首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.

Background

Disrupted-in-Schizophrenia 1 (DISC1) is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU)-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery.

Results

Contrary to expectations, 31 L mutant mice showed no significant behavioral differences when compared with wild-type control mice in any of the behavioral tests, including the Porsolt forced swim and tail suspension tests, commonly used tests for depression-like behavior. Also, 100P mutant mice exhibited no differences in almost all of the behavioral tests, including the prepulse inhibition test for measuring sensorimotor gating, which is known to be impaired in schizophrenia patients; however, 100P mutant mice showed higher locomotor activity compared with wild-type control mice in the light/dark transition test.

Conclusions

Although these results are partially consistent with the previous study in that there was hyperactivity in 100P mutant mice, the vast majority of the results are inconsistent with those of the previous study; this discrepancy may be explained by differences in the genetic background of the mice, the laboratory environment, experimental protocols, and more. Further behavioral studies under various experimental conditions are necessary to determine whether these Disc1 mutant mouse lines are suitable animal models of schizophrenia and major depression.  相似文献   

2.
Significant advances have been made in understanding the role of disrupted‐in‐schizophrenia‐1 (DISC1) in the brain and accumulating findings suggest the possible implication of DISC1 in the regulation of dopamine (DA) function. A mutation in the second exon of DISC1 at L100P leads to the development of schizophrenia‐related behavior in mutant mice (DISC1‐L100P). We investigated here the role of DA in the expression of schizophrenia‐related endophenotypes in the DISC1‐L100P genetic mouse model. The mutated DISC1 resulted in facilitation of the psychostimulant effect of amphetamine in DISC1‐L100P mutant mice assessed in the open field and prepulse inhibition (PPI) tests. Biochemical studies detected a 2.1‐fold increase in the proportion of striatal D receptors without significant changes in DA release in vivo in the striatum of DISC1‐L100P mutants in response to the low dose of amphetamine. The D2 receptor antagonist haloperidol reversed the hyperactivity, PPI and latent inhibition (LI) deficits and blocked the psychostimulant effect of amphetamine in DISC1‐L100P mutants. Taken together, our findings show the role of DISC1 in D2‐related pathophysiological mechanism of schizophrenia, linking DISC1 with well‐established DA hypothesis of schizophrenia.  相似文献   

3.
A novel series of 1-pyridylisoquinoline and 1-pyridyldihydroisoquinoline derivatives has been prepared. These compounds showed potent PDE4 inhibitory activities and a broad margin between the K(i) value of the rolipram binding affinity and the IC(50) value of PDE4 inhibition. They also exhibited potent inhibitory activities toward LPS-induced TNF-alpha production in mice.  相似文献   

4.
Disrupted in schizophrenia 1 (DISC1) is a risk factor for a spectrum of neuropsychiatric illnesses including schizophrenia, bipolar disorder, and major depressive disorder. Here we use two missense Disc1 mouse mutants, described previously with distinct behavioural phenotypes, to demonstrate that Disc1 variation exerts differing effects on the formation of newly generated neurons in the adult hippocampus. Disc1 mice carrying a homozygous Q31L mutation, and displaying depressive-like phenotypes, have fewer proliferating cells while Disc1 mice with a homozygous L100P mutation that induces schizophrenia-like phenotypes, show changes in the generation, placement and maturation of newly generated neurons in the hippocampal dentate gyrus. Our results demonstrate Disc1 allele specific effects in the adult hippocampus, and suggest that the divergence in behavioural phenotypes may in part stem from changes in specific cell populations in the brain.  相似文献   

5.
Cyclic AMP is hydrolyzed by members of at least eight classes of cyclic nucleotide phosphodiesterases (PDEs). Although it has been reported that cyclic AMP PDE activity in mammalian tissues can be inhibited by benzodiazepines, it has not been conclusively demonstrated that members of the class of cyclic AMP-specific, rolipram-inhibitable PDEs (PDE4s) are targets for these drugs. Moreover, no PDE4s expressed in mice have been characterized. To address these issues, we isolated two cDNAs representing homologues of PDE4A1 and PDE4B3 from a mouse brain library. After transient transfection in human embryonic kidney (HEK) 293 cells, the mouse PDEs hydrolyzed cyclic AMP with a low K(m) and were inhibited by rolipram; both are properties typical of other mammalian PDE4 enzymes. In addition, we found that diazepam inhibited cyclic AMP hydrolysis by the mouse PDE4 subtypes. Interestingly, PDE4B was significantly more sensitive to inhibition by both rolipram and diazepam than the PDE4A subtype. This is the first demonstration that recombinantly expressed PDE4s are inhibited by diazepam, and should facilitate future studies with mouse models of depression and anxiety.  相似文献   

6.
The cAMP-specific phosphodiesterase (PDE) HSPDE 4A4B(pde46) selectively bound SH3 domains of SRC family tyrosyl kinases. Such an interaction profoundly changed the inhibition of PDE4 activity caused by the PDE4-selective inhibitor rolipram and mimicked the enhanced rolipram inhibition seen for particulate, compared with cytosolic pde46 expressed in COS7 cells. Particulate pde46 co-localized with LYN kinase in COS7 cells. The unique N-terminal and LR2 regions of pde46 contained the sites for SH3 binding. Altered rolipram inhibition was triggered by SH3 domain interaction with the LR2 region. Purified LYN SH3 and human PDE4A LR2 could be co-immunoprecipitated, indicating a direct interaction. Protein kinase A-phosphorylated pde46 remained able to bind LYN SH3. pde46 was found to be associated with SRC kinase in the cytosol of COS1 cells, leading to aberrant kinetics of rolipram inhibition. It is suggested that pde46 may be associated with SRC family tyrosyl kinases in intact cells and that the ensuing SH3 domain interaction with the LR2 region of pde46 alters the conformation of the PDE catalytic unit, as detected by altered rolipram inhibition. Interaction between pde46 and SRC family tyrosyl kinases highlights a potentially novel regulatory system and point of signaling system cross-talk.  相似文献   

7.
Disrupted-In-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependant Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.  相似文献   

8.
9.
PDE4 splice variants are classified into long and short forms depending on the presence or absence of two unique N-terminal domains termed upstream conserved regions 1 and 2 (UCR1 and -2). We have shown previously that the UCR module mediates dimerization of PDE4 long forms, whereas short forms, which lack UCR1, behave as monomers. In the present study, we demonstrate that dimerization is an essential structural element that determines the regulatory properties and inhibitor sensitivities of PDE4 enzymes. Comparing the properties of the dimeric wild type PDE4D3 with several monomeric mutant PDE4D3 constructs revealed that disruption of dimerization ablates the activation of PDE4 long forms by either protein kinase A phosphorylation or phosphatidic acid binding. Moreover, the analysis of heterodimers consisting of a catalytically active and a catalytically inactive PDE4D3 subunit indicates that protein kinase A phosphorylation of both subunits is essential to fully activate PDE4 enzymes. In addition to affecting enzyme regulation, disruption of dimerization reduces the sensitivity of the enzymes toward the prototypical PDE4 inhibitor rolipram. Parallel binding assays indicated that this shift in rolipram sensitivity is likely mediated by a decrease in the number of inhibitor binding sites in the high affinity rolipram binding state. Thus, although dimerization is not a requirement for high affinity rolipram binding, it functions to stabilize PDE4 long forms in their high affinity rolipram binding conformation. Taken together, our data indicate that dimerization defines the properties of PDE4 enzymes and suggest a common structural and functional organization for all PDEs.  相似文献   

10.
精神分裂症断裂基因1(disrupted in schizophrenia 1,DISC1)是多种精神疾病中的一个关键的遗传学危险因素。DISC1能够与磷酸二酯酶4(phosphodiesterase 4,PDE4)相互作用形成复合物,这可能是一些精神疾病的关键分子机制。PDE4能够水解cAMP,DISC1可通过调节PDE4的活性进而发挥调节cAMP在细胞内的信号转导功能。已有研究证实,在一些精神疾病患者中,DISC1和PDE4基因表达均发生了变化。DISC1突变导致其表达产物与PDE4的相互作用减弱,结果之一是降低脑PDE4的活性。DISC1与PDE4之间的相互作用的改变可能是精神分裂症及抑郁症等疾病症状产生的基础。  相似文献   

11.
Neutrophils have been implicated in the pathogenesis of many inflammatory lung diseases, including chronic obstructive pulmonary disease and asthma. With this study, we investigated how disruption of cAMP signaling impacts the function of neutrophil recruitment to the lung. Four genes code for type 4 phosphodiesterases (PDE4s), enzymes critical for regulation of cAMP levels and cell signaling. Ablation of two of these genes, PDE4B and PDE4D, but not PDE4A, has profound effects on neutrophil function. In a paradigm of mouse lung injury induced by endotoxin inhalation, the number of neutrophils recovered in the bronchoalveolar lavage was markedly decreased in PDE4D(-/-) and PDE4B(-/-) mice 4 and 24 h after exposure to LPS. Acute PDE4 inhibition with rolipram had additional inhibitory effects on neutrophil migration in PDE4B(-/-) and, to a lesser extent, PDE4D(-/-) mice. This decreased neutrophil recruitment occurred without major changes in chemokine accumulation in bronchoalveolar lavage, suggesting a dysfunction intrinsic to neutrophils. This hypothesis was confirmed by investigating the expression of adhesion molecules on the surface of neutrophils and chemotaxis in vitro. CD18 expression was decreased after ablation of both PDE4B and PDE4D, whereas CD11 expression was not significantly affected. Chemotaxis in response to KC and macrophage inflammatory protein-2 was markedly reduced in PDE4B(-/-) and PDE4D(-/-) neutrophils. The effect of PDE4 ablation on chemotaxis was comparable, but not additive, to the effects of acute PDE4 inhibition with rolipram. These data demonstrate that PDE4B and PDE4D play complementary, but not redundant, roles in the control of neutrophil function.  相似文献   

12.
In cells transfected to express wild-type PDE4A4 cAMP phosphodiesterase (PDE), the PDE4 selective inhibitor rolipram caused PDE4A4 to relocalise so as to form accretion foci. This process was followed in detail in living cells using a PDE4A4 chimera formed with Green Fluorescent Protein (GFP). The same pattern of behaviour was also seen in chimeras of PDE4A4 formed with various proteins and peptides, including LimK, RhoC, FRB and the V5-6His tag. Maximal PDE4A4 foci formation, occurred over a period of about 10 h, was dose-dependent on rolipram and was reversible upon washout of rolipram. Inhibition of protein synthesis, using cycloheximide, but not PKA activity with H89, inhibited foci generation. Foci formation was elicited by Ro20-1724 and RS25344 but not by either Ariflo or RP73401, showing that not all PDE4 selective inhibitors had this effect. Ariflo and RP73401 dose-dependently antagonised rolipram-induced foci formation and dispersed rolipram pre-formed foci as did the adenylyl cyclase activator, forskolin. Foci formation showed specificity for PDE4A4 and its rodent homologue, PDE4A5, as it was not triggered in living cells expressing the PDE4B2, PDE4C2, PDE4D3 and PDE4D5 isoforms as GFP chimeras. Altered foci formation was seen in the Deltab-LR2-PDE4A4 construct, which deleted a region within LRZ, showing that appropriate linkage between the N-terminal portion of PDE4A4 and the catalytic unit of PDE4A4 was needed for foci formation. Certain single point mutations within the PDE4A4 catalytic site (His505Asn, His506Asn and Val475Asp) were shown to ablate foci formation but still allow rolipram inhibition of PDE4A4 catalytic activity. We suggest that the binding of certain, but not all, PDE4 selective inhibitors to PDE4A4 induces a conformational change in this isoform by 'inside-out' signalling that causes it to redistribute in the cell. Displacing foci-forming inhibitors with either cAMP or inhibitors that do not form foci can antagonise this effect. Specificity of this effect for PDE4A4 and its homologue PDE4A5 suggests that interplay between the catalytic site and the unique N-terminal region of these isoforms is required. Thus, certain PDE4 selective inhibitors may exert effects on PDE4A4 that extend beyond simple catalytic inhibition. These require protein synthesis and may lead to redistribution of PDE4A4 and any associated proteins. Foci formation of PDE4A4 may be of use in probing for conformational changes in this isoform and for sub-categorising PDE4 selective inhibitors.  相似文献   

13.
Using the technique of site-directed mutagenesis, point mutants of human PDE4A have been developed in order to identify amino acids involved in inhibitor binding. Relevant amino acids were selected according to a peptidic binding site model for PDE4 inhibitors, which suggests interaction with two tryptophan residues, one histidine and one tyrosine residue, as well as one Zn(2+) ion. Mutations were directed at those tryptophan, histidine, and tyrosine residues, which are conserved among the PDE4 subtypes (PDE4A-D) and lie within the high-affinity 4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidone (rolipram) binding domain of human PDE4A (amino acids 276-681 according to the PDE4A sequence L20965). Truncations to this region do not alter enzyme activity or inhibitor sensitivity. The mutants were expressed in COS1 cells, and the recombinant cyclic nucleotide phosphodiesterase (PDE) forms have been characterized in terms of their catalytic activity and inhibitor sensitivities. Tyrosine residues 432 and 602, as well as histidine 588, were found to be involved in inhibitor binding, but no interaction was detected between tryptophan and PDE inhibitors tested. To test the possibility that other amino acids are of importance for hydrophobic interactions, selected phenylalanine residues were also mutated. We found phenylalanine 613 and 645 to influence inhibitor binding to PDE4. The significant differences in the inhibitor sensitivities of the mutants show that the various inhibitors have different enzyme binding sites. Based on the assumption that the known side effects of PDE4 inhibitors (like emesis and nausea) are caused directly by selective inhibition of different conformation states of PDE4, our results may be a hint to differ between PDE4 inhibitors, which have emetic side effects (like rolipram), and those that do not have side effects (like N-(3,5-dichlorpyrid-4-yl)-[1-(4-fluorbenzyl)-5-hydroxy-indol-3-yl]-glyoxylateamide [AWD12-281]) by the differences of their binding sites and in that context contribute to the development of novel drugs. Furthermore, the identification of amino acid interactions proposed by the peptidic binding site model, which was used for the mutant selection, verifies the PrGen modeling as a useful method for the prediction of inhibitor binding sites in cases where detailed knowledge of the protein structure is not available.  相似文献   

14.
To identify amino acids that might be involved in discriminating guanosine-3',5'-cyclic phosphate (cGMP) towards adenosine-3',5'-cyclic phosphate (cAMP) binding in the cAMP-specific phosphodiesterases, alignments of different human cyclic nucleotide phosphodiesterases (PDEs) were performed. Eight amino acid residues that are highly conserved in the cAMP-hydrolysing phosphodiesterases (PDE1, PDE3, PDE4, PDE7, PDE8) and that did not show any homologies to the cGMP-specific phosphodiesterases (PDE5, PDE6, PDE9) were selected from these alignments. Using the technique of site-directed mutagenesis, derivatives of PDE4A carrying single mutations at these conserved residues (amino acid positions are given according to the human PDE4A isoform HSPDE4A4B; accession number L20965) were generated and expressed in COS1 cells. The expression products were characterised with regard to cAMP and cGMP hydrolysis and sensitivity towards type-specific inhibitors. The mutation of Phe484 toward Tyr, Ala590 toward Cys, Leu391 and Val501 towards Ala had no significant influence on substrate affinity or specificity. However, the exchange of Trp375 and Trp605 for aliphatic residues abolished catalytic activity and the exchange of Pro595 for Ile led to sevenfold decrease of substrate affinity and an 14-fold decrease of the affinity towards the PDE4-specific inhibitor 4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidone (rolipram). Both effects may provide evidence for a structural importance of Trp375, Trp605 and Pro595 for PDE function. By exchanging the aspartate residue for asparagine or alanine at position 440 of the human PDE4A4B isoform, the substrate specificity was altered from the highly specific cAMP hydrolysis to an equally efficient cAMP and cGMP binding and hydrolysis. In addition, the IC(50) values for common PDE4-specific inhibitors like rolipram, N-(3,5-dichlorpyrid-4-yl)-3-cyclopentyl-oxy-4-methoxy-benzamide (RPR-73401) and 8-methoxy-5-N-propyl-3-methyl-1-ethyl-imidazo[1,5-a]-pyrido[3,2-e]-pyrazinone (D-22888) were dramatically increased. These results demonstrate an important role of the aspartate at position 440 in determining substrate specificity and inhibitor susceptibility of PDE4A. The strong conservation of this residue suggests that Asp440 may play a similar role in other cAMP-PDEs.  相似文献   

15.
The WD-repeat protein receptor for activated C-kinase (RACK1) was identified by its interaction with the cyclic AMP-specific phosphodiesterase (PDE4) isoform PDE4D5 in a yeast two-hybrid screen. The interaction was confirmed by co-immunoprecipitation of native RACK1 and PDE4D5 from COS7, HEK293, 3T3-F442A, and SK-N-SH cell lines. The interaction was unaffected by stimulation of the cells with the phorbol ester phorbol 2-myristate 3-acetate. PDE4D5 did not interact with two other WD-repeat proteins, beta'-coatomer protein and Gsbeta, in two-hybrid tests. RACK1 did not interact with other PDE4D isoforms or with known PDE4A, PDE4B, and PDE4C isoforms. PDE4D5 and RACK1 interacted with high affinity (Ka approximately 7 nM) [corrected] when they were expressed and purified from Escherichia coli, demonstrating that the interaction does not require intermediate proteins. The binding of the E. coli-expressed proteins did not alter the kinetics of cAMP hydrolysis by PDE4D5 but caused a 3-4-fold change in its sensitivity to inhibition by the PDE4 selective inhibitor rolipram. The subcellular distributions of RACK1 and PDE4D5 were extremely similar, with the major amount of both proteins (70%) in the high speed supernatant (S2) fraction. Analysis of constructs with specific deletions or single amino acid mutations in PDE4D5 demonstrated that a small cluster of amino acids in the unique amino-terminal region of PDE4D5 was necessary for its interaction with RACK1. We suggest that RACK1 may act as a scaffold protein to recruit PDE4D5 and other proteins into a signaling complex.  相似文献   

16.
Cyclic nucleotide signaling functions as a negative modulator of inflammatory cell responses, and type 4 phosphodiesterases (PDE4) are important regulators of this pathway. In this study, we provide evidence that only one of the three PDE4 genes expressed in mouse peritoneal macrophages is involved in the control of TLR signaling. In these cells, LPS stimulation of TLR caused a major up-regulation of PDE4B but not the paralogs PDE4A or PDE4D. Only ablation of PDE4B impacted LPS signaling and TNF-alpha production. TNF-alpha mRNA and protein were decreased by >50% in PDE4B-/-, but not in PDE4A-/- or PDE4D-/- macrophages. The PDE4 selective inhibitors rolipram and roflumilast had no additional inhibitory effect in macrophages deficient in PDE4B, but suppressed the TNF-alpha response in the other PDE4 null cells. The inhibition of TNF-alpha production that follows either genetic ablation or acute inhibition of PDE4B is cAMP-dependent and requires protein kinase A activity. However, no global changes in cAMP concentration were observed in the PDE4B-/- macrophages. Moreover, ablation of PDE4B protected mice from LPS-induced shock, suggesting that altered TLR signaling is retained in vivo. These findings demonstrate the highly specialized function of PDE4B in macrophages and its critical role in LPS signaling. Moreover, they provide proof of concept that a PDE4 inhibitor with subtype selectivity retains useful pharmacological effects.  相似文献   

17.
How can we hope to explain mechanistically the schizophrenic phenotype? Perhaps through the reductionist approach of genetics, which is beginning to yield biological clues. Growing evidence supports the view that the well-established genetic risk factor DISC1 plays an important role in schizophrenia biology by interacting with FEZ1 and NDEL1 during neurodevelopment and with the phosphodiesterase PDE4B in neuronal cell signalling. Thus, DISC1 and its pathways support the neurodevelopmental hypothesis of schizophrenia and provide a mechanistic explanation for the characteristic cognitive deficits. Genetic variants of DISC1 also predispose to related affective (mood) disorders. As a consequence, we can speculate on the mechanisms of DISC1 action and possible routes to treatment for these common, debilitating brain disorders.  相似文献   

18.
The cyclic AMP-specific phosphodiesterase (PDE4) isoform PDE4A5 interacted with the immunophilin XAP2 in a yeast two-hybrid assay. The interaction was confirmed in biochemical pull-down analyses. The interaction was specific, in that PDE4A5 did not interact with the closely related immunophilins AIPL1, FKBP51, or FKBP52. XAP2 also did not interact with other PDE4A isoforms or typical isoforms from the three other PDE4 subfamilies. Functionally, XAP2 reversibly inhibited the enzymatic activity of PDE4A5, increased the sensitivity of PDE4A5 to inhibition by the prototypical PDE4 inhibitor 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidinone (rolipram) and attenuated the ability of cAMP-dependent protein kinase to phosphorylate PDE4A5 in intact cells. XAP2 maximally inhibited PDE4A5 by approximately 60%, with an IC50 of 120 nm, and reduced the IC50 for rolipram from 390 nm to 70-90 nm. Co-expression of XAP2 and PDE4A5 in COS7 cells showed that they could be co-immunoprecipitated and also reduced both the enzymatic activity of PDE4A5 and its IC50 for rolipram. Native XAP2 and PDE4A5 could be co-immunoprecipitated from the brain. The isolated COOH-terminal half of XAP2 (amino acids 170-330), containing its tetratricopeptide repeat domain, but not the isolated NH2-terminal half (amino acids 1-169), containing the immunophilin homology region, similarly reduced PDE4A5 activity and its IC50 for rolipram. Mutation of Arg271 to alanine, in the XAP2 tetratricopeptide repeat region, attenuated its ability to both interact with PDE4A5 in two-hybrid assays and to inhibit PDE4A5 activity. Either the deletion of a specific portion of the unique amino-terminal region or specific mutations in the regulatory UCR2 domain of PDE4A5 attenuated its ability be inhibited by XAP2. We suggest that XAP2 functionally interacts with PDE4A5 in cells.  相似文献   

19.
Kyoi T  Noda K  Oka M  Ukai Y 《Life sciences》2004,76(1):71-83
Neutrophil superoxide production is implicated in the pathogenesis of gastric mucosal damage induced by various ulcerative agents and Helicobacter pylori infection. We investigated here the effects of an anti-ulcer drug irsogladine [2, 4-diamino-6-(2, 5-dichlorophenyl)-s-triazine maleate] on cAMP formation in isolated human neutrophils. The cAMP level in human neutrophils was elevated by a phosphodiesterase (PDE) type 4 selective inhibitor rolipram, but not by any inhibitors of PDE1, PDE2 and PDE3. Irsogladine also increased cAMP formation in a concentration-dependent manner in neutrophils. A non-selective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) alone significantly increased cAMP level, whereas irsogladine was unable to further increase cAMP level in the presence of IBMX. Irsogladine inhibited concentration-dependently the superoxide (O(2)(-)) production induced by various stimuli including formyl-methionyl-leucyl-phenylalanine, opsonized zymosan, guanosine 5'-[gamma-thio] triphosphate, A23187 and phorbol 12-myristate 13-acetate. These effects of irsogladine were mimicked by rolipram, IBMX and dibutyryl cAMP. The inhibitory effects of irsogladine and rolipram on the O(2)(-) production were reversed by a protein kinase A inhibitor H-89. These results indicate that irsogladine inhibits the superoxide production in human neutrophils by the increase of cAMP content by PDE 4 inhibition, which in turn contributing to the anti-ulcer effects of irsogladine on gastric mucosal lesions associated with oxidative stress.  相似文献   

20.
The X-ray-sensitive mutant M10 and the UV-sensitive mutant Q31 of mouse lymphoma L5178Y cells are both sensitive to killing by 4-nitroquinoline-1-oxide (4NQO). Since cell hybridization experiments showed that the 4NQO sensitivities in M10 and Q31 cells behaved as codominant traits (Shiomi et al., 1982c), it is not possible to determine by complementation test whether the M10 and the Q31 mutations responsible for 4NQO sensitivities are allelic. We have obviated this difficulty by selecting double mutants that are sensitive to both X-rays and UV. From X-ray-sensitive M10 cells, two UV-sensitive mutants (XU 1 and XU 2) were isolated by a cell-suspension spotting method. XU 1 and XU 2 were found to belong to the same complementation group as Q31 (group I). Double mutants XU 1 and XU 2 were 30-37-fold more sensitive to 4NQO than parental L5178Y cells, whereas the single mutants M10 and Q31 were only 6-8-fold more sensitive to 4NQO than L5178Y cells in terms of D10 values (dose required to reduce survival to 10%). These results show that the M10-Q31-double mutations enhance 4NQO sensitivity synergistically, indicating that the M10 and the Q31 mutations relevant to 4NQO sensitivities are non-allelic. The implications of this finding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号