首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of lysine 173 in heparin binding to heparin cofactor II   总被引:1,自引:0,他引:1  
Heparin cofactor II (HC) is a plasma serine proteinase inhibitor (serpin) that inhibits alpha-thrombin in a reaction that is dramatically enhanced by heparin and other glycosaminoglycans/polyanions. We investigated the glycosaminoglycan binding site in HC by: (i) chemical modification with pyridoxal 5'-phosphate (PLP) in the absence and presence of heparin and dermatan sulfate; (ii) molecular modeling; and (iii) site-directed oligonucleotide mutagenesis. Four lysyl residues (173, 252, 343, and 348) were protected from modification by heparin and to a lesser extent by dermatan sulfate. Heparin-protected PLPHC retained both heparin cofactor and dermatan sulfate cofactor activity while dermatan sulfate-protected PLPHC retained some dermatan sulfate cofactor activity and little heparin cofactor activity. Molecular modeling studies revealed that Lys173 and Lys252 are within a region previously shown to contain residues involved in glycosaminoglycan binding. Lys343 and Lys348 are distant from this region, but protection by heparin and dermatan sulfate might result from a conformational change following glycosaminoglycan binding to the inhibitor. Site-directed mutagenesis of Lys173 and Lys343 was performed to further dissect the role of these two regions during HC-heparin and HC-dermatan sulfate interactions. The Lys343----Asn or Thr mutants had normal or only slightly reduced heparin or dermatan sulfate cofactor activity and eluted from heparin-Sepharose at the same ionic strength as native recombinant HC. However, the Lys173----Gln or Leu mutants had greatly reduced heparin cofactor activity and eluted from heparin-Sepharose at a significantly lower ionic strength than native recombinant HC but retained normal dermatan sulfate cofactor activity. Our results demonstrate that Lys173 is involved in the interaction of HC with heparin but not with dermatan sulfate, whereas Lys343 is not critical for HC binding to either glycosaminoglycan. These data provide further evidence for the determinants required for glycosaminoglycan binding to HC.  相似文献   

2.
We studied the inhibition of tissue kallikrein by protein C inhibitor (PCI), a relatively unspecific heparin-dependent serine protease inhibitor present in plasma and urine. PCI inhibited the amidolytic activity (cleavage of H-D-valyl-L-leucyl-arginine-p-nitroaniline) of urinary kallikrein with an apparent second order rate constant of 2.3 x 10(4) M-1 s-1 and formed stable complexes (85 kDa) with urinary kallikrein as judged from silver-stained sodium dodecyl sulfate-polyacrylamide gels. Complex formation was time-dependent and was paralleled by a decrease in the intensity of the main PCI protein band (Mr = 57,000) and an increase in the intensity of the lower Mr (54,000) PCI form (cleaved inhibitor). Heparin interfered with the inhibition of tissue kallikrein by PCI and with the formation of tissue kallikrein-PCI complexes in a dose-dependent fashion and completely abolished PCI-tissue kallikrein interaction at 300 micrograms/ml. This is in contrast to findings on the interaction of PCI with all other target proteases studied so far (i.e. stimulation of inhibition by heparin) but is similar to the reaction pattern of 125I-labeled tissue kallikrein with so called kallikrein binding protein described in serum and other systems. To study a possible relationship between PCI and this kallikrein binding protein we incubated 125I-labeled urinary kallikrein in serum and in PCI-immunodepleted serum in the absence and presence of heparin and analyzed complex formation using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In normal serum, formed complexes co-migrated with complexes of purified PCI and 125I-kallikrein and were less intense in the presence of heparin. No complex formation at all was seen in PCI-depleted serum. Our data indicate that PCI may be a physiologically important endogenous inhibitor of tissue kallikrein and provide evidence that PCI may be identical to the previously described kallikrein binding protein.  相似文献   

3.
Interaction of heparin cofactor II with neutrophil elastase and cathepsin G   总被引:1,自引:0,他引:1  
We investigated the interaction of the human plasma proteinase inhibitor heparin cofactor II (HC) with human neutrophil elastase and cathepsin G in order to examine 1) proteinase inhibition by HC, 2) inactivation of HC, and 3) the effect of glycosaminoglycans on inhibition and inactivation. We found that HC inhibited cathepsin G, but not elastase, with a rate constant of 6.0 x 10(6) M-1 min-1. Inhibition was stable, with a dissociation rate constant of 1.0 x 10(-3) min-1. Heparin and dermatan sulfate diminished inhibition slightly. Both neutrophil elastase and cathepsin G at catalytic concentrations destroyed the thrombin inhibition activity of HC. Inactivation was accompanied by a dramatic increase in heat stability, as occurs with other serine proteinase inhibitors. Proteolysis of HC (Mr 66,000) produced a species (Mr 58,000) that retained thrombin inhibition activity, and an inactive species of Mr 48,000. Amino acid sequence analysis led to the conclusion that both neutrophil elastase and cathepsin G cleave HC at Ile66, which does not affect HC activity, and at Val439, near the reactive site Leu444, which inactivates HC. Since cathepsin G is inhibited by HC and also inactivates HC, we conclude that cathepsin G participates in both reactions simultaneously so that small amounts of cathepsin G can inactivate a molar excess of HC. High concentrations of heparin and dermatan sulfate accelerated inactivation of HC by neutrophil proteinases, with heparin having a greater effect. Heparin and dermatan sulfate appeared to alter the pattern, and not just the rate, of proteolysis of HC. We conclude that while HC is an effective inhibitor of cathepsin G, it can be proteolyzed by neutrophil proteinases to generate first an active inhibitor and then an inactive molecule. This two-step mechanism might be important in the generation of chemotactic activity from the amino-terminal region of HC.  相似文献   

4.
Fully sulfated heparin and other glycosaminoglycans, namely heparan, chondroitin, and dermatan sulfates, and hyaluronan have been prepared by using sulfur trioxide under mild chemical conditions. All these derivatives were assayed for antiproliferative activity on cultured bovine pulmonary artery smooth muscle cells (BPASMCs). No appreciable difference was found between heparin and fully sulfated heparin. Chondroitin and dermatan sulfates actually stimulated BPASMCs growth but full sulfonation made them strongly antiproliferative. Native hyaluronan was not antiproliferative but became strongly so after sulfonation. Neither acharan sulfate nor N-sulfoacharan sulfate had any antiproliferative activity. This suggests that O-sulfonation of the polysaccharide is critical for antiproliferative activity, whereas N-sulfonation of glucosamine residues is not.  相似文献   

5.
Protein C inhibitor is a plasma protein whose ability to inhibit activated protein C, thrombin, and other enzymes is stimulated by heparin. These studies were undertaken to further understand how heparin binds to protein C inhibitor and how it accelerates proteinase inhibition. The region of protein C inhibitor from residues 264-283 was identified as the heparin-binding site. This differs from the putative heparin-binding site in the related proteins antithrombin and heparin cofactor. The glycosaminoglycan specificity of protein C inhibitor was relatively broad, including heparin and heparan sulfate, but not dermatan sulfate. Non-sulfated and non-carboxylated polyanions also enhanced proteinase inhibition by protein C inhibitor. Heparin accelerated inhibition of alpha-thrombin, gamma T-thrombin, activated protein C, factor Xa, urokinase, and chymotrypsin, but not plasma kallikrein. The ability of glycosaminoglycans to accelerate proteinase inhibition appeared to depend on the formation of a ternary complex of inhibitor, proteinase, and glycosaminoglycan. The optimum heparin concentration for maximal rate stimulation varied from 10 to 100 micrograms/ml and was related to the apparent affinity of the proteinase for heparin. There was no obvious relationship between heparin affinity and maximum inhibition rate or degree of rate enhancement. The affinity of the resultant protein C inhibitor-proteinase complex was also not related to inhibition rate enhancement, and the results showed that decreased heparin affinity of the complex is not an important part of the catalytic mechanism of heparin. The importance of protein C inhibitor as a regulator of the protein C system may depend on the relatively large increase in heparin-enhanced inhibition rate for activated protein C compared to other proteinases.  相似文献   

6.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

7.
125I-labeled heparin cofactor II (HCII) was mixed with plasma and coagulation was initiated by addition of CaCl2, phospholipids, and kaolin or tissue factor. In the presence of 67 micrograms/ml of dermatan sulfate, radioactivity was detected in a band which corresponded to the thrombin-HCII complex (Mr = 96,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. No other complexes were observed. The thrombin-HCII complex was undetectable when 5 units/ml of heparin was present or when prothrombin-deficient plasma was used. In experiments with purified proteases, HCII did not significantly inhibit coagulation factors VIIa, IXa, Xa, XIa, XIIa, kallikrein, activated protein C, plasmin, urokinase, tissue plasminogen activator, leukocyte elastase, the gamma-subunit of nerve growth factor, and the epidermal growth factor-binding protein. HCII inhibited leukocyte cathepsin G slowly, with a rate constant of 8 X 10(4) M-1 min-1 in the presence of dermatan sulfate. These results indicate that the protease specificity of HCII is more restricted than that of other plasma protease inhibitors and suggest that the anticoagulant effect of dermatan sulfate is due solely to inhibition of thrombin by HCII.  相似文献   

8.
Basic fibroblast growth factor (FGF-2) and its respective tyrosine kinase receptors, form an autocrine loop that affects human melanoma growth and metastasis. The aim of the present study was to examine the possible participation of various glycosaminoglycans, i.e. chondroitin sulfate, dermatan sulfate and heparin on basal and FGF-2-induced growth of WM9 and M5 human metastatic melanoma cells. Exogenous glycosaminoglycans mildly inhibited WM9 cell's proliferation, which was abolished by FGF-2. Treatment with the specific inhibitor of the glycosaminoglycan sulfation, sodium chlorate, demonstrated that endogenous glycosaminoglycan/proteoglycan production is required for both basal and stimulated by FGF-2 proliferation of these cells. Heparin capably restored their growth, and unexpectedly exogenous chondroitin sulfate to WM9 and both chondroitin sulfate and dermatan sulfate to M5 cells allowed FGF-2 mitogenic stimulation. Furthermore, in WM9 cells the degradation of membrane-bound chondroitin/dermatan sulfate stimulates basal growth and even enhances FGF-2 stimulation. The specific tyrosine kinase inhibitor, genistein completely blocked the effects of FGF-2 and glycosaminoglycans on melanoma proliferation whereas the use of the neutralizing antibody for FGF-2 showed that the mitogenic effect of chondroitin sulfate involves the interaction of FGF-2 with its receptors. Both the amounts of chondroitin/dermatan/heparan sulfate and their sulfation levels differed between the cell lines and were distinctly modulated by FGF-2. In this study, we show that chondroitin/dermatan sulfate-containing proteoglycans, likely in cooperation with heparan sulfate, participate in metastatic melanoma cell FGF-2-induced mitogenic response, which represents a novel finding and establishes the central role of sulfated glycosaminoglycans on melanoma growth.  相似文献   

9.
FGF-7 is induced after injury and induces the proliferation of keratinocytes. Like most members of the FGF family, the activity of FGF-7 is strongly influenced by binding to heparin, but this glycosaminoglycan is absent on keratinocyte cell surfaces and minimally present in the wound environment. In this investigation we compared the relative activity of heparan sulfate and chondroitin sulfate B (dermatan sulfate), glycosaminoglycans that are present in wounds. A lymphoid cell line (BaF/KGFR) containing the FGF-7 receptor (FGFR2 IIIb) was treated with FGF-7 and with various glycosaminoglycans. FGF-7 did not support cell proliferation in the absence of glycosaminoglycan or with addition of heparan sulfate or chondroitin sulfate A/C but did stimulate BaF/KGFR division in the presence of dermatan sulfate or highly sulfated low molecular weight fractions of dermatan. Dermatan sulfate also enabled FGF-7-dependent phosphorylation of mitogen-activated protein kinase and promoted binding of radiolabeled FGF-7 to FGFR2 IIIb. In addition, dermatan sulfate and FGF-7 stimulated growth of normal keratinocytes in culture. Thus, dermatan sulfate, the predominant glycosaminoglycan in skin, is the principle cofactor for FGF-7.  相似文献   

10.
Herpes simplex virus type 2 (HSV-2) interacts with cell surface glycosaminoglycans during virus attachment. Glycoprotein B of HSV-2 can potentially mediate the interaction between the virion and cell surface glycosaminoglycans. To determine the specificity, kinetics, and affinity of these interactions, we used plasmon resonance-based biosensor technology to measure HSV-2 glycoprotein binding to glycosaminoglycans in real time. The recombinant soluble ectodomain of HSV-2 gB (gB2) but not the soluble ectodomain of HSV-2 gD bound readily to biosensor surfaces coated with heparin. The affinity constants (Kds) were determined for gB2 (Kd = 7.7 x 10(-7) M) and for gB2 deltaTM (Kd = 9.9 x 10(-7) M), a recombinant soluble form of HSV-2 gB in which only its transmembrane domain has been deleted. gB2 binding to the heparin surface was competitively inhibited by low concentrations of heparin (50% effective dose [ED50] = 0.08 microg/ml). Heparan sulfate and dermatan sulfate glycosaminoglycans have each been suggested as cell surface receptors for HSV. Our biosensor analyses showed that both heparan sulfate and dermatan sulfate inhibited gB2 binding (ED50 = 1 to 5 microg/ml), indicating that gB2 interacts with both heparin-like and dermatan sulfate glycosaminoglycans. Chondroitin sulfate A, in contrast, inhibited gB2 binding to heparin only at high levels (ED50 = 65 microg/ml). The affinity and specificity of gB2 binding to glycosaminoglycans demonstrated in these studies support its role in the initial binding of HSV-2 to cells bearing heparan sulfate or dermatan sulfate glycosaminoglycans.  相似文献   

11.
Placental extracts contain inhibitors of human urinary urokinase. These extracts form a heterogeneous population of complexes with 125I-urokinase that are recognizable by changes in gel filtration profile and mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment with reducing agents eliminated the size heterogeneity without loss of activity, thereby allowing the placental inhibitor to be purified. Active inhibitor has been isolated in apparently homogeneous form after an eight-step procedure that included salt extraction, ammonium sulfate fractionation, column chromatography on CM-cellulose, DEAE-Sepharose, and hydroxylapatite, chromatofocusing, preparative gel electrophoresis, and hydrophobic chromatography. The purified inhibitor has Mr = 47,000. The inhibitor is relatively specific for plasminogen activators since it does not inhibit the action of plasmin, factor XIIa, plasma kallikrein, or thrombin. The inhibitor forms complexes with 1:1 stoichiometry that block the active sites of urokinase (but not prourokinase) and both one- and two-chain forms of tissue plasminogen activator. The stability of these complexes in sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggest that they are based on covalently bonded structures. Although both types of plasminogen activator are inhibited, the rate of interaction is significantly faster with urokinase, tissue plasminogen activator being inhibited less efficiently. The complexes formed can be dissociated by mild alkali or hydroxylamine, thereby regenerating both enzymes and inhibitor at their original molecular weights. The results suggest that the complexes are stabilized by ester-like bonds; these might involve the hydroxyl of serine at the active site of the proteases and a carboxyl group in the inhibitor.  相似文献   

12.
Inhibition of thrombin by heparin cofactor II (HCII) is accelerated by dermatan sulfate, heparan sulfate, and heparin. Purified HCII or defibrinated plasma was incubated with washed confluent cell monolayers, 125I-thrombin was added, and the rate of formation of covalent 125I-thrombin-inhibitor complexes was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Fibroblasts and porcine aortic smooth muscle cells accelerated inhibition of thrombin by HCII 2.3-7.5-fold but had no effect on other thrombin inhibitors in plasma. Human umbilical vein endothelial cells and mouse macrophage-derived cells did not accelerate the thrombin-HCII reaction. IMR-90 normal human fetal lung fibroblasts treated with heparinase or heparitinase accelerated the thrombin-HCII reaction to the same degree as untreated cells. In contrast, treatment with chondroitinase ABC almost totally abolished the ability of these cells to activate HCII while chondroitinase AC had little or no effect, suggesting that dermatan sulfate was responsible for the activity observed. [35S]Sulfate-labeled proteoglycans were isolated from IMR-90 fibroblast monolayers and conditioned medium and fractionated into two peaks on Sepharose CL-2B. The lower Mr proteoglycans contained 74-76% dermatan sulfate and were 11-25 times more active with HCII than the higher Mr proteoglycans which contained 68-97% heparan sulfate. The activity of the lower Mr proteoglycans decreased 70-90% by degradation of the dermatan sulfate component with chondroitinase ABC. These results confirm that dermatan sulfate proteoglycans are primarily responsible for activation of HCII by IMR-90 fibroblasts. We suggest that HCII may inhibit thrombin when plasma is exposed to vascular smooth muscle cells or fibroblasts.  相似文献   

13.
Human protein C-inhibitor (PCI) was isolated from human citrated plasma by combining rivanol precipitation, ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sephacel and affinity chromatography on dextran sulfate Sepharose. The purified PCI migrated with the beta-globulins and was free from protein contaminations as judged by immunoelectrophoresis. In SDS-PAGE under reducing and unreducing conditions PCI showed a single band at Mr = 57,000. The specific activity of the inhibitor was 226 units/mg. Surprisingly, the isolated PCI inhibited the amidolytic activity of urokinase (u-PA) on Glu-Gly-Arg-pNA (S-2444) in a time-dependent manner. Heparin, dextran sulfate and pentosanpolysulfate accelerated the reaction catalytically. PCI revealed itself as a non-competitive inhibitor of u-PA. The Ki-value was determined to be 7.9 x 10(-8)M. Inhibition of amidolytic activity was found to be associated with the formation of an 1:1 equimolar complex with a Mr of 110,000 as demonstrated by means of polyacrylamide gel electrophoresis and following Western blotting technique using polyclonal antibodies against u-PA and PCI. The specific activity of the isolated PCI of 226 units/mg, which approximates the theoretical value of pure PCI, indicates a highly purified preparation of PCI. The heparin-dependent inhibition of urokinase by this highly purified protein as well as comparison of the kinetic data and amino-acid composition of both PCI and the recently described plasminogen activator inhibitor (PAI) 3 give high evidence of identity of PCI and PAI-3.  相似文献   

14.
Chondroitin sulfates, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and oligosaccharides derived from these sulfated glycosaminoglycans have been used for the measurement of sulfatase activity of rat skin extracts. Chromatographic fractionation of the extracts followed by specificity studies demonstrated the existence of five different sulfatases, specific for 1) the nonreducing N-acetylglucosamine 6-sulfate end groups of heparin sulfate and keratan sulfate, 2) the nonreducing N-acetylgalactosamine (or galactose) 6-sulfate end groups of chondroitin sulfate (or keratan sulfate), 3) the nonreducing N-acetylgalactosamine 4-sulfate end groups of chondroitin sulfate and dermatan sulfate, 4) certain suitably located glucosamine N-sulfate groups of heparin and heparan sulfate, or 5) certain suitably located iduronate sulfate groups of heparan sulfate and dermatan sulfate. Two arylsulfatases, one of which was identical in its chromatographic behaviors with the third enzyme described above, were also demonstrated in the extracts. These results taken together with those previously obtained from studies on human fibroblast cultures suggest that normal skin fibroblasts contain at least five specific sulfatases and diminished activity of any one may result in a specific storage disease.  相似文献   

15.
Human plasma contains an inhibitor of activated protein C (APC) which is termed according to its function protein C inhibitor (PCI). High purification of functionally active PCI with a yield of 18% is achieved by an improved procedure consisting of 4 steps: precipitation by rivanol, fractionation with ammonium sulfate, ion-exchange chromatography on DEAE Sephacel and chromatography on dextran sulfate Sepharose. This purification results in the isolation of a homogeneous PCI which migrates in immunoelectrophoresis with the beta-globulins of human plasma and in SDS PAGE as one single band at Mr = 57,000 both under reducing and nonreducing conditions. The specific activity of the highly purified PCI was determined to be 226 units/mg, 1 unit being equivalent to the activity of 1 ml fresh human citrated plasma. PCI forms complexes with 1:1 stoichiometry (Ki: 1.4 x 10(-8) M) resulting in a loss of the amidolytic activity of APC as measured on Tos-Glu-Pro-Arg-pNA (S 2366). The inhibition rate of APC by PCI (k: 7.5 x 10(5) M-1 min-1) is significantly increased in the presence of 5 i.u./ml heparin (kH: 2.2 x 10(7) M-1 min-1). PCI also blocks the amidolytic activities of urokinase plasminogen activator (u-PA), thrombin and factor Xa on their chromogenic substrates in a heparin-dependent manner. According to the Ki-values measured for these reactions PCI is a noncompetitive inhibitor of these proteases. The Ki-values calculated do not differ significantly from those obtained for the inhibition of APC by PCI. Immunodepleted PCI-deficient plasma still contains an inhibitory activity against APC which, however, only slowly inactivates the amidolytic activity of APC and in a time and concentration-dependent manner. Addition of heparin has no influence on the inhibition rate. This finding suggests the existence of a second, heparin-independent PCI present in human plasma.  相似文献   

16.
Glycosaminoglycan-binding proteins, with specific emphasis on dermatan sulfate, have been investigated in human plasma by affinity chromatography, mass spectrometry and Western blotting. Diluted plasma was applied to affinity columns and bound protein was eluted with 500 mM NaCl. Dermatan sulfate and heparan sulfate bound 7% of the total protein. Heparin bound 22% of the total protein, but chondroitin sulfate A bound only 0.23%. Mass spectrometric analysis identified 20 proteins as dermatan-sulfate-binding proteins, most of which were confirmed by Western blotting. Some of these binding proteins, such as fibrinogen, fibronectin, apolipoprotein B, LMW kininogen, inter-alpha-trypsin inhibitor, and factor H, were degraded to various extents during the chromatography step, but this degradation could be prevented by the inclusion of a serine protease inhibitor. The protein fraction binding to the dermatan sulfate column showed amidase activity, whereas that binding to the heparan sulfate and heparin columns showed 1/2 and 1/20, respectively, of the activity of the dermatan sulfate binding fraction. Dermatan sulfate was similar to heparan sulfate with respect to its capacity to bind plasma proteins and its activation of protease, but differed from chondroitin sulfate and heparin in these properties.  相似文献   

17.
Serum-free culture medium collected from primary monolayer cultures of human articular chondrocytes was found to inhibit human urokinase [EC 3.4.21.31] activity. Although chondrocyte culture medium contained a small amount of endothelial-type plasminogen activator inhibitor which could be demonstrated by reverse fibrin autography, most of the urokinase inhibitory activity of chondrocyte culture medium was shown to be due to a different molecule from endothelial-type inhibitor, since it did not react with a specific antibody to this type of inhibitor. The dominant urokinase inhibitor in chondrocyte culture medium was partially purified by concanavalin A-Sepharose affinity chromatography. The partially purified inhibitor inhibited high-Mr urokinase more effectively than low-Mr urokinase, but no obvious inhibition was detected against tissue-type plasminogen activator, plasmin, trypsin, and thrombin. The inhibitor had an apparent Mr of 43,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and it was unstable to sodium dodecyl sulfate, acid, and heat treatments. Inhibition of urokinase by the inhibitor was accompanied with the formation of a sodium dodecyl sulfate-stable high-Mr complex between them. Inhibition and complex formation required the active site of urokinase. The partially purified inhibitor was thought to be immunologically different from the known classes of plasminogen activator inhibitors, including endothelial-type inhibitor, macrophage/monocyte inhibitor, and protease nexin, since it did not react with specific antibodies to these inhibitors.  相似文献   

18.
The characterization of intracellularly stored glycosaminoglycans from organs of a patient suffering from mucopolysaccharidosis III A (Sanfilippo A disease) is described. Both heparan sulfate and galactosamine-containing glycosaminoglycans (chondroitin sulfate, dermatan sulfate) are accumulated in the liver, whereas in the other organs (spleen, kidney, heart, cerebrum, cerebellum) heparan sulfate is almost the only glycosaminoglycan stored. It is shown by [3H]NaBH4 reduction and subsequent identification of the 3H-labelled sugar alcohols that heparan sulfate is degraded in all organs by at least two endoglycosidases, an endoglucuronidase and an endoglucosaminidase, to fragments of low molecular weight (Mr approximately 2 000-6 600).  相似文献   

19.
The separation of sulfated glycosaminoglycans in mixtures by agarose-gel electrophoresis and the recovery of single polysaccharide bands has been applied to the characterization of polysaccharides extracted from tissues without previous purification of single species. Sulfated glycosaminoglycans, heparin with its two components, slow-moving and fast-moving, heparan sulfate, dermatan sulfate, and chondroitin sulfate, were separated to microgram level by conventional agarose-gel electrophoresis. After their separation, they were fixed in the agarose-gel matrix by precipitation in a cetyltrimethylammonium bromide solution, making them visible on a dark background. After recovery of gel containing the fixed bands, high temperatures (90 degrees C for 15 min) were necessary to dissolve the gel matrix, and a solution of NaCl (3 M) was used to release sulfated polysaccharides from the complex with cetyltrimethylammonium. After precipitation of glycosaminoglycans in the presence of ethanol, the recovery of slow-moving heparin, fast-moving heparin, heparan sulfate, dermatan sulfate, and chondroitin sulfate was from 1 to 10 microg, with a percentage greater than 45% and a purity above 90%. Sulfated glycosaminoglycans in mixtures recovered from gel matrix as single species were evaluated for purity and characterized for unsaturated disaccharides after treatment with bacterial lyases (heparinases for heparin and heparan sulfate samples, and chondroitinases for dermatan sulfate and chondroitin sulfate) and molecular mass. Bovine lung and heart Glycosaminoglycans were extracted and separated into single species by agarose-gel electrophoresis and recovered from gel matrix after treatment in cetyltrimethylammonium solution. Unsaturated disaccharides pattern, the sulfate to carboxyl ratio, and the molecular mass of each single polysaccharide species were determined.  相似文献   

20.
《Life sciences》1997,60(12):PL201-PL206
Here, we report investigations about the direct effect of glycosaminoglycans, such as dermatan sulfate, chondroitin 4- and 6-sulfate upon cAMP-dependent protein kinase activity. The results indicate that glycosaminoglycans strongly influence the phosphorylation activity of this enzyme against histone type IIa and [Val6,Ala7]-kemptide. While chondroitin 4-sulfate and dermatan sulfate exhibit inhibitory effects, chondroitin 6-sulfate shows a stimulating effect. In addition, the chondroitin 6-sulfate is also able to reduce the chondroitin 4-sulfate and dermatan sulfate specific inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号