being infaunal. Candona neglecta is the species that was found the deepest in the sediment of Lake Geneva, with MPDs of 0.65, 1.22, and 1.30 cm at 13-, 33-, and 70-m water depths, respectively. Information on the sediment texture and oxygen concentrations inferred from the analyses of sediment pore water suggest that the oxygen content of the sediment pore water is not the only dominant parameter controlling the differences in ostracod sediment penetration depths observed among the different sites, but that they might also be influenced by the sediment ‘softness,’ which itself depends on grain size, water content, and the abundance of organic matter in sediment.  相似文献   

20.
An expansive meadow of the native macroalga Halimeda kanaloana has been found in west Maui, Hawaii. This study examined the invertebrate community associated with the H. kanaloana meadow. Analyses of samples collected by SCUBA divers found that the meadow supports a diverse and unique benthic community. The meadow provides a suitable habitat for a variety of epibenthic and epifaunal invertebrates in the otherwise homogeneous sandy habitat. Infaunal polychaete abundances, species richness and Shannon‐Wiener diversity index were also higher inside the meadow. Abundances of epibenthic organisms, and dissimilarities of the polychaete assemblage, inside and outside the meadow were greater at deeper stations. This might be due to an effect of the Halimeda density rather than depth, suggesting that the macroalgal density might play an important role in shaping the benthic community. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号