首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the genetic structure and genotypic variation of the aphid Sitobion avenae collected from cereal crops in northern France were examined by analysing variation at five microsatellite loci across several years and seasons. Little regional and temporal differentiation was detected, as shown by very low FST among populations. Repeated genotypes, significant heterozygote deficits, positive FIS values and frequent linkage disequilibria were found in nearly all samples, suggesting an overall pattern of reproductive mode variation in S. avenae populations. In addition, samples from Brittany (Bretagne) showed greater signs of asexual reproduction than those from the north of France, indicating a trend toward increasing sexuality northward. These patterns of reproductive variation in S. avenae are consistent with theoretical models of selection of aphid reproductive modes by climate. Contrasting with little changes in allelic frequencies, genotypic composition varied substantially in time and, to a lesser extent, in space. An important part of changes in genotypic arrays was due to the variation in frequency distribution of common genotypes, i.e. those that were found at several instances in the samples. Genotypic composition was also shown to vary according to climate, as genotypic diversity in spring was significantly correlated with the severity of the previous winter and autumn. We propose that the genetic homogeneity among S. avenae populations shown here across large temporal and spatial scales is the result of two forces: (i) migration conferred by high dispersal capabilities, and (ii) selection over millions of hectares of cereals (mostly wheat) bred from a narrow genetic base.  相似文献   

2.
1 Sitobion avenae (F.) is a serious pest in Danish cereal crops. To understand the population genetic structure, aphids were sampled in seven different winter wheat (Triticum sativum Lamarck) fields throughout Denmark. The aphids were genotyped with seven microsatellite markers. In total, 2075 aphids were collected and 1203 of these were genotyped. 2 The Danish S. avenae populations displayed very high genotypic diversity, high percentages of unique genotypes and low linkage disequilibria; this is likely to be a result of genetic recombination encompassed by their holocyclic lifestyle. The populations showed very limited differentiation and no sign of isolation by distance. Almost all the genetic variation was ascribed within the populations rather than between populations, probably due to a high migration rate at approximate 10% per generation. 3 Seasonal changes in clonal diversity and distribution of asexual summer generations of S. avenae within the infestation period in a single winter wheat field were followed over two consecutive years by weekly sampling from 60 plots each of 20 × 20 m. Clonal diversity was high in all samples with no dominant clonal lineages and no significant difference in the genotypic diversity between weeks or between years. However, a temporal genetic differentiation effect, throughout the infestation, suggests that selective factors or high temporal migration play an important role in shaping the genetic structure S. avenae. 4 Analyses of fungal infected and uninfected aphids were performed to test whether some clonal linage were more often infected by fungi from the Entomophthorales under field conditions. In total, 54 progeny from aphids with Entomophthorales were genotyped and compared with 422 uninfected aphid genotypes. The Entomophthorales‐infected aphid genotypes did not cluster out together, suggesting that these fungal pathogens did not affect the population differentiation or clonal distribution of S. avenae in a Danish agroecosystem. 5 Our findings indicate that S. avenae populations can be controlled using conservation biological control  相似文献   

3.
As French populations of the aphid Sitobion avenae exhibit a range of reproductive modes, this species provides a good opportunity for studying the evolution of breeding system variation. The present analysis combined ecological and genetic investigations into the spatial distribution of variation in reproductive mode. Reproductive mode was characterized in 277 lineages of S. avenae from France, and these aphids were scored for five microsatellite loci. The analyses revealed strong geographical partitioning of breeding systems, with obligate asexuals mostly restricted to the south of France, while lineages producing sexual forms were more common in the north. Contrary to what might be anticipated for organisms with frequent parthenogenesis, there was substantial genic and genotypic diversity, even in the obligately asexual lineages. More than 120 different genotypes were detected among the 277 aphid lineages, with an average of 5.9 alleles per locus (range four to 16) and heterozygosity of 56.7%. As with previous studies of allozyme variation in aphids, most loci showed heterozygote deficits, and disequilibrium was common among allelic variants at different loci, even after removal of replicate copies of genotypes that might have been derived through clonal reproduction. Our results suggest that selection is important in structuring reproductive systems and genetic variation in French S. avenae. Canonical correspondence analysis was employed to examine the associations between genotypic and phenotypic variables, enabling the identification of alleles correlated with life-history traits.  相似文献   

4.
Models of coexistence of sexual and asexual lineages in aphids assume that obligate parthenogenetic lineages predominate in areas with mild winter climate because of their high reproductive output, while sexual lineages predominate in areas with severe winter because they produce eggs resistant to frost. To validate this hypothesis in natural conditions, the reproductive mode of populations of the aphid Sitobion avenae was assessed in two very contrasting climatic situations, Romania (severe winter) and Western France (mild winter). To achieve this, reproductive modes were inferred from both (1) the population composition in sexual and asexual forms in autumn, and (2) the genetic structure of Romanian and French populations of S. avenae using microsatellite markers. Romanian populations encompassed a high proportion of sexual forms and were characterised by a very high genotypic diversity and low linkage disequilibrium. In constrast, the French population showed frequent linkage disequilibria, low genetic diversity, and high level of clonal amplification with two asexual genotypes representing over 60% of the sample. In agreement with the model's predictions, these results clearly indicate that sexual reproduction in S. avenae is predominant under the continental climate of Romania, while asexual lineages prevail under the oceanic climate of Western France.  相似文献   

5.
Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans.  相似文献   

6.
Abstract.  1. Species that undertake regular two-way migration may be expected, through population connectivity, to exhibit some level of genetic similarity over broad spatial scales. Although seldom following two-way migration, highly mobile insect species tend to exhibit either low haplotype diversity and no phylogeographic structuring, or relatively high haplotype diversity and pronounced phylogeographic structuring.
2. This study reveals the first wide-scale genetic characterisation of a migratory dragonfly, the common green darner Anax junius Drury. Unusually for insects, north-south two-way migration is common in this species, although not obligatory. In at least part of its range, some individuals follow an extended developmental period and overwinter in a state of diapause.
3. Mitochondrial sequence data were obtained from 92  A. junius individuals collected from 35 sites across Canada, U.S.A., and Mexico. These revealed 38 haplotypes, some of which were extremely widespread, although the majority (27 haplotypes) was found in only one individual. In contrast to previous studies on mobile insects, the overall pattern was of relatively high haplotype diversity in the absence of phylogeographic structuring.
4. Migrants and non-migrants, which sometimes shared haplotypes, were distributed across multiple genetic lineages. This suggests that, contrary to some earlier assertions, developmental pathways in this species may be plastic. Such plasticity would allow highly mobile species to adapt to a range of environmental conditions, and may be key to the widespread distribution of multiple haplotypes.  相似文献   

7.
Many species show migratory behaviour in response to seasonal changes in environmental conditions. A peculiar, yet widespread phenomenon is partial migration, when a single population consists of both migratory and non‐migratory individuals. There are still many open questions regarding the stability and evolutionary significance of such populations. For passerines the inheritance of migratory activity is best described by the threshold model of quantitative genetics. Such a model has not yet been employed in theoretical studies, in which stability of partially migratory populations is usually linked to group differences in survival or reproduction. Here we develop a parsimonious model featuring a conditional genetic threshold for passerine migratory behaviour under which stable partial migration can be observed, and we explore the resulting selection landscape. Our model results show a cline in migratory behaviour across the landscape, from fully migratory populations to fully residential populations, with a fairly wide zone of partially migratory populations, which is stable in both time and space under a wide range of parameter settings. Temporal stability of the zone is linked with the yearly variance in both migration survival and resident winter survival. In contrast to other theoretical studies, we show that density dependence in winter survival is not essential for observing partially migratory populations. In addition, we observe that selection on the genetic threshold value occurs mainly at the borders of the zone of partial migration. This result suggests that fully migratory and fully residential populations in areas far from the zone of partial migration can harbour genetic diversity that allows the appearance of the alternative phenotype under (a wide range of) different conditions.  相似文献   

8.
Across Europe, genetic diversity can be expected to decline toward the North because of stochastic and selective effects which may imply diminished phenotypic variation and less potential for future genetic adaptations to environmental change. Understanding such latitudinal patterns can aid provenance selection for breeding or assisted migration approaches. In an experiment simulating different winter temperatures, we assessed quantitative trait variation, genetic diversity, and differentiation for natural populations of the grass Arrhenatherum elatius originating from a large latitudinal gradient. In general, populations from the North grew smaller and had a lower flowering probability. Toward the North, the absolute plastic response to the different winter conditions as well as heritability for biomass production significantly declined. Genetic differentiation in plant height and probability of flowering were very strong and significantly higher than under neutral expectations derived from SNP data, suggesting adaptive differentiation. Differentiation in biomass production did not exceed but mirrored patterns for neutral genetic differentiation, suggesting that migration‐related processes caused the observed clinal trait variation. Our results demonstrate that genetic diversity and trait differentiation patterns for Aelatius along a latitudinal gradient are likely shaped by both local selection and genetic drift.  相似文献   

9.
Samples of the grain aphid, Sitobion avenae (F.), a major European pest of cereals, were collected in June and July 1997 from fields sown with winter wheat in a rough transect south-west of Rothamsted, UK. These aphids were genotyped at four microsatellite loci known from previous studies to be highly polymorphic. Allelic frequencies were similar between samples collected in the fields and in the 12.2 m high suction trap at Rothamsted, and there were many widespread genotypes (clones), providing evidence that the species is highly migratory. However, field samples were found to display a high level of genotypic heterogeneity (= variable clonal composition), most probably the result of clonal selection. The suction trap genotypes sample were slightly different from the field samples, indicative of the inclusion of genotypes from plant hosts (cereals and grasses, Poaceae) other than winter wheat and/or genotype-biased emigration from the field. The relevance of these data to modelling of aphid outbreaks is briefly discussed.  相似文献   

10.
Local adaptation to variable environments can generate clinal variation in morphological traits. Alternatively, similar patterns of clinal variation may be generated simply as a result of genetic drift/migration balance. Teasing apart these different processes is a continuing focus in evolutionary ecology. We compare genetic differentiation at molecular loci and quantitative traits to analyse the effect of these different processes in a morphological latitudinal cline of the barn swallow, Hirundo rustica, breeding across Europe. The results obtained show no structuring at neutral microsatellite loci, which contrasts with positive structuring at five quantitative morphometric traits. This supports the hypothesis that the observed morphometric cline in barn swallows is the result of selection acting in a spatially heterogeneous environment. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 306–314.  相似文献   

11.
Hoffmann AA  Weeks AR 《Genetica》2007,129(2):133-147
Drosophila melanogaster invaded Australia around 100 years ago, most likely through a northern invasion. The wide range of climatic conditions in eastern Australia across which D. melanogaster is now found provides an opportunity for researchers to identify traits and genes that are associated with climatic adaptation. Allozyme studies indicate clinal patterns for at least four loci including a strong linear cline in Adh and a non-linear cline in alpha-Gpdh. Inversion clines were initially established from cytological studies but have now been validated with larger sample sizes using molecular markers for breakpoints. Recent collections indicate that some genetic markers (Adh and In(3R)Payne) have changed over the last 20 years reflecting continuing evolution. Heritable clines have been established for quantitative traits including wing length/area, thorax length and cold and heat resistance. A cline in egg size independent of body size and a weak cline in competitive ability have also been established. Postulated clinal patterns for resistance to desiccation and starvation have not been supported by extensive sampling. Experiments under laboratory and semi-natural conditions have suggested selective factors generating clinal patterns, particularly for reproductive patterns over winter. Attempts are being made to link clinal variation in traits to specific genes using QTL analysis and the candidate locus approach, and to identify the genetic architecture of trait variation along the cline. This is proving difficult because of inversion polymorphisms that generate disequilibrium among genes. Substantial gaps still remain in linking clines to field selection and understanding the genetic and physiological basis of the adaptive shifts. However D. melanogaster populations in eastern Australia remain an excellent resource for understanding past and future evolutionary responses to climate change.  相似文献   

12.
During population establishment, genetic drift can be the key driver of changes in genetic diversity, particularly while the population is small. However, natural selection can also play a role in shaping diversity at functionally important loci. We used a well‐studied, re‐introduced population of the threatened Stewart Island robin (= 722 pedigreed individuals) to determine whether selection shaped genetic diversity at innate immunity toll‐like receptor (TLR) genes, over a 9‐year period of population growth following establishment with 12 genetic founders. We found no evidence for selection operating with respect to TLR diversity on first‐year overwinter survival for the majority of loci, genotypes and alleles studied. However, survival of individuals with TLR4BE genotype was significantly improved: these birds were less than half as likely to die prior to maturity compared with all other TLR4 genotypes. Furthermore, the population frequency of this genotype, at a two‐fold excess over Hardy–Weinberg expectation, was increased by nonrandom mating. Near‐complete sampling and full pedigree and reproductive data enabled us to eliminate other potential causes of these patterns including inbreeding, year effects, density dependence, selection on animals at earlier life history stages or genome‐level association of the TLR4E allele with ‘good genes’. However, comparison of observed levels of gene diversity to predictions under simulated genetic drift revealed results consistent with neutral expectations for all loci, including TLR4. Although selection favoured TLR4BE heterozygotes in this population, these effects were insufficient to outweigh genetic drift. This is the first empirical study to show that genetic drift can overwhelm natural selection in a wild population immediately following establishment.  相似文献   

13.
Drosophila melanogaster has colonized temperate habitats on multiple continents over a historical time period, and many traits vary predictably with latitude. Despite considerable attention paid to clinal variation in Drosophila, the mechanisms generating such patterns in nature remain largely unidentified. In D. melanogaster, the expression of reproductive diapause can be induced by exposure to low temperatures and shortened photoperiods. Both diapause expression itself and the underlying genetic variance for diapause expression have widespread impacts on organismal fitness, and diapause incidence exhibits a 60% cline in frequency in the eastern United States. The major aim of this study was to evaluate whether the relative fitness of diapause and nondiapause genotypes varies predictably with environment. In experimental population cages in the laboratory, the frequency of genotypes that express diapause increased over time when flies were exposed to environmental stress, whereas the frequency of nondiapause genotypes increased when flies were cultured under benign control conditions. Other fitness traits correlated with the genetic variance for diapause expression (longevity, mortality rates, stress resistance, lipid content, preadult viability, fecundity profiles, and development time) also diverged between experimental treatments. Similarly, sampling of isofemale lines from natural populations revealed that the frequency of diapause incidence cycled over time in seasonal habitats: diapause expression was at high frequency following the winter season and subsequently declined throughout the summer months. In contrast, diapause expression was low and temporally homogeneous in isofemale line collections from human-associated urban habitats. These data suggest that genetic variation underlying the diapause-nondiapause dichotomy may be actively maintained by selection pressures that vary spatially and temporally in natural populations.  相似文献   

14.
A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis using mitochondrial (A+T-rich region; mtDNA) and genomic (zen-region; nDNA) DNA was performed on 182 female individuals of Episyrphus balteatus (DeGeer), a widespread aphidophagous hoverfly with supposed migratory behaviour. Specimens originated from 13 sampling sites in six European countries. The analyses revealed 12 and 18 haplotypes, respectively, for the two DNA types, several of them with a wide distribution, although seven and eight haplotypes, respectively, occurred only in one location. In contrast to other studies on mobile insects, the genetic diversity was relatively high. However, lack of population subdivision, low genetic distances between populations, the very high gene flow rates, and the complete lack of isolation by distance suggest that E. balteatus populations are largely connected and that there is an absence of large-scale geographic structuring. These results support the hypothesis that E. balteatus is a migratory hoverfly species, capable of moving over large distances. These findings related to the seasonal migrations of this species are discussed.  相似文献   

15.
Negative frequency‐dependent selection among species is a key driver of community diversity in natural systems, but the degree to which negative frequency‐dependent selection shapes patterns of survival and genetic diversity within species is poorly understood. In a 5‐year field experiment, we show that seedlings of a tropical palm with rare genotypes had a pronounced survival advantage over seedlings with common genotypes, with effect sizes comparable to that of light availability. This ‘rare genotype advantage’ led to an increase in population‐wide genetic diversity among seedlings compared to null expectations, as predicted by negative frequency‐dependent selection, and increased reproductive success in adult trees with rare genotypes. These results suggest that within‐species negative frequency‐dependent selection of genotypes can shape genetic variation on ecologically relevant timescales in natural systems and may be a key, overlooked source of non‐random mortality for tropical plants.  相似文献   

16.
Migratory divides are proposed to be catalysts for speciation across a diversity of taxa. However, it is difficult to test the relative contributions of migratory behaviour vs. other divergent traits to reproductive isolation. Comparing hybrid zones with and without migratory divides offers a rare opportunity to directly examine the contribution of divergent migratory behaviour to reproductive barriers. We show that across replicate sampling transects of two pairs of barn swallow (Hirundo rustica) subspecies, strong reproductive isolation coincided with a migratory divide spanning 20 degrees of latitude. A third subspecies pair exhibited no evidence for a migratory divide and hybridised extensively. Within migratory divides, overwintering habitats were associated with assortative mating, implicating a central contribution of divergent migratory behaviour to reproductive barriers. The remarkable geographic coincidence between migratory divides and genetic breaks supports a long‐standing hypothesis that the Tibetan Plateau is a substantial barrier contributing to the diversity of Siberian avifauna.  相似文献   

17.
Differential gene flow, reductions in diversity following linked selection and/or features of the genome can structure patterns of genomic differentiation during the process of speciation. Possible sources of reproductive isolation are well studied between coastal and inland subspecies groups of Swainson's thrushes, with differences in seasonal migratory behaviour likely playing a key role in reducing hybrid fitness. We assembled and annotated a draft reference genome for this species and generated whole‐genome shotgun sequence data for populations adjacent to the hybrid zone between these groups. We documented substantial genomewide heterogeneity in relative estimates of genetic differentiation between the groups. Within population diversity was lower in areas of high relative differentiation, supporting a role for selective sweeps in generating this pattern. Absolute genetic differentiation was reduced in these areas, further suggesting that recurrent selective sweeps in the ancestral population and/or between divergent populations following secondary contact likely occurred. Relative genetic differentiation was also higher near centromeres and on the Z chromosome, suggesting that features of the genome also contribute to genomewide heterogeneity. Genes linked to migratory traits were concentrated in islands of differentiation, supporting previous suggestions that seasonal migration is under divergent selection between Swainson's thrushes. Differences in migratory behaviour likely play a central role in the speciation of many taxa; we developed the infrastructure here to permit future investigations into the role several candidate genes play in reducing gene flow between not only Swainson's thrushes but other species as well.  相似文献   

18.
In aphids, reproductive mode is generally assumed to be selected for by winter climate. Sexual lineages produce frost-resistant eggs, conferring an advantage in regions with cold winters, while asexual lineages predominate in regions with mild winters. However, habitat and resource heterogeneities are known to exert a strong influence on sex maintenance and might modulate the effect of climate on aphid reproductive strategies. We carried out a hierarchical sampling in northern France to investigate whether reproductive mode variation of the aphid Rhopalosiphum padi is driven by winter climate conditions, by habitat and resource heterogeneities represented by a range of host plants or by both factors. We confirmed the coexistence in R. padi populations of two genetic clusters associated with distinct reproductive strategies. Asexual lineages predominated, whatever the surveyed year and location. However, we detected a between-year variation in the local contribution of both clusters, presumably associated with preceding winter severity. No evidence for host-driven niche differentiation was found in the field on six Poaceae among sexual and asexual lineages. Two dominant multilocus genotypes (∼70% of the sample), having persisted over a 10-year period, were equally abundant on different plant species and locations, indicating their large ecological tolerance. Our results fit theoretical predictions of the influence of winter climate on the balance between sexual and asexual lineages. They also highlight the importance of current agricultural practices which seem to favour a small number of asexual generalist genotypes and their migration across large areas of monotonous environments.  相似文献   

19.
In Chile, the aphid Sitobion avenae is of recent introduction, lives on cultivated and wild Poaceae, and is thought to reproduce by permanent parthenogenesis. In order to study the genetic variability and population structure of this species, five microsatellite loci were typed from individual aphids collected from different cultivated and wild host plants, from different geographical zones, and years. Chilean populations showed a high degree of heterozygosity and a low genetic variability across regions and years, with four predominant genotypes representing nearly 90% of the sample. This pattern of low clonal diversity and high heterozygosity was interpreted as the result of recent founder events from a few asexually reproducing genotypes. Most geographical and temporal variation observed in the genetic composition resulted from fluctuations of a few predominant clones. In addition, comparisons of the genotypes found in Chile with those described in earlier surveys of S. avenae populations in Western Europe led us to identify 'superclones' with large geographical distribution and high ecological success, and to make a preliminary exploration of the putative origin(s) of S. avenae individuals introduced to Chile.  相似文献   

20.
Mimura M  Aitken SN 《Heredity》2007,99(2):224-232
Fossil pollen records suggest rapid migration of tree species in response to Quaternary climate warming. Long-distance dispersal and high gene flow would facilitate rapid migration, but would initially homogenize variation among populations. However, contemporary clinal variation in adaptive traits along environmental gradients shown in many tree species suggests that local adaptation can occur during rapid migration over just a few generations in interglacial periods. In this study, we compared growth performance and pollen genetic structure among populations to investigate how populations of Sitka spruce (Picea sitchensis) have responded to local selection along the historical migration route. The results suggest strong adaptive divergence among populations (average Q(ST)=0.61), corresponding to climatic gradients. The population genetic structure, determined by microsatellite markers (R(ST)=0.09; F(ST)=0.11), was higher than previous estimates from less polymorphic genetic markers. The significant correlation between geographic and pollen haplotype genetic (R(ST)) distances (r=0.73, P<0.01) indicates that the current genetic structure has been shaped by isolation-by-distance, and has developed in relatively few generations. This suggests relatively limited gene flow among populations on a recent timescale. Gene flow from neighboring populations may have provided genetic diversity to founder populations during rapid migration in the early stages of range expansion. Increased genetic diversity subsequently enhanced the efficiency of local selection, limiting gene flow primarily to among similar environments and facilitating the evolution of adaptive clinal variation along environmental gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号