首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The multiple forms of acid phosphohydrolases in liver lysosomes of Sus scrofa domesticus and Gallus gallus domesticus were studied by use of isoelectric focusing. 2. Acid phosphatase was resolved into two forms in G. gallus domesticus and three forms in S. scrofa domesticus. Especially, two forms of G. gallus domesticus were different from each other in their enzymatic properties. 3. The pI values of acid ATPase agreed with those of acid phosphodiesterase in G. gallus domesticus. According to the data on activity ratios, however, these enzymes seemed not to be identical. 4. Except acid deoxyribonuclease, extraction by Triton X-100 of lysosomes increased the proportions of acidic forms of these enzymes. In particular, a new form of acid ribonuclease with pI 4.5 or 4.9 appeared in both cases of G. gallus domesticus and S. scrofa domesticus.  相似文献   

2.
Characterization of Fe2+-activated acid phosphatase in rat epidermis   总被引:1,自引:0,他引:1  
A particulate acid phosphatase (EC 3.1.3.2, orthophosphoric monoester phosphohydrolase (acid optimum)) was extracted in 1 M KCl, from 2-day rat epidermis. The enzyme has a Mr of 32,000, but two forms, F1 and F2 with pI values of 8.6 and 8.3, respectively, were identified while the pI values of other acid phosphatases soluble in sucrose and Triton X-100 were all acidic. F1 and F2 also differed from other epidermal acid phosphatases because they were (a) activated by Fe2+ and reducing agents, (b) showed immunological cross-reactivity with purple acid phosphatase of rat spleen and (c) dephosphorylated phosvitin and alpha-casein even though they had rather high Km values.  相似文献   

3.
Acid phosphatase (EC 3.1.3.2, orthophosphoric-monoester phosphohydrolase, (acid optimum)) from the budding yeast Saccharomyces cerevisiae was purified from repressed and depressed cells. Without Triton X-100 in the extraction buffer only the constitutive or repressible active enzyme eluted from a Sepharose CL-6B column, the last step of the purification procedure. When Triton X-100 was included in the extraction buffer, an additional protein peak eluted prior to the active acid phosphatase. The material from this new peak, a glycoprotein, had no acid phosphatase activity but cross-reacted with antibodies raised against repressible acid phosphatase. The tryptic fingerprints of the inactive proteins are very similar to the ones of the corresponding active enzymes. We conclude that this new glycoprotein represents an inactive form of repressible and constitutive acid phosphatase. The fact that inactive acid phosphatase can be recovered only in the presence of Triton X-100 indicates that it is membrane-bound.  相似文献   

4.
In solubility studies of 7 acid hydrolases, the extent of solubilization by sonic disruption varied with the enzyme species and increased with increasing pH and Triton X-100 concentration of the suspension medium. Hydrolases in the nerve-ending (NE) fraction were more resistant to solubilization than those in the mitochondrial-lysosomal (M-L) fraction, but nearly quantitative solubilization was attained by sonication in an alkaline buffer containing 0,5% Triton X-100. Polyacrylamide gel electrophoresis of extracts revealed multiple components of acid phosphatase, acid esterase, arylsulfatase,-glucuronidase, and-N-acetyl-hexosaminidase. The enzyme patterns varied with the subcellular fraction and the composition of the medium. In general, the acidic (anodic) forms of these hydrolases were more readily solubilized by sonication in acidic buffer, alkaline pH and Triton X-100 being required to solubilize the basic (cationic) components. The acidic forms of these enzymes were converted to less anodic or cathodic forms, or both, during autolysis at pH 6 at 0 and 37°C, and during storage at –20°C.  相似文献   

5.
1. Lysosome-rich fractions from rat liver were subjected to several disruptive procedures: osmotic lysis or freezing and thawing in different media, shearing forces in a high-speed blender, treatment with Triton X-100. 2. The soluble and particulate phases were then separated by high-speed centrifugation and assayed for their content of acid phosphatase, β-galactosidase, β-N-acetylglucosaminidase, acid proteinase, acid ribonuclease, acid deoxyribonuclease and protein. 3. The degree of elution of these hydrolases appeared to depend on both the enzyme species and the treatment. The resulting patterns of solubilization were rather complex, so that a clear-cut discrimination between soluble and structure-bound enzymes could not always be traced. 4. Although only β-galactosidase was readily solubilizable after all treatments, acid proteinase could also be extensively eluted from the sedimentable material in the presence of EDTA and acid phosphatase was fully extracted by Triton X-100. On the other hand, considerable proportions of the other activities could not be solubilized by any of the procedures used. 5. In other experiments, the adsorbability of hydrolases on subcellular structures was investigated by measuring the partition between sedimentable particles and soluble fraction of solubilized enzymes added to `intact' liver homogenates. 6. Large proportions of acid proteinase, ribonuclease and deoxyribonuclease, and almost all of β-N-acetylglucosaminidase, were found to be adsorbed on the particulate material.  相似文献   

6.
Membranes prepared from Triton WR-1339-filled lysosomes (tritosomes) contained ATPase activity with a pH optimum of 5–8. These membranes also showed adenosine diphosphatase, adenosine monophosphatase, acid β-glycerol phosphatase, and acid pyrophosphatase activities. The soluble (nonmembrane) fraction of the tritosomes also contained these activities, but the properties of the soluble adenine nucleotide phosphatase activities were different from the membrane-associated enzymes. The pH optimum of tritosomal membrane ATPase changed to 5 after solubilization with Triton X-100, but ADPase and AMPase optima remained at 6–7. The pH optimum of intact membrane ATPase was also 5 when the substrate was α,β-methylene-ATP. Thus, tritosomal membrane ATPase apparently exhibits a pH 8 optimum only when acting in concert with ADPase and AMPase in intact membranes. Rates of ATP hydrolysis to adenosine were also significantly greater in intact membranes than in Triton X-100-solubilized fraction. Centrifugation of Triton X-100-solubilized tritosomal membranes in sucrose density gradients showed that ATPase and ADPase activities sedimented to one peak, and that AMPase, acid phosphatase, and pyrophosphatase were grouped in another peak. Thus, tritosomal membrane ATPase activity was not due to the latter enzymes. The resulting purification was about fourfold for ATPase. The Mr for ATPase and ADPase was estimated to be about 65,000 and for AMPase, acid phosphatase, and pyrophosphatase about 200,000.  相似文献   

7.
Isoelectric focusing was used to study the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase in lysosomes isolated from rat kidney. The isoelectric points of the main protein and hydrolase peaks were 1-1.5 units lower when electrofocusing was done in a pH 3-10 gradient than in a pH 10-3 gradient, apparently because the lysosomal constituents aggregated strongly at their isoelectric points and tended to settle somewhat in the gradient due to gravity. In the extended pH gradient the acidic form of each hydrolase occurred as asingle, relatively discrete peak. However, when pooled acidic fractions were refocused in a restricted pH gradient (pH 6-3 or 3-5) multiple acidic enzyme and protein components were resolved with isoelectric points between 2.7 and 5.1. When autolysis was minimized by extracting lysosomal fractions at alkaline pH (0.2% Triton X-100, 0.1%p-nitrophenyloxamic acid, 0.1 M glycine buffer, pH9) and including 0.1%p-NITROPHENYLOXAMIC ACID, AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND CATHEPSIN D, in the pH gradient, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in two forms, an acidic form with an isoelectric point of about 4.4, and a basic form with an isoelectric point close to 6.2, 6.7 and 8.0, respectively. Acid phosphatase occurred in three forms with isoelectric points of 4.1, 5.6 and 7.4. When some autolytic digestion was permitted by extracting lysosomal fractions in an acidic medium (0.2% Triton X-100, 0.1 M sodium acetate buffer, pH 5.2) AT 0-4DEGREES C and omitting p-nitrophenyloxamic acid from the gradient, the acidic form of beta-glucuronidase and the intermediate form of acid phosphatase were lost, the isoelectric points of the acidic forms of acid phosphatase, arylsulfatase and beta-N-acetylhexosaminidase were increased 0.6-1.2 units, and the isoelectric point of the basic forms of acid phosphatase, arylsulfatase and beta-glucuronidase was increased 0.5 unit. When lysosomal extracts were incubated with bacterial neuraminidase before electrofocusing, the acidic forms of acid phosphatase, arylsulfatase and beta-glucuronidase were largely lost, the isoelectric point of the acidic form of beta-N-acetylhexosaminidase was increased from 4.5 to 6.4, and the isoelectric points of the basic forms of all four hydrolases were increased 0.5-1.5 units. Autoincubation of lysosomal extracts in vitro at pH 5.2 PRODUCED SIMILAR, THOUGH LESS MARKED, effects. cont'd  相似文献   

8.
Characteristics of lysosomes in the rat placental cells   总被引:1,自引:0,他引:1  
Six acid hydrolases, cytochrome oxidase, and alkaline phosphatase were demonstrated in 0.25 m sucrose homogenates of rat chorioallantoic placenta. The acid hydrolases were: acid phosphatase, β-glucuronidase, N-acetyl-β-glucosaminidase, β-galactosidase, and acid deoxyribonuclease, showing optimum activity near pH 4.5; cathepsin, with optimum activity near pH 3.6. The free acid hydrolases present in cytoplasmic extracts expressed 20–40% of their total activity. “Total” activity was defined as the enzyme activity observed in the presence of Triton X-100, while “free” activity denoted enzyme activity measured under similar assay conditions except in the presence of sucrose and absence of Triton X-100. The decreased activity or latency in the assays for the free activity of acid phosphatase, acid deoxyribonuclease, and cathepsin persisted after incubation at pH 5 and 37 ° up to an hour. In contrast, this latency did not persist after incubation of the β-glycosidases. Additionally, the free activity of all the designated enzymes of the cytoplasmic extract was in excess of the nonsedimentable activity observed.  相似文献   

9.
Abstract: An improved procedure of the solubilization and purification of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNPase) from bovine cerebral white matter is reported. To remove easily extractable protein, the tissue was homogenised in 10 vol. of 0.5 M-ammonium acetate containing 10 mM-Tris. HCI, pH 6.9, at 4°C and centrifuged at 105,000 g for 60 min. The precipitate was extracted with 10 vol. of 0.5% Triton X-100 containing 10 mM-Tris. HCI, pH 6.9, and centrifuged, By this extraction, over 70% soluble protein could be removed in the supernatant and most CNPase activity was kept in the precipitate. The precipitate was extracted with 10 vol. of 1% Triton X-100 and 1 M-ammonium acetate mixture containing 10 mM-Tris.HCI, pH 8.2, and centrifuged at 105,000 g for 60 min. The extract contained 54% of CNPase and the specific activity was fivefold that of the original homogenate. Subsequently, the extractions were carried out with 2% Triton X-100-2 M-ammonium acetate and 4% Triton X-100-4 M-ammonium acetate at pH 8.2. The recovery of CNPase was found to be nearly 90% from the original homogenate, without loss of enzyme activity during extraction, while much CNPase activity was lost when guanidinium chloride was used as the extraction medium. Using the Triton X-100-ammonium acetate extract, several column chromatography techniques were applied to purify the enzyme. In the first step, Phenyl-Sepharose CL-4B column chromatography was performed by eluting with a double-linear gradient of ammonium acetate and Triton X-100. In the second step, the fraction containing CNPase after Phenyl-Sepharose CL-4B column chromatography was applied to a Sepharose 6B column and the enzyme was eluted with 1% Triton X-100- I M-ammonium acetate, pH 8.2. The peak containing CNPase was applied to CM-Sepharose CL-6B column chromatography in the final step. The enzyme was eluted with a linear gradient of KCI. In this step, CNPase eluted as a sharp peak and the specific activity was approximately 2300 pmol 2′-AMP formed/min/mg protein. The recovery of CNPase from the original homogenate was about 50%. By the isoelectrofocusing technique, the pI of CNPase was found to be 8.6. When Reisfeld polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis were carried out on the purified CNPase, only one protein band, corresponding to CNPase activity, was detected. Its molecular weight was estimated to be approximately 51,000 as the active enzyme form. K, value of the purified enzyme for 2′,3′-CAMP calculated from a Lineweaver-Burk plot was 3.13 mM.  相似文献   

10.
1. Incubation of Schistosoma mansoni for 5 min in a phosphate-buffered medium, pH 7.4, released tegumental material containing the following phosphohydrolase activities: alkaline phosphatase, 5'-nucleotidase, glycerol-2-phosphatase, glucose 6-phosphatase, phosphodiesterase and ATPase. 2. Maximum activity of these enzymes was measured at pH 9.5; however, the phosphodiesterase and ATPase activities were also appreciable at pH 7.0. 3. Solubilization of the released tegumental material in 1% Triton X-100 followed by gel filtration distinguished three peaks of enzyme activity: an ATPase (mol.wt. greater than 1000 000), a phosphodiesterase (mol.wt. 1 000 000) and an alkaline phosphomonoesterase with broad specificity (mol.wt. 232 000). 4. The ATPase activity was highly activated by 10 mM-Mg2+ or 1 mM-Ca2+ and was inhibited by chelating agents. Ouabain, Na+ and K+ had little effect on enzyme activity, whereas activity was increased by 50% in the presence of calmodulin. The phosphodiesterase activity was highest in the presence of 100 mM-Na+ or -K+, and 10 mM-Mg2+ or -Ca2+. Alkaline phosphatase activity was also stimulated by 100 mM-Na+ or -K+, and 10 mM-Mg2+; however Ca2+ inhibited at greater than 1 mM. 5. Surface iodination of parasites followed by detergent solubilization and gel filtration of the released tegumental membranes indicated that these enzymes were not accessible. A major surface component, apparent mol.wt. 80 000, was iodinated. 6. Rabbit anti-(mouse liver 5'-nucleotidase) antibodies did not inhibit the phosphohydrolase activities. However, an immunoglobulin G fraction from sera of mice chronically infected with S. mansoni partially inhibited alkaline phosphatase activity, but was without effect on the phosphodiesterase and ATPase activities. 7. The location of the enzymes in the double membrane of the tegument and their significance in host-parasite interactions is discussed.  相似文献   

11.
A sedimentable form of acid phosphatase (EC 3.1.3.2) from Tetrahymena pyriformis was found to be solubilized by Triton X-100. The total enzyme activity in the insoluble cell fraction increased almost 200% upon solubilization with Triton X-100 or Nonidet P-40. Removal of membrane lipids and Triton X-100 from the particulate wash solution with a chloroform extraction resulted in non-specific enzyme-protein aggregation which was reversible upon addition of Triton X-100. The results indicate that this acid phosphatase is an integral membrane protein. The pH optima for this particulate bound acid phosphatase was 3.5 with o-carboxyphenyl phosphate and 4.0 with p-nitrophenyl phosphate as substrates. The Km values of each substrate were 3.1 and 0.031 mM, respectively.  相似文献   

12.
We have characterised ceramidase activity in extracts of human spleen from control subjects and from patients with Gaucher disease. In Triton X-100 extracts of control spleens, a broad pH optimum of pH 3.5-5.0 was found; no ceramidase activity was detectable at neutral or alkaline pH. About 45-60% of acid ceramidase could be extracted from spleen without detergents, but for complete extraction, Triton X-100 was required. For the radiolabelled substrate oleoylsphingosine, a Km of 0.22 +/- 0.09 mM and a Vmax of 57 +/- 11 nmol/h per mg protein was calculated in spleen from a control subject. Flat-bed isoelectric focussing in the presence of Triton X-100 revealed a pI of 6.0-7.0 for acid ceramidase; similar values were found for sphingomyelinase and glucerebrosidase. HPLC-gel filtration indicated that in the presence of Triton X-100, acid ceramidase has an Mr of about 100 kDa. In the absence of detergents, the enzyme forms high-molecular-weight aggregates. Similar aggregation behaviour was observed for sphingomyelinase, while the elution of beta-hexosaminidase was not affected by detergents. The elution profile of glucocerebrosidase was only slightly altered by Triton X-100. There was no difference in the properties of acid ceramidase present in spleen from control subjects and from patients with type I Gaucher disease.  相似文献   

13.
A specific binding site for somatotropin was solubilized by 1% (v/v) Triton X-100 from a crude particulate membrane fraction of pregnant rabbit liver, partially purified and characterized. The solubilized binding site retained many of the characteristics observed in the original particulate fraction, indicating that extraction of the binding site with Triton X-100 does not cause any major changes in its properties. The binding of human 125I-labelled-somatotropin to the solubilized binding site is a saturable and reversible process, depending on temperature, incubation time, pH and ionic environment. Analysis of the kinetic data revealed a finite number of binding sites with an affinity constant of 0.32 x 10(10)M-1. The binding activity for human 125I-labelled-somatotropin was adsorbed to a concanavalin-A-Sepharose column and was dissociated from the column with alpha-methyl-D-glucoside, suggesting that the binding protein may be a glycoprotein. Using affinity chromatography on concanavalin-A-Sepharose, ion-exchange chromatography on DEAE-cellulose and gel filtration on Sepharose 6B, the binding protein was purified 1000-4000-fold from the original liver homogenate. When the partially purified preparation was chromatographed on Sepharose 6B, the binding protein eluted as a molecule with an apparent molecular weight of 200000, with a Stokes' radius of 4.9 nm. Sucrose-density-gradient centrifugation of the preparation showed that the sedimentation coefficient of the binding protein was 7.2S. Isoelectric focusing experiments revealed that a major part of the protein has an acidic pI (4.2-4.5). Exposure of the protein to trypsin decreased the binding activity for human 125I-labelled-somatotropin or bovine 125I-labelled-somatotropin, whereas ribonuclease, deoxyribonuclease, phospholipase C or neuraminidase had little or no effect.  相似文献   

14.
Control guinea pig cardiac myofibrils were isolated in the presence of Triton X-100. Experimental myofibrils, prepared in the presence of Triton X-100, NaF, cyclic AMP and ATP, possessed a reduced myofibrillar ATPase activity. When myofibrils isolated under control conditions were incubated for two hours at 25°C with NaF, ATP and cyclic AMP, the ATPase activity was also decreased; however, the ATPase activity was not reduced as much as that of myofibrils isolated under experimental conditions. Incubation of myofibrils with E. coli aklaline phosphatase and guinea pig heart phosphoprotein phosphatase resulted in an increase in ATPase activity and a decrease in phosphoprotein phosphate. Thus there appeared to be an inverse relationship between myofibrillar ATPase activity and phosphoprotein phosphate content. The results indicated that a protein kinase is associated with the Triton X-100 purified myofibrils and supports the notion that intact myofibrils can exist in at least two catalytic forms.  相似文献   

15.
Studies on the hydrophobic properties of sphingomyelinase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Crude liver lysosomal sphingomyelinase (EC 3.1.4.12) displays a heterogeneous electrofocusing profile. The majority of the enzyme resolves into two major components with acidic pI values near pH 4.6 and 4.8. Several additional minor peaks of activity are seen at more basic pH values (up to pH 8.0). In the presence of 0.1% Triton X-100 (or Cutscum), the location of sphingomyelinase is shifted by about 1 pH unit to more basic pH values. Triton X-100 also increases the apparent heterogeneity of sphingomyelinase. Removal of detergent by treatment with Bio Beads SM-2 restores the acidic pI profile. This behaviour appears to be specific, since it was not shared by six glycosidases several of which hydrolyse sphingolipids. The electrofocusing profile of 3H-labelled Triton X-100 was distinct and separate from sphingomyelinase, suggesting that only a small fraction of detergent interacted directly with the enzyme. To study this behaviour in more detail we examined the effect of detergents on elution of sphingomyelinase from sphingosylphosphocholine-Sepharose. Sphingosylphosphocholine is a competitive inhibitor of sphingomyelinase (Ki 0.5 mM). Binding of enzyme was pH-dependent. Triton X-100, Cutscum and Tween 20 eluted significant amounts of enzyme at 0.01-0.02%. Total elution was achieved with up to 0.1% detergent. These data suggest that sphingomyelinase binds to neutral detergent monomers with a high degree of affinity. In excess detergent (5-7 times the critical micellar concentration) the surface charge on the protein is changed, leading to a pI shift. This behaviour probably does not occur at the active site of the enzyme, since there is no appreciable effect on substrate hydrolysis and substrate analogues were ineffective in eluting the enzyme.  相似文献   

16.
A procedure is described for the purification of salmon testis deoxyribonuclease II by means of acid extraction, fractional precipitation with ammonium sulfate, heat denaturation of extraneous proteins, and ethanol fractionation. This process separates the deoxyribonuclease activity from that of ribonuclease, phosphatase, phosphodiesterase, and protease. Over 50 per cent of the activity is retained with an over-all enrichment of 20,000-fold. The enzyme degrades both native and heat-denatured DNA, but the rate of degradation of the latter is only one-tenth that of the former. It does not hydrolyze apurinic acid. The enzyme is most stable in the pH range 4 to 5. Electrolytes are essential for the expression of its activity: monovalent ions satisfy the requirement, but divalent ones are much more effective. Above a certain optimum concentration, each electrolyte is inhibitory. The pH of maximal activity, under conditions of optimal ionic strength, is 4.8; the temperature optimum is near to 55°C.  相似文献   

17.
Alkaline phosphatase in uterine homogenates from day 7 pregnant mice was solubilized using 0.2% (v/v) Triton X-100 and extracted wtih 20% (v/v) n-butanol. The procedure, which resulted in 182-fold purification, included ammonium sulfate precipitation, DEAE-cellulose anion exchange chromatography and Sephadex G200 gel filtration. Solubilization with Triton X-100 was an important step in the procedure since extraction with n-butanol alone only partially solubilized the enzyme and gave low extraction yields, much of the enzyme activity remaining in association with negatively charged residues. However, butanol extraction of Triton X-100-treated homogenates gave high yields of enzyme and eliminated p-nitrophenyl phosphatases which displayed activity in the pH range 3.0--7.5, together with a large proportion of inactive protein. The activity of the purified enzyme preparations was electrophoretically homogeneous on cellulose acetate membranes, suggesting that the alkaline phosphatase in the mouse uterus exists in a single isozymic form. Polyacrylamide-gel electrophoresis revealed that the purified preparations contained at least one protein as an impurity. Attempts to further purify the alkaline phosphatase by isoelectric focusing were unsuccessful since the enzyme was found to have an isoelectric point of about 5.0 and at this pH it was rapidly inactivated.  相似文献   

18.
1. Human erythrocyte acetylcholinesterase was solubilized by Triton X-100 and purified by affinity chromatography to a specific activity of 3800 IU/mg of protein. The yield of the purified enzyme was 25--45%. 2. Gel filtration on Sepharose 4-B in the presence of Triton X-100 revealed one peak of enzyme activity with a Stokes' radius of 8.7 nm. Density gradient centrifugation in 0.1% Triton X-100 showed one peak of enzyme activity with an S4 value of 6.3S. 3. Isoelectric focusing in Triton X-100 resolved the enzyme into five molecular forms with isoelectric points of 4.55, 4.68, 4.81, 4.98 and 5.18. Upon incubation with neuraminidase the enzyme activity in the first four forms was decreased with a concommitant increase in activity in the form with the higher isoelectric point. 4. After removal of excess Triton X-100 on Bio-Gel HTP, polyacrylamide gel electrophoresis showed seven bands of protein and corresponding bands of enzyme activity. Density gradient centrifugation of the detergent-depleted enzyme at high ionic strength revealed five multiple molecular forms with S4 values of 6.3 S, 10.2 S, 12.2 S, 14.2 S and 16.3 S. At low ionic strength, higher aggregates were observed in addition to the other forms. Dodecylsulfate-polyacrylamide gel electrophoresis gave one subunit only with an apparent molecular weight of 80 000. 5. These results suggest that human erythrocyte acetylcholinesterase, solubilized by Triton X-100, exists in various forms differing in net charge but of apparently similar molecular dimensions. After removal of the detergent, forms with different molecular sizes are observed.  相似文献   

19.
We found a dipeptidyl aminopeptidase activity in the parasitic protozoan Giardia lamblia with properties similar to the lysosomal cathepsin C of rat-liver lysosomes. Subcellular fractionation of this parasite indicated that the cathepsin C activity is located in organelles not distinguishable from the ones containing acid phosphatase, a known marker enzyme of Giardia lysosome-like peripheral vesicles. Contrary to the rat lysosomal enzyme, Giardia cathepsin C behaved like a membrane protein. Moreover, the enzyme was not solubilized by Triton X-100 or Triton X-100/SDS at 0 degrees C but could be substantially solubilized by octylglucoside, Triton X-100 at 37 degrees C or by a pretreatment with the cholesterol complexing agent beta-cyclodextrin before the Triton/SDS treatment carried out at 0 degrees C. These observations suggest that binding/anchorage of this enzyme to membranes occurs in cholesterol-rich microdomains.  相似文献   

20.
Bloodstream forms of Trypanosoma brucei have been screened for the presence of enzymes that could serve as markers for the plasma membrane, flagellar pocket, lysosomes, endoplasmic reticulum and Golgi apparatus in order to study the subcellular organization of the digestive system of the parasite. Acetylesterase, acid DNase, acid phosphatase, acid phosphodiesterase, acid proteinase, acid RNase, alanine aminotransferase, galactosyl transferase, alpha-glucosidase, inosine diphosphatase and alpha-mannosidase were partially characterized and their assays optimized for pH-dependent activity, linearity of reaction with respect to incubation time and enzyme concentration, and the effect of inhibitors and activators. The association of these enzymes with particulate material and the presence of structural latency were investigated. Acid proteinase and alpha-mannosidase are particle-bound and latent in cytoplasmic extracts; they can be activated and solubilized in part by Triton X-100. Similar results were obtained for acid phosphatase, acid phosphodiesterase and inosine diphosphatase. Neutral alpha-glucosidase, though partly sedimentable, does not show latency and is readily solubilized by the detergent. Galactosyl transferase is firmly membrane-bound even in the presence of 0.1% Triton X-100. Cell fractionation by differential centrifugation and density equilibration on sucrose gradients revealed that both alpha-mannosidase and acid proteinase are associated with organelles that band at a density of about 1.20 g/cm3. Inosine diphosphatase, galactosyl transferase, acid phosphatase and acid phosphodiesterase sediment predominantly as microsomal constituents equilibrating at densities between 1.13 and 1.15 g/cm3. In addition, inosine diphosphatase and galactosyl transferase exhibit considerable activity at higher densities (1.18-1.25 g/cm3). Neutral alpha-glucosidase is mainly recovered in the nuclear and microsomal fraction; its particulate part equilibrates as a single band at rho = 1.22 g/cm3. Acetylesterase and acid DNase are largely soluble, whereas acid RNase does not produce distinct sedimentation and banding profiles. In intact cells, neutral alpha-glucosidase and acid phosphatase appear to be highly accessible to their substrates. It is tentatively concluded that (a) acid proteinase and alpha-mannosidase are lysosomal enzymes, (b) acid phosphatase and acid phosphodiesterase are associated with the flagellar pocket and part of the former enzyme probably with the endoplasmic reticulum, (c) galactosyl transferase is a constituent of the Golgi apparatus, and (d) alpha-glucosidase may serve as a marker for the plasma membrane. Inosine diphosphatase may also be derived from the latter structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号