首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013–0.089 min–1 and 0.026–0.690 min–0.5. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81–100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd.  相似文献   

2.
The utility of Nordmann fir (Abies nordmanniana (Stev.) Spach. Subsp. nordmanniana) leaves from Eastern Black Sea region for the removal (sorption) of metal ions from aqueous solutions was investigated. For this, the optimum values of pH, time, metal concentration, leaf concentration, leaf particle size and adsorption capacity were determined. Also the recovery conditions of the metals from leaves were studied. Cd metal was selected because of its toxic properties. Freundlich isotherm model was used to describe the adsorption behaviour and the experimental results obtained for Cd(2+) adsorption, followed this model well. The utility of Nordmann fir leaves to remove toxic metals from aqueous solutions was proved. Hence, this study showed that the leaves of Nordmann fir can provide cheap source as biosorbents for toxic metal removal from natural or wastewaters.  相似文献   

3.
The biosorption from artificial wastewaters of heavy metals (Cd(II), Pb(II) and Cu(II)) onto the dry fungal biomass of Phanerochaete chryosporium was studied in the concentration range of 5-500 mg l(-1). The maximum absorption of different heavy metal ions on the fungal biomass was obtained at pH 6.0 and the biosorption equilibrium was established after about 6 h. The experimental biosorption data for Cd(II), Pb(II) and Cu(II) ions were in good agreement with those calculated by the Langmuir model.  相似文献   

4.
In situ immobilization constitutes a promising technology for the mitigation of contaminants, through the reduction of metal bioavailability and mobility. This study investigated the adsorption isotherms and kinetic characteristics of humin extracted from peat soils. We also studied the influences of the pH, ionic strengths, and soluble organic matter concentrations of soil solutions on the adsorptive properties of humin, and compared its ability to detoxify potentially toxic metals in both actual and simulated soil solutions. The study results indicated that humin contains a massive population of oxygen-containing functional groups. Its adsorption capacity for Pb(II) was greater than that for Cu(II), which exceeded that for Cd(II). The adsorption of humin for Pb(II) conformed to the Freundlich model, while the adsorption of humin for Cd(II) and Cu(II) followed the Langmuir model. The adsorption kinetics of humin with respect to potentially toxic metals aligned well with second-order kinetics equations. As the pH was elevated, the potentially toxic metal adsorption by humin increased rapidly. Electrolyte ions and tartaric acids in solution both inhibited the adsorption of potentially toxic metals by humin, and its ability to inactivate potentially toxic metals. This was shown to be improved in actual field soil solutions in contrast to simulated soil solutions.  相似文献   

5.
《Process Biochemistry》2004,39(8):909-916
The use of biological materials for effective removal and recovery of heavy metals from contaminated wastewaters has emerged as a potential alternative method to conventional treatment techniques. The aim of this paper was the laboratory study of biosorption of toxic metals from aqueous solution by the application of microorganisms (Bacillus laterosporus or Bacillus licheniformis), isolated from polluted (metal-laden) soil. Microorganisms have a high surface area-to-volume ratio, because of their small size and therefore, they can provide a large contact interface, which would interact with metals from the surrounding environment. Microbial metal accumulation has received much attention during recent years, due to the potential use of microorganisms for treatment of metal-polluted water or wastewater streams. Two toxic metals were selected as typical examples: a cation (cadmium) and an oxyanion (hexavalent chromium, and promising results were obtained, under optimized conditions.  相似文献   

6.
Biological wastes (sawdust, rice husk, coirpith and charcoal) and a naturally occurring mineral (vermiculite) have been tested for their effectiveness in removing Cr from tannery effluent through batch and column experiments. The adsorption capacities of the substrates were also evaluated using isotherm tests and computing distribution co-efficient. The sawdust exhibited a higher adsorption capacity (k = 1482 mgkg(-1)), followed by coirpith (k = 159 mgkg(-1)). The biosorbent and mineral vermiculite in columns were found very effective in removing Cr from tannery effluent. About 94% removal of Cr was achieved by a column of coirpith, and equally (93%) by a column containing a mixture of coirpith and vermiculite. This study showed that biological wastes are potential adsorbents of Cr, which could be successfully used to reduce the Cr concentrations in tannery effluent.  相似文献   

7.
Abstract

Besides several toxic heavy metals, electroplating effluents can have in solution different cations and anions, which may influence heavy metals removal by the biomass. Among them, fluorides are commonly used in the electroplating industries and thus can be found in the respective wastewaters. In the present work, the effect of the presence of fluorides in the efficiency of chromium(III), copper(II) and nickel(II) removal, from an effluent, by heat-inactivated cells of a brewing flocculent strain of Saccharomyces cerevisiae was evaluated. The presence of fluorides severely decreased (>60%) the removal of chromium(III) by yeast biomass. This effect impaired the effective treatment of the effluent according to the US Environmental Protection Agency and the Portuguese law; conversely, a higher removal of copper(II) and nickel(II) was observed. This behaviour can be understood by metal speciation. In the presence of fluorides, chromium(III) was mainly complexed, becoming unavailable for yeast accumulation; this effect decreased the efficiency of chromium(III) removal. Thus, in the presence of fluorides, less chromium(III) is associated with biomass and consequently more yeast binding sites remain available for the uptake of other metals present in solution. This fact explains the increase of copper(II) and nickel(II) removal in the presence of fluorides.  相似文献   

8.
Aerobic granular sludge: recent advances   总被引:27,自引:1,他引:26  
Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest of researchers engaging in work in the area of biological wastewater treatment. Developed about one decade ago, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, bioremediation of toxic aromatic pollutants including phenol, toluene, pyridine and textile dyes, removal of nitrogen, phosphate, sulphate and nuclear waste and adsorption of heavy metals. Despite this intensive research the mechanisms responsible for aerobic granulation and the strategy to expedite the formation of granular sludge, and effects of different operational and environmental factors have not yet been clearly described. This paper provides an up-to-date review on recent research development in aerobic biogranulation technology and applications in treating toxic industrial and municipal wastewaters. Factors affecting granulation, granule characterization, granulation hypotheses, effects of different operational parameters on aerobic granulation, response of aerobic granules to different environmental conditions, their applications in bioremediations, and possible future trends were delineated. The review attempts to shed light on the fundamental understanding in aerobic granulation by newly employed confocal laser scanning microscopic techniques and microscopic observations of granules.  相似文献   

9.
Biosorption is the process of removal of any chemical molecules by the treatment of biological material. Industrialization resulted in the discharge of various toxic heavy metals into water bodies, which poses serious health hazards to humans and animals. In the present study, live Spirulina platensis was used as a biosorbent for the removal of the heavy metals chromium (Cr(VI)) and lead (Pb(II)) from the aqueous samples. S. platensis were cultured in the presence of different concentrations of heavy metals. The growth of the algal cells was found to be decreased by 59% and 36% in media containing 50 ppm Cr(VI) and Pb(II), respectively. To assess the biosorption of heavy metals, at different time intervals, the spent culture media were used to detect Cr(VI) by atomic absorption spectroscopy method and Pb(II) by 4-(2-pyridylazo)resorcinol indicator method. Results suggested that there was a significant uptake of Cr(VI) and Pb(II) from the medium by S. platensis, with corresponding decrease of metals in the medium. When metal salt solutions or industrial effluent samples were passed through the column containing immobilized live S. platensis in calcium alginate beads, the concentration of Cr(VI) was found to be reduced drastically. The present study indicates the application of S. platensis for the bioremediation of heavy metals from the samples obtained from industrial effluents.  相似文献   

10.
The use of inexpensive biosorbents to sequester heavy metals from aqueous solutions, is one of the most promising technologies being developed to remove these toxic contaminants from wastewaters. Considering this challenge, the viability of Cr(III) and Pb(II) removal from aqueous solutions using a flocculating brewer's yeast residual biomass from a Portuguese brewing industry was studied. The influence of physicochemical factors such as medium pH, biomass concentration and the presence of a co-ion was characterised. Metal uptake kinetics and equilibrium were also analysed, considering different incubation temperatures. For both metals, uptake increased with medium pH, being maximal at 5.0. Optimal biomass concentration for the biosorption process was determined to be 4.5?g dry weight/l. In chromium and lead mixture solutions, competition for yeast binding sites was observed between the two metals, this competition being pH dependent. Yeast biomass showed higher selectivity and uptake capacity to lead. Chromium uptake kinetic was characterised as having a rapid initial step, followed by a slower one. Langmuir model describes well chromium uptake equilibrium. Lead uptake kinetics suggested the presence of mechanisms other than biosorption, possibly including its precipitation.  相似文献   

11.
Tamarind fruit shell (TFS) was converted to a cation exchanger (PGTFS-SP-COOH) having a carboxylate functional group at the chain end by grafting poly(hydroxyethylmethacrylate) onto TFS (a lignocellulosic residue) using potassium peroxydisulfate-sodium thiosulfate redox initiator, and in the presence of N, N ′-methylenebisacrylamide as a cross-linking agent, followed by functionalization. The chemical modification was investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and potentiometric titrations. The feasibility of PGTFS-SP-COOH for the removal of heavy metals such as U(VI), Cu(II), Zn(II), and Co(II) ions from aqueous solutions was investigated by batch process. The optimum pH range for the removal of meal ions was found to be 6.0. For all the metal ions, equilibrium was attained within 2 h. The kinetic and isotherm data, obtained at optimum pH value 6.0, could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. The Sips maximum adsorption capacity for U(VI), Cu(II), Zn(II), and Co(II) ions at 30°C was found to be 100.79, 65.69, 65.97, and 58. 81 mg/g, respectively. Increase of ionic strength decreased the metal ion adsorption. Different wastewater samples were treated with PGTFS-SP-COOH to demonstrate its efficiency in removing metal ions from wastewater. The adsorbed metal ions on PGTFS-SP-COOH can be recovered by treating with 1.0 M NaCl + 0.5 M HCl for U(VI) ions and 0.2 M HCl for Cu(II), Co(II), and Zn(II) ions. Four adsorption/desorption cycles were performed without significant decrease in removal capacity. The results showed that PGTFS-SP-COOH developed in this study exhibited considerable adsorption potential for the removal of U(VI), Cu(II), Zn(II), and Co(II) ions from water and wastewaters.  相似文献   

12.
Apricot stones were carbonised and activated after treatment with sulphuric acid (1:1) at 200 degrees C for 24 h. The ability of the activated carbon to remove Ni(II), Co(II), Cd(II), Cu(II), Pb(II), Cr(III) and Cr(VI) ions from aqueous solutions by adsorption was investigated. Batch adsorption experiments were conducted to observe the effect of pH (1-6) on the activated carbon. The adsorptions of these metals were found to be dependent on solution pH. Highest adsorption occurred at 1-2 for Cr(VI) and 3-6 for the rest of the metal ions, respectively. Adsorption capacities for the metal ions were obtained in the descending order of Cr(VI) > Cd(II) > Co(II) > Cr(III) > Ni(II) > Cu(II) > Pb(II) for the activated carbon prepared from apricot stone (ASAC).  相似文献   

13.
Vertical-flow constructed wetland (VFCW) is an effective alternative for removal of nutrients, heavy metals, and organic pollutants from wastewaters. This study investigated the uptake and removal of total phosphorus (TP) by Cyperus alternifolius from domestic wastewaters in the simulated VFCWs, The total of eight simulated VFCW treatments, including two different substrates, two different wet-to-dry ratios, and with and without C. alternifolius species (2 x 2 x 2 = 8), were utilized for an operation period of two years in this study. Results show that about 1.1 to 1.4 times more TP was removed from the influent with the presence of C. alternifolius as compared to without this plant species. A linear correlation existed between the aboveground biomass and its TP content. An increase in total biomass by 1000 g would result in an increase in TP accumulation in the aboveground biomass by 4.9 g. Large amounts of TP were removed by the substrate adsorption as compared to those by the aboveground biomass. Results suggest that, although substrate adsorption played a major role in TP removal, C. alternifolius uptake was an alternative pathway for further removal of TP from wastewaters in the VFCWs.  相似文献   

14.
A comprehensive understanding of the uptake, tolerance, and transport of heavy metals by plants will be essential for the development of phytoremediation technologies. In the present paper, we investigated accumulation, tissue and intracellular localization, and toxic effects of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in three aquatic macrophytes (the angiosperms Lemna minor and Elodea canadensis, and the moss Leptodictyum riparium). We also tested and compared their capacity to absorb heavy metal from water under laboratory conditions. Our data showed that all the three species examined could be considered good bioaccumulators for the heavy metals tested. L. riparium was the most resistant species and the most effective in accumulating Cu, Zn, and Pb, whereas L. minor was the most effective in accumulating Cd. Cd was the most toxic metal, followed by Pb, Cu, and Zn. At the ultrastructural level, sublethal concentrations of the heavy metals tested caused induced cell plasmolysis and alterations of the chloroplast arrangement. Heavy metal removal experiments revealed that the three macrophytes showed excellent performance in removing the selected metals from the solutions in which they are maintained, thus suggesting that they could be considered good candidates for wastewaters remediation purpose.  相似文献   

15.
Biosorption of heavy metals from aqueous solutions with tobacco dust   总被引:9,自引:0,他引:9  
Qi BC  Aldrich C 《Bioresource technology》2008,99(13):5595-5601
A typical lignocellulosic agricultural residue, namely tobacco dust, was investigated for its heavy metal binding efficiency. The tobacco dust exhibited a strong capacity for heavy metals, such as Pb(II), Cu(II), Cd(II), Zn(II) and Ni(II), with respective equilibrium loadings of 39.6, 36.0, 29.6, 25.1 and 24.5 mg of metal per g of sorbent. Moreover, the heavy metals loaded onto the biosorbent could be released easily with a dilute HCl solution. Zeta potential and surface acidity measurements showed that the tobacco dust was negatively charged over a wide pH range (pH > 2), with a strong surface acidity and a high OH adsorption capacity. Changes in the surface morphology of the tobacco dust as visualized by atomic force microscopy suggested that the sorption of heavy metal ions on the tobacco could be associated with changes in the surface properties of the dust particles. These surface changes appeared to have resulted from a loss of some of the structures on the surface of the particles, owing to leaching in the acid metal ion solution. However, Fourier transform infrared spectroscopy (FTIR) showed no substantial change in the chemical structure of the tobacco dust subjected to biosorption. The heavy metal uptake by the tobacco dust may be interpreted as metal–H ion exchange or metal ion surface complexation adsorption or both.  相似文献   

16.
The removal of Cu(II) from aqueous solutions by Ulothrix zonata   总被引:3,自引:0,他引:3  
In this work, adsorption of copper(II) ions on alga has been studied by using batch adsorption techniques. The equilibrium biosorption level was determined as a function of contact time at several initial metal ion concentrations. The effect of adsorbent concentration on the amount adsorbed was also investigated. The experimental adsorption data were fitted to the Langmuir adsorption model. The free energy change (deltaG0) for the adsorption process was found to be -12.60 kJ/mol. The results indicated that the biomass of Ulothrix zonata is a suitable biosorbent for both the removal and recovery of heavy metals from wastewater.  相似文献   

17.
《Process Biochemistry》2007,42(10):1371-1377
By combining two functions of alginate gel and activated carbon, an activated carbon-containing alginate bead (AC-AB) adsorbent was developed and successfully used to simultaneously remove heavy metal ions and toxic organics. Quantitative analysis showed that almost all of the adsorption of toxic organics, such as p-toluic acid, is caused by the activated carbon in the AC-AB adsorbent, whereas the alginate component has a major role in the removal of heavy metals. A 50-L solution containing eight heavy metals (Pb2+, Mn2+, Cd2+, Cu2+, Zn2+, Fe2+, Al3+ and Hg2+) and four mineral ions was run continuously through a filter cartridge packed with 160 g of the AC-AB adsorbent. The adsorbent showed a high capacity to remove heavy metals completely from the water, while allowing essential minerals, such as K+, Na+, Mg2+ and Ca2+, to pass through the filter. The adsorbent could be regenerated using eluents, such as HNO3, and reused repeatedly without considerable loss of its metal uptake capacity through 10 subsequent cycles of adsorption and desorption. With its high capacity and high selectivity for toxic heavy metals, the AC-AB adsorbent has enormous potential for application in drinking water treatment technologies.  相似文献   

18.
19.
In this work, the brown alga Fucus serratus (FS) used as a low cost sorbent has been studied for the biosorption of copper(II) ions in batch reactors. Firstly, the characterization of the surface functional groups was performed with two methods: a qualitatively analysis with the study of FT-IR spectrum and a quantitatively determination with potentiometric titrations. From this latter, a total proton exchange capacity of 3.15 mmolg(-1) was extrapolated from the FS previously protonated. This value was similar to the total acidity of 3.56 mmolg(-1) deduced from the Gran method. Using the single extrapolation method, three kinds of acidic functional groups with three intrinsic pK(a) were determined at 3.5, 8.2 and 9.6. The point of zero net proton charge (PZNPC) was found close to pH 6.3. Secondly, the biosorption of copper ions was studied. The equilibrium time was about 350 min and the adsorption equilibrium data were well described by the Langmuir's equation. The maximum adsorption capacity has been extrapolated to 1.60 mmolg(-1). The release of calcium and magnesium ions was also measured in relation to the copper biosorption. Finally, the efficiency of this biosorbent in natural tap water for the removal of copper was also investigated. All these observations indicate that the copper biosorption on FS is mainly based on ion exchange mechanism and this biomass could be then a suitable sorbent for the removal of heavy metals from wastewaters.  相似文献   

20.
【背景】目前,微生物所产胞外多糖(exopolysaccharide,EPS)的理化性质及其在重金属吸附中的应用受到了广泛关注。【目的】研究红球菌HX-2所产胞外多糖的理化性质,并探究其对重金属的吸附情况。【方法】使用离子交换和凝胶色谱分离法对胞外多糖粗品进行纯化;利用苯酚硫酸法测胞外多糖中糖含量;用Bradford试剂盒检测胞外多糖中蛋白含量;使用甲醇萃取法检测胞外多糖中脂质含量;用高效液相色谱(high performance liquid chromatography,HPLC)法分析胞外多糖中单糖组成;用扫描电镜(scanningelectronmicroscopy,SEM)法观察多糖表面形态;通过等温吸附模型和动力学模型探究胞外多糖对重金属的吸附效果。【结果】测得胞外多糖主要成分EPS-G-1中总糖含量为78.43%,蛋白含量为8.31%,脂质含量为8.22%;纯化后胞外多糖中单糖组成为葡萄糖、甘露糖、半乳糖、葡萄糖醛酸和岩藻糖,质量比为27.31:26.67:24.83:15.85:4.80;通过等温吸附模型拟合得到HX-2所产胞外多糖对Cu~(2+)的最大吸附量为144.93 mg/g。【结论】红球菌HX-2所产胞外多糖对水体中Cu~(2+)具有良好的吸附作用,可用于工业废水中重金属离子的处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号