首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

4.
Alkylating agents, such as methyl methanesulfonate (MMS), damage DNA and activate the DNA damage checkpoint. Although many of the checkpoint proteins that transduce damage signals have been identified and characterized, the mechanism that senses the damage and activates the checkpoint is not yet understood. To address this issue for alkylation damage, we have reconstituted the checkpoint response to MMS in Xenopus egg extracts. Using four different indicators for checkpoint activation (delay on entrance into mitosis, slowing of DNA replication, phosphorylation of the Chk1 protein, and physical association of the Rad17 checkpoint protein with damaged DNA), we report that MMS-induced checkpoint activation is dependent upon entrance into S phase. Additionally, we show that the replication of damaged double-stranded DNA, and not replication of damaged single-stranded DNA, is the molecular event that activates the checkpoint. Therefore, these data provide direct evidence that replication forks are an obligate intermediate in the activation of the DNA damage checkpoint.  相似文献   

5.
DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.  相似文献   

6.
Vázquez MV  Rojas V  Tercero JA 《DNA Repair》2008,7(10):1693-1704
Eukaryotic genomes are especially vulnerable to DNA damage during the S phase of the cell cycle, when chromosomes must be duplicated. The stability of DNA replication forks is critical to achieve faithful chromosome replication and is severely compromised when forks encounter DNA lesions. To maintain genome integrity, replication forks need to be protected by the S-phase checkpoint and DNA insults must be repaired. Different pathways help to repair or tolerate the lesions in the DNA, but their contribution to the progression of replication forks through damaged DNA is not well known. Here we show in budding yeast that, when the DNA template is damaged with the alkylating agent methyl methanesulfonate (MMS), base excision repair, homologous recombination and DNA damage tolerance pathways, together with a functional S-phase checkpoint, are essential for the efficient progression of DNA replication forks and the maintenance of cell survival. In the absence of base excision repair, replication forks stall reversibly in cells exposed to MMS. This repair reaction is necessary to eliminate the lesions that impede fork progression and has to be coordinated with recombination and damage tolerance activities to avoid fork collapse and allow forks to resume and complete chromosome replication.  相似文献   

7.
The yeast Chk2/Chk1 homolog Rad53 is a central component of the DNA damage checkpoint system. While it controls genotoxic stress responses such as cell cycle arrest, replication fork stabilization and increase in dNTP pools, little is known about the consequences of reduced Rad53 levels on the various cellular endpoints or about its roles in dealing with chronic vs. acute genotoxic challenges. Using a tetraploid gene dosage model in which only one copy of the yeast RAD53 is functional (simplex), we found that the simplex strain was not sensitive to acute UV radiation or chronic MMS exposure. However, the simplex strain was sensitized to chronic exposure of the ribonucleotide reductase inhibitor hydroxyurea (HU). Surprisingly, reduced RAD53 gene dosage did not affect sensitivity to HU acute exposure, indicating that immediate checkpoint responses and recovery from HU-induced stress were not compromised. Interestingly, cells of most of the colonies that arise after chronic HU exposure acquired heritable resistance to HU. We also found that short HU exposure before and after treatment of G2 cells with ionizing radiation (IR) reduced the capability of RAD53 simplex cells to repair DSBs, in agreement with sensitivity of RAD53 simplex strain to high doses of IR. We propose that a modest reduction in Rad53 activity can impact the activation of the ribonucleotide reductase catalytic subunit Rnr1 following stress, reducing the ability to generate nucleotide pools sufficient for DNA repair and replication. At the same time, reduced Rad53 activity may lead to genome instability and to the acquisition of drug resistance before and/or during the chronic exposure to HU. These results have implications for developing drug enhancers as well as for understanding mechanisms of drug resistance in cells compromised for DNA damage checkpoint.  相似文献   

8.
Cyclin-dependent kinase (CDK) is required for the initiation of chromosomal DNA replication in eukaryotes. In Saccharomyces cerevisiae, the Clb5 and Clb6 cyclins activate Cdk1 and drive replication origin firing. Deletion of CLB5 reduces initiation of DNA synthesis from late-firing origins. We have examined whether checkpoints are activated by loss of Clb5 function and whether checkpoints are responsible for the DNA replication defects associated with loss of Clb5 function. We present evidence for activation of Rad53 and Ddc2 functions with characteristics suggesting the presence of DNA damage. Deficient late origin firing in clb5Delta cells is not due to checkpoint regulation, but instead, directly reflects the decreased abundance of S-phase CDK, as Clb6 activates late origins when its dosage is increased. Moreover, the viability of clb5Delta cells depends on Rad53. Activation of Rad53 by either Mrc1 or Rad9 contributes to the survival of clb5Delta cells, suggesting that both DNA replication and damage pathways are responsive to the decreased origin usage. These results suggest that reduced origin usage leads to stress or DNA damage at replication forks, necessitating the function of Rad53 in fork stabilization. Consistent with the notion that decreased S-CDK function creates stress at replication forks, deletion of RRM3 helicase, which facilitates replisome progression, greatly diminished the growth of clb5Delta cells. Together, our findings indicate that deregulation of S-CDK function has the potential to exacerbate genomic instability by reducing replication origin usage.  相似文献   

9.
Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint.  相似文献   

10.
When replication forks stall during DNA synthesis, cells respond by assembling multi-protein complexes to control the various pathways that stabilize the replication machinery, repair the replication fork, and facilitate the reinitiation of processive DNA synthesis. Increasing evidence suggests that cells have evolved scaffolding proteins to orchestrate and control the assembly of these repair complexes, typified in mammalian cells by several BRCT-motif containing proteins, such as Brca1, Xrcc1, and 53BP1. In Saccharomyces cerevisiae, Esc4 contains six such BRCT domains and is required for the most efficient response to a variety of agents that damage DNA. We show that Esc4 interacts with several proteins involved in the repair and processing of stalled or collapsed replication forks, including the recombination protein Rad55. However, the function of Esc4 does not appear to be restricted to a Rad55-dependent process, as we observed an increase in sensitivity to the DNA alkylating agent methane methylsulfonate (MMS) in a esc4Deltarad55Delta mutant, as well as in double mutants of esc4Delta and other recombination genes, compared to the corresponding single mutants. In addition, we show that Esc4 forms multiple nuclear foci in response to treatment with MMS. Similar behavior is also observed in the absence of damage when either of the S-phase checkpoint proteins, Tof1 or Mrc1, is deleted. Thus, we propose that Esc4 associates with ssDNA of stalled forks and acts as a scaffolding protein to recruit and/or modulate the function of other proteins required to reinitiate DNA synthesis.  相似文献   

11.
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous factors that produce genome injuries and interfere with DNA replication. DNA integrity checkpoints coordinate this response by slowing cell cycle progression to provide time for the cell to repair the damage, stabilizing replication forks and stimulating DNA repair to restore the original DNA sequence and structure. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage. TLS allows replication to continue without removing the damage, but results in a higher frequency of mutagenesis. Here, we investigate the functional contribution of the Dot1 histone methyltransferase and the Rad53 checkpoint kinase to TLS regulation in Saccharomyces cerevisiae. We demonstrate that the Dot1-dependent status of H3K79 methylation modulates the resistance to the alkylating agent MMS, which depends on PCNA ubiquitylation at lysine 164. Strikingkly, either the absence of DOT1, which prevents full activation of Rad53, or the expression of an HA-tagged version of RAD53, which produces low amounts of the kinase, confer increased MMS resistance. However, the dot1Δ rad53-HA double mutant is hypersensitive to MMS and shows barely detectable amounts of activated kinase. Furthermore, moderate overexpression of RAD53 partially suppresses the MMS resistance of dot1Δ. In addition, we show that MMS-treated dot1Δ and rad53-HA cells display increased number of chromosome-associated Rev1 foci. We propose that threshold levels of Rad53 activity exquisitely modulate the tolerance to alkylating damage at least by controlling the abundance of the key TLS factor Rev1 bound to chromatin.  相似文献   

12.
Wang H  Gao J  Li W  Wong AH  Hu K  Chen K  Wang Y  Sang J 《PloS one》2012,7(5):e37246
The pathogenic fungus Candida albicans switches from yeast growth to filamentous growth in response to genotoxic stresses, in which phosphoregulation of the checkpoint kinase Rad53 plays a crucial role. Here we report that the Pph3/Psy2 phosphatase complex, known to be involved in Rad53 dephosphorylation, is required for cellular responses to the DNA-damaging agent methyl methanesulfonate (MMS) but not the DNA replication inhibitor hydroxyurea (HU) in C. albicans. Deletion of either PPH3 or PSY2 resulted in enhanced filamentous growth during MMS treatment and continuous filamentous growth even after MMS removal. Moreover, during this growth, Rad53 remained hyperphosphorylated, MBF-regulated genes were downregulated, and hypha-specific genes were upregulated. We have also identified S461 and S545 on Rad53 as potential dephosphorylation sites of Pph3/Psy2 that are specifically involved in cellular responses to MMS. Therefore, our studies have identified a novel molecular mechanism mediating DNA damage response to MMS in C. albicans.  相似文献   

13.
Liu JS  Kuo SR  Melendy T 《Mutation research》2003,532(1-2):215-226
To better understand the different cellular responses to replication fork pausing versus blockage, early DNA damage response markers were compared after treatment of cultured mammalian cells with agents that either inhibit DNA polymerase activity (hydroxyurea (HU) or aphidicolin) or selectively induce S-phase DNA damage responses (the DNA alkylating agents, methyl methanesulfonate (MMS) and adozelesin). These agents were compared for their relative abilities to induce phosphorylation of Chk1, H2AX, and replication protein A (RPA), and intra-nuclear focalization of gamma-H2AX and RPA. Treatment by aphidicolin and HU resulted in phosphorylation of Chk1, while HU, but not aphidicolin, induced focalization of gamma-H2AX and RPA. Surprisingly, pre-treatment with aphidicolin to stop replication fork progression, did not abrogate HU-induced gamma-H2AX and RPA focalization. This suggests that HU may act on the replication fork machinery directly, such that fork progression is not required to trigger these responses. The DNA-damaging fork-blocking agents, adozelesin and MMS, both induced phosphorylation and focalization of H2AX and RPA. Unlike adozelesin and HU, the pattern of MMS-induced RPA focalization did not match the BUdR incorporation pattern and was not blocked by aphidicolin, suggesting that MMS-induced damage is not replication fork-dependent. In support of this, MMS was the only reagent used that did not induce phosphorylation of Chk1. These results indicate that induction of DNA damage checkpoint responses due to adozelesin is both replication fork and fork progression dependent, induction by HU is replication fork dependent but progression independent, while induction by MMS is independent of both replication forks and fork progression.  相似文献   

14.
Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork “collapse point” in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.  相似文献   

15.
The yeast checkpoint factors Mrc1p and Tof1p travel with the replication fork and mediate the activation of the Rad53p kinase in response to a replication stress. We show here that both proteins are required for normal fork progression but play different roles at stalled forks. Tof1p is critical for the activity of the rDNA replication fork barrier (RFB) but plays a minor role in the replication checkpoint. In contrast, Mrc1p is not necessary for RFB activity but is essential to mediate the replication stress response. Interestingly, stalled forks did not collapse in mrc1Delta cells exposed to hydroxyurea (HU) as they do in rad53 mutants. However, forks failed to restart when mrc1Delta cells were released from the block. The critical role of Mrc1p in HU is therefore to promote fork recovery in a Rad53p-independent manner, presumably through the formation of a stable fork-pausing complex.  相似文献   

16.
Periodically regulated cyclin-dependent kinase (Cdk) is required for DNA synthesis and mitosis. Hydroxyurea (HU) inhibits DNA synthesis by depleting dNTPs, the basic unit for DNA synthesis. HU treatment triggers the S-phase checkpoint, which arrests cells at S-phase, inhibits late origin firing and stabilizes replication forks. Using budding yeast as a model system, we found that Swe1, a negative regulator of Cdk, appears at S-phase and accumulates in HU treatment cells. Interestingly, this accumulation is not dependent on S-phase checkpoint. Deltahsl1, Deltahsl7, and cdc5-2 mutants, which have defects in Swe1 degradation, show HU sensitivity because of high Swe1 protein levels. We further demonstrated that their HU sensitivity is not a result of DNA damage accumulation or incomplete DNA synthesis; instead the sensitivity is due to their dramatically delayed recovery from HU-induced S-phase arrest. Strikingly, our in vivo data indicate that Swe1 inhibits the kinase activity of Clb2-Cdk1, but not that of Clb5-Cdk1. Therefore, S-phase accumulated Swe1 prevents Clb2-Cdk1-mediated mitotic activities, but has little effects on Clb5-Cdk1-associated S-phase progression.  相似文献   

17.
The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.  相似文献   

18.
Werner syndrome is an autosomal recessive genetic instability and cancer predisposition syndrome with features of premature aging. Several lines of evidence have suggested that the Werner syndrome protein WRN plays a role in DNA replication and S-phase progression. In order to define the exact role of WRN in genomic replication we examined cell cycle kinetics during normal cell division and after methyl-methane-sulfonate (MMS) DNA damage or hydroxyurea (HU)-mediated replication arrest following acute depletion of WRN from human fibroblasts. Loss of WRN markedly extended the time cells needed to complete the cell cycle after either of these genotoxic treatments. Moreover, replication track analysis of individual, stretched DNA fibers showed that WRN depletion significantly reduced the speed at which replication forks elongated in vivo after MMS or HU treatment. These results establish the importance of WRN during genomic replication and indicate that WRN acts to facilitate fork progression after DNA damage or replication arrest. The data provide a mechanistic basis for a better understanding of WRN-mediated maintenance of genomic stability and for predicting the outcomes of DNA-targeting chemotherapy in several adult cancers that silence WRN expression.  相似文献   

19.
In Saccharomyces cerevisiae, a DNA damage checkpoint in the S-phase is responsible for delaying DNA replication in response to genotoxic stress. This pathway is partially regulated by the checkpoint proteins Rad9, Rad17 and Rad24. Here, we describe a novel hypermutable phenotype for rad9Δ, rad17Δ and rad24Δ cells in response to a chronic 0.01% dose of the DNA alkylating agent MMS. We report that this hypermutability results from DNA damage introduction during the S-phase and is dependent on a functional translesion synthesis pathway. In addition, we performed a genetic screen for interactions with rad9Δ that confer sensitivity to 0.01% MMS. We report and quantify 25 genetic interactions with rad9Δ, many of which involve the post-replication repair machinery. From these data, we conclude that defects in S-phase checkpoint regulation lead to increased reliance on mutagenic translesion synthesis, and we describe a novel role for members of the S-phase DNA damage checkpoint in suppressing mutagenic post-replicative repair in response to sublethal MMS treatment.  相似文献   

20.
The RecQ helicase Sgs1p forms a complex with the type 1 DNA topoisomerase Top3p that resolves double Holliday junctions resulting from Rad51-mediated exchange. We find, however, that Sgs1p functions independently of both Top3p and Rad51p to stimulate the checkpoint kinase Rad53p when replication forks stall due to dNTP depletion on hydroxyurea. Checkpoint activation does not require Sgs1p function as a helicase, and correlates with its ability to bind the Rad53p kinase FHA1 motif directly. On the other hand, Sgs1p's helicase activity is required together with Top3p and the strand-exchange factor Rad51p, to help stabilise DNA polymerase epsilon at stalled replication forks. In this function, the Sgs1p/Top3p complex acts in parallel to the Claspin-related adaptor, Mrc1p, although the sgs1 and mrc1 mutations are epistatic for Rad53p activation. We thus identify two distinct pathways through which Sgs1p contributes to genomic integrity: checkpoint kinase activation requires Sgs1p as a noncatalytic Rad53p-binding site, while the combined Top3p/Sgs1p resolvase activity contributes to replisome stability and recovery from arrested replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号