首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the potential role of PAF-acether in the pathogenesis of endotoxin shock, we examined the preventive and curative effects of BN 52021, a new PAF-acether antagonist in guinea-pig challenged with S. Typhimurium endotoxin. A biphasic reduction of mean arterial pressure was elicited by i.v. endotoxin (300 micrograms/kg) in control animals, with a rapid drop of blood pressure (maximal decrease within 10 min), partial recovery at 20 min and a second gradual decrease after 30 min. Treatment with BN 52021 injected 15 min prior to endotoxin reduced the initial rapid drop of blood pressure from 38.5 +/- 5 mmHg in vehicle-treated controls (n = 15) to 17 +/- 3 mmHg (p less than 0.01) in animals treated with 1 mg/kg BN 52021(n = 10) and to 9.5 +/- 8 mmHg (p less than 0.01) in guinea-pigs treated with 6 mg/kg BN 52021 (n = 5). The early hypotensive phase was associated with severe thrombocytopenia-leukopenia; only the thrombocytopenia was reduced by BN 52021. The prolonged secondary phase of hypotension was reduced by BN 52021 pretreatment whereas a small increase of hematocrit persisted. The two phases of the arterial pressure profile during endotoxic shock were not observed in animals previously made thrombopenic by rabbit and anti-platelet serum and only the late hypotensive phase persisted. This late hypotension induced by endotoxin in thrombopenic animals was suppressed by BN 52021 pretreatment suggesting that BN 52021 may act via a platelet-independent mechanism. The intravenous injection of BN 52021 during the prolonged secondary phase of shock was followed by an immediate increase of the depressed blood pressure. This increase of blood pressure was dose-dependent, maximum at 6 mg/kg BN 52021, and observed in normal and thrombopenic animals. The interference of BN 52021 with endotoxin shock may be related to its PAF-acether antagonist properties and suggests that PAF-acether is an important participant in endotoxic shock.  相似文献   

2.
Previous studies have suggested that NMA or similar inhibitors of nitric oxide synthesis from L-arginine reverses or prevents the hypotension associated with endotoxin administration. We wanted to determine if vascular and cardiac responses to NMA support the idea that inhibitors of nitric oxide synthesis might be useful in the treatment of septic shock. Pentobarbital-anesthetized beagle dogs were administered endotoxin for 2 hours at a dose of 250 ng/kg/min. This resulted in reductions in systemic vascular resistance (34% decrease) and mean arterial pressure (25% decrease). Administration of NMA (30 mg/kg, IV) caused large and sustained increases in mean arterial pressure and systemic vascular resistance, and a large decrease in cardiac output and femoral arterial blood flow. Although NMA restored arterial pressure, the large and sustained fall in cardiac output suggests that the cardiovascular action of NMA is detrimental to dogs treated with endotoxin.  相似文献   

3.
Respiratory muscle blood flow and organ blood flow during endotoxic shock were studied in spontaneously breathing dogs (SB, n = 6) and mechanically ventilated dogs (MV, n = 5) with radiolabeled microspheres. Shock was produced by a 5-min intravenous injection of Escherichia coli endotoxin (0.55:B5, Difco, 10 mg/kg) suspended in saline. Mean arterial blood pressure and cardiac output in the SB group dropped to 59 and 45% of control values, respectively. There was a similar reduction in arterial blood pressure and cardiac output in the MV group. Total respiratory muscle blood flow in the SB group increased significantly from the control value of 51 +/- 4 ml/min (mean +/- SE) to 101 +/- 22 ml/min at 60 min of shock. In the MV group, respiratory muscle perfusion fell from control values of 43 +/- 12 ml/min to 25 +/- 3 ml/min at 60 min of shock. In the SB group, 8.8% of the cardiac output was received by the respiratory muscle during shock in comparison with 1.9% in the MV group. In both groups of dogs, blood flow to most organs was compromised during shock; however, blood flow to the brain, gut, and skeletal muscles was higher in the MV group than in the SB group. Thus by mechanical ventilation a fraction of the cardiac output used by the working respiratory muscles can be made available for perfusion of other organs during endotoxic shock.  相似文献   

4.
We examined the importance of timing with endorphin involvement in shock by giving the opiate receptor antagonist naloxone as a pretreatment in canine endotoxic shock. Dogs anesthetized with pentobarbital (30 mg/kg iv) were given Escherichia coli endotoxin at LD80 doses iv. Naloxone (2 mg/kg plus 2 mg/kg/hr iv, N = 10) started 15 min before endotoxin attenuated the fall in mean arterial pressure, cardiac index, and the first derivative of left ventricular pressure due to endotoxin in comparison with control animals given 0.9% NaCl (N = 10). Naloxone attenuated the endotoxin-induced decrease in superior mesenteric arterial blood flow and the increases in portal venous pressure and pulmonary arterial pressures. Moreover, naloxone pretreatment prevented the characteristic bloody diarrhea and reduced mortality. Our findings implicate endorphins acting on opiate receptors as important mediators of endotoxin-induced cardiovascular failure and bloody diarrhea in canine endotoxemia. These are early manifestations and dictate expeditious use of naloxone in endotoxic shock.  相似文献   

5.
Nuclear factor-kappaB (NF-kappaB) plays a key role in regulating expression of several genes involved in the pathophysiology of endotoxic shock. We investigated whether in vivo introduction of synthetic double-stranded DNA with high affinity for the NF-kappaB binding site could block expression of genes mediating pulmonary vascular permeation and thereby provide effective therapy for septic lung failure. Endotoxic shock was induced by an intravenous injection of 10 mg/kg Escherichia coli endotoxin in mice. We introduced NF-kappaB decoy oligodeoxynucleotide (ODN) in vivo 1 h after endotoxic shock by using a gene transfer kit. At 10 h, blood samples were collected for measurement of histamine and for blood-gas analysis. Gene and protein expression levels of target molecules were determined by means of Northern and Western blot analyses, respectively. The transpulmonary flux of (125)I-labeled albumin was used as an index of lung vascular permeability. Administration of endotoxin caused marked increases in plasma histamine and gene and protein expressions of histidine decarboxylase, histamine H(1) receptors, and inducible nitric oxide synthase in lung tissues. Elevated lung vascular permeability was also found. Blood-gas analysis showed concurrent decreases in arterial Po(2), Pco(2), and pH. All of these events induced by endotoxin were significantly inhibited by transfection of NF-kappaB decoy ODN but not by its mutated (scrambled) form (used as a control). Our results indicate for the first time the potential usefulness of NF-kappaB decoy ODN for gene therapy of endotoxic shock.  相似文献   

6.
Pulmonary hemodynamics and lung water content were evaluated in open-chest dogs during splanchnic arterial occlusion (SAO) shock. Mean pulmonary arterial pressure [Ppa = 13.0 +/- 0.6 (SE) mmHg] and pulmonary venous pressure (4.1 +/- 0.2 mmHg) were measured by direct cannulation and the capillary pressure (Ppc = 9.0 +/- 0.6 mmHg) estimated by the double-occlusion technique. SAO shock did not produce a significant change in Ppa or Ppc despite a 90% decrease in cardiac output. An 18-fold increase in pulmonary vascular resistance occurred, and most of this increase (70%) was on the venous side of the circulation. No differences in lung water content between shocked and sham-operated dogs were observed. The effect of SAO shock was further evaluated in the isolated canine left lower lobe (LLL) perfused at constant flow and outflow pressure. The addition of venous blood from shock dogs to the LLL perfusion circuit caused a transient (10-15 min) increase in LLL arterial pressure (51%) that could be reversed rapidly with papaverine. In this preparation, shock blood produced either a predominantly arterioconstriction or a predominantly venoconstriction. These results indicate that both arterial and venous vasoactive agents are released during SAO shock. The consistently observed venoconstriction in the intact shocked lung suggests that other factors, in addition to circulating vasoactive agents, contribute to the pulmonary hemodynamic response of the open-chest shocked dog.  相似文献   

7.
Thromboxane A2 is considered to be partially responsible for the increase in pulmonary vascular resistance observed after endotoxin administration and to participate in proinflammatory reactions. The effects of a novel dual TXA2 synthase inhibitor and TXA2 receptor antagonist (BM-573) on pulmonary hemodynamics were investigated in endotoxic shock. 30 mins before the start of a 0.5 mg/kg endotoxin infusion, 6 pigs (Endo group) received a placebo infusion and 6 other pigs (Anta group) received a BM-573 infusion. In Endo group, pulmonary artery pressure increased from 25 +/- 1.8 (T0) to 42 +/- 2.3 mmHg (T60) (p < 0.05) after endotoxin infusion while, in Anta group, it increased from 23 +/- 1.6 (T0) to 25 +/- 1.5 mmHg (T60). This difference is due to a reduction in pulmonary vascular resistance in Anta group while pulmonary arterial compliance changes in Endo group remained comparable with the evolution in Anta group. In Endo group, PaO2 decreased from 131 +/- 21 (T0) to 74 +/- 12 mmHg (T300) (p < 0.05), while in Anta group, PaO2 was 241 +/- 31 mmHg at the end of the experimental period (T300). These results demonstrate that TXA2 plays a major role in pulmonary vascular changes during endotoxin insult. Concomitant inhibition of TXA2 synthesis and of TXA2 receptors by BM-573 inhibited the pulmonary vasopressive response during the early phase of endotoxin shock as well as the deterioration in arterial oxygenation.  相似文献   

8.
Septic shock is characterized by an increase in cardiac output and a fall in systemic vascular resistance index and mean arterial pressure. Endotoxin alters the smooth muscle function of blood vessels, probably by means of an increased production of the potent vasodilator nitric oxide (NO). The present study was accomplished to determine how the inhibition of NO synthesis influences cardiovascular performance in an ovine model of hyperdynamic endotoxemia. Endotoxemia was induced in five range ewes (41 +/- 2 kg) by continuous infusion of Escherichia coli endotoxin (LPS, 10 ng.kg-1.min-1) over the entire study period. After 24 h of LPS infusion, cardiac output increased from 5.2 +/- 0.3 to 7.9 +/- 0.6 (SE) 1/min (P less than 0.05) and mean arterial pressure and systemic vascular resistance index fell from 92 +/- 5 to 79 +/- 6 mmHg (P = 0.08) and from 1,473 +/- 173 to 824 +/- 108 dyn.s.cm-5.m2 (P less than 0.05), respectively. The pulmonary shunt fraction increased from 0.23 +/- 0.03 to 0.32 +/- 0.03 (P less than 0.05). The intravenous administration of the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (25 mg/kg) 24 h after the start of the LPS infusion changed these values to approximately baseline levels over the subsequent 4 h. Although N omega-nitro-L-arginine methyl ester increased pulmonary arterial pressure and pulmonary vascular resistance (P less than 0.05), right and left ventricular stroke volume index showed no significant changes. It is concluded that NO has a major function in cardiovascular performance in endotoxemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N(G)-monomethyl-L-arginine (L-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after L-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05-0.15 Hz) and high-frequency (HF; 0.15-0.35 Hz) ranges. L-NMMA infusion increased supine BP (systolic, 109 +/- 4 vs. 122 +/- 3 mmHg, P = 0.03; diastolic, 68 +/- 2 vs. 78 +/- 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Before L-NMMA, HUT decreased HF R-R variability (P = 0.03), decreased transfer function gain (LF, 12 +/- 2 vs. 5 +/- 1 ms/mmHg, P = 0.007; HF, 18 +/- 3 vs. 3 +/- 1 ms/mmHg, P = 0.002), and increased LF BP variability (P < 0.0001). After L-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without L-NMMA. Increased supine BP after L-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.  相似文献   

10.
The effect of phentolamine, an alpha-adrenergic blocker, on hepatic oxygen supply, plasma glucose, and lactate, and survival in fasted male rats administered Echerichia coli endotoxin (25 mg/kg, ip) has been studied. Survival at 24 h was 8% in untreated endotoxic rats, 83% in rats receiving phentolamine (5 mg/kg, ip) and endotoxin, and 100% in phentolamine controls. Measurements during the initial 8 h postendotoxin recorded transiently lower systemic arterial pressure in the phentolamine-endotoxic rats. Arterial PO2 and increases of pH and heart rate were similar in both endotoxic groups. Lactacidemia, present by 4 h in untreated endotoxic rats, did not develop in the phentolamine group and plasma glucose was significantly higher at 8 h (98 +/- 2.5 vs. 77 +/- 5.6 mg%, mean +/- SE). Mean hepatic PO2 at 6 h in phentolamine-endotoxic rats was 9.6 mmHg with 28% of the values below 5 mmHg. By contrast, the mean in untreated endotoxic rats was 1.9 mmHg with 88% of values below 5 mmHg. Phentolamine controls were stable over 8 h; mean hepatic PO2 was 17.7 mmHg. The differences in plasma glucose and lactate suggest protection of hepatic metabolism in phentolamine-treated endotoxic rats by prevention of excessive hepatic hypoxia.  相似文献   

11.
Intracellular calcium is an important mediator for regulating the cellular response in endotoxemia. In this study, we investigated the effects of dantrolene and nifedipine, two agents of reducing intracellular calcium levels, on bacterial endotoxin (lipopolysaccharide, LPS; 10 mg/kg i.v.)-induced production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) as well as hemodynamic changes in the anesthetized rat. Injection of LPS (i) induced biphasic changes of blood glucose and rectal temperature: an initial increased phase (<180 min after injection of LPS) followed by a decreased phase (at 240 or 360 min), (ii) caused a significant fall in mean arterial blood pressure from 119+/-3 mmHg (at time 0) to 73+/-67 mmHg (at 360 min) with a concomitant increase of heart rate, (iii) resulted in a substantial hyporeactivity to norepinephrine (NE) (1 microg/kg i.v.), (iv) increased plasma nitrate (an indicator of NO formation) in a time-dependent manner, and (v) induced bell-shape changes in plasma TNF-alpha levels which reached a peak at 60 min. Pretreatment of animals with dantrolene (1 mg/kg i.v. at 20 min prior to LPS) or nifedipine (20 microg/kg i.v. infusion for 20 min at 20 min prior to LPS) not only attenuated the delayed circulatory failure (e.g. delayed hypotension and vascular hyporeactivity to NE), but also prevented the overproduction of NO caused by LPS in the rat. However, the prevention of NO overproduction by dantrolene, but not by nifedipine, was associated with an inhibition of TNF-alpha production elicited by LPS. Thus, both dantrolene and nifedipine have beneficial hemodynamic effects, although through different mechanisms, in animals with endotoxic shock.  相似文献   

12.
To study the effect of low-grade continuous endotoxemia in normal and cirrhotic dogs, osmotic minipumps were filled with Escherichia coli endotoxin, implanted subcutaneously and arranged so that the endotoxin could be infused intravenously over a 7-day period in doses ranging from 2.5 to 100 micrograms/h. Observations were made at 3 and 7 days postinfusion. In normal dogs (N = 9), there was no effect on cardiac output or arterial pressure when doses as high as 50 micrograms/h were delivered into the circulation. Neither was there an effect on inulin or p-aminohippurate (PAH) clearances. At doses of 100 micrograms/h, dogs suffered a marked decrement in cardiac output, blood pressure, and renal perfusion and became lethargic at 3-7 days. In cirrhotic dogs, doses of 25 micrograms/h which had no effect in the control dogs, caused a significant decline in the glomerular filtration rate (59-21.5 mL/min) and CPAH (147-66 mL/min) at a time when cardiac output and blood pressure remained normal. At doses of 50 micrograms/h, cardiac output and blood pressure declined markedly and the dogs deteriorated quickly following 3-5 days of endotoxin. When endotoxin (25 micrograms/h) was given to dogs with acute biliary obstruction (serum bilirubin = 9.8 +/- 0.1 mg/dL) or to dogs with chronic thoracic caval constriction (which produced portal hypertension and ascites), no effect was observed on either central hemodynamics or renal perfusion. The selective renal vasoconstrictor effect observed in cirrhotic dogs could not be abolished by intravenous phentolamine or propranolol, inhibitors of alpha- and beta-adrenergic activity, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Diaphragmatic function was investigated in mechanically ventilated rats during endotoxic shock (group E, n = 18) and after saline solution injection (group C, n = 8). Endotoxic shock was produced by a 1-min injection of Escherichia coli endotoxin (10 mg/kg iv) suspended in saline. Diaphragmatic strength was assessed before (T0) and 15 (T15) and 60 (T60) min after injection by measuring transdiaphragmatic pressure (Pdi) generated during bilateral phrenic stimulation at 0.5, 10, 20, 30, 50, and 100 Hz. Diaphragmatic neuromuscular transmission was assessed by measuring the integrated electrical activity of the diaphragm. Diaphragmatic endurance was assessed 75 min after injection from the rate of Pdi decline after a 30-s continuous 10-Hz phrenic stimulation. In 16 additional animals, diaphragmatic glycogen content was determined 60 min after inoculation with endotoxin (n = 8) or 0.9% sodium chloride solution (n = 8). Diaphragmatic resting membrane potential (Em) was measured in 16 additional animals 60 min after endotoxin (n = 8) or saline injection (n = 8). Mean blood pressure decreased from 74 +/- 3 to 53 +/- 6 mmHg at T60 in group E, whereas it was maintained in group C. At T60 Pdi was decreased in group E for frequencies of 50 and 100 Hz and was associated with a decreased diaphragmatic electromyographic activity of 25.3 +/- 2.5 and 26.5 +/- 5.2% for 50- and 100-Hz stimulations, respectively, in comparison with T0 values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Endotoxin-endothelium interactions in "low-perfusion state" research.   总被引:1,自引:0,他引:1  
LPS/endotoxin provokes a plethora of pathological events some of which may be considered as examples of "low perfusion state". These are discussed here. It is well known that hypotension and refractoriness to vasocostrictors are the hallmark of endotoxic shock. Nevertheless, there are some vascular beds, such as mesenteric circulation, that respond with vasoconstriction - not vasodilation to endotoxin. Aminoguanidine, an inhibitor of NOS-2, blocks endotoxin- induced increase of resistance in mesenteric bed and endotoxin-induced translocation of bacteria through the gut wall. It is postulatede that endotoxin has antiarrythmogenic action due to the release of nitric oxide and increase in intracellular cGMP levels. Although we demonstrate that endotoxin increases nitric oxide formation in spleen and liver, its contribution to the injury of these organs by endotoxin is not fully established. In addition, we present our immunochemistry data on nitrotyrosine formation in the liver and spleen of endotoxin-treated animals.  相似文献   

15.
Endotoxin shock was induced in 31 anaesthetized pigs by infusion of 5 mug/kg of Escbeicbia coli endotoxin (LPS) over 60 min into the superior mesenteric artery. Fifteen of these pigs died within 30 min of the start of LPS infusion whereas the remaining 16 survived the experimental period of 2 h. In a group of nine pigs indomethacin (2 mg/kg, i.v.)was inected 20-25 rain after the start of LPS infusion at which time mean arterial blood pressure (MABP) had decreased below 40 mmHg indicating imminent death. Indomethacin immediately reversed the hypotension. In another group of five pigs, N(G)-nitro L-arginine-methyl ester (L-NAME, 1 and 3 mg/kg)was iniected 10 and 5 min, respectively, before the expected death without any beneficial effect on the hypotension. Three rain after the last dose of L-NAME, indomethacin (2 mg/kg, i.v.) was iniected. In three animals the hypotension was reserved by indomethacin, although this beneficial effect was delayed in comparison with the LP-Streated group not receiving L-NAME. Four pigs were pretreated with L-NAME, 3 mg/kg, i.v., 10 min prior to LPS infusion. All pretreated animals tended to die within 30 min of the start of the LPS infusion. Five rain before the expected death (20-25 rain after the start of LPS infusion) indomethacin (2 mg/kg) was inected. In three of these animals indomethacin reversed hypotenston and prevented death. Interestingly, this rise in the MABP developed very slowly. These results suggest that the beneficial effect of indomethacin in endotoxin shock might be related partially to interference with nitric oxide, which is not the only factor determining blood pressure levels during endotoxic shock.  相似文献   

16.
Respiratory muscle fatigue: a cause of ventilatory failure in septic shock   总被引:3,自引:0,他引:3  
The effect of endotoxic shock on the respiratory muscle performance was studied in spontaneously breathing dogs given Escherichia coli endotoxin (Difco Laboratories, 10 mg/kg). Diaphragmatic (Edi) and parasternal intercostal (Eic) electromyograms were recorded using fishhook electrodes. The recorded signals were then rectified and electrically integrated. Pleural, abdominal, and transdiaphragmatic (Pdi) pressures were recorded by a balloon-catheter system. After a short control period, the endotoxin was administered slowly intravenously (within 5 min). Death was secondary to respiratory arrest in all animals. All animals died within 150-270 min after the onset of endotoxic shock. Within 45-80 min of the endotoxin administration, mean blood pressure and cardiac output dropped to 42.1 +/- 4.1 and 40.1 +/- 6.0% (mean +/- SE) of control values, respectively, with little change afterward. Mean inspiratory flow rate and Pdi increased from control values of 0.27 +/- 0.03 l X s-1 and 5.75 +/- 0.7 cmH2O to mean values of 0.44 +/- 0.3 l X s-1 and 8.70 +/- 1.05 cmH2O and then decreased to 0.17 +/- 0.03 l X s-1 and 3.90 +/- 0.30 cmH2O before the death of the animals. There were no major changes in the mechanics of the respiratory system. Edi and Eic increased progressively to mean values of 360 +/- 21 and 263 +/- 22% of control, respectively, before the death of the animals. None of the dogs were hypoxic. Arterial PCO2 decreased from a control value of 42.9 +/- 1.7 Torr to a mean value of 29.9 +/- 2.8 Torr and then increased to 51 +/- 4.3 Torr before the death of the animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Hepatic glycogen metabolism is altered by nitric oxide (NO) during endotoxic shock. Thalidomide analogs immunomodulate the endotoxin-induced cytokines which regulate the NO release. We analyzed the short-term effects of some thalidomide analogs on the hepatic glycogen store and on the plasma and hepatic NO in an acute model of endotoxic challenge in rat. An endotoxin dose selection was performed. Rats received vehicle, thalidomide or analogs orally and, two hours after last dose, they were injected with endotoxin (5 mg/kg). Animals were sacrificed 2 h after challenge. Liver glycogen was quantified by the anthrone technique. Plasma and hepatic NO was determined by Griess reagent and HPLC. Hepatic interferon-gamma, a NO co-inducer, was measured by ELISA. Endotoxin caused inverse dose-dependent effects on plasma NO and on glycogen.Thalidomide analogs showed short-term regulatory effects on glycogen, some of them increased it. Plasma NO was almost unaffected by analogs but hepatic NO was strikingly modulated. Analogs slightly up-regulated the liver interferon-gamma and two of them increased it significantly. Thalidomide analogs may be used as a pharmacological tool due to their short-term regulatory effects on glycogen and NO during endotoxic shock. Drugs that increase glycogen may improve liver injury in early sepsis.  相似文献   

18.
An acute bout of aerobic exercise results in a reduced blood pressure that lasts several hours. Animal studies suggest this response is mediated by increased production of nitric oxide. We tested the extent to which systemic nitric oxide synthase inhibition [N(G)-monomethyl-L-arginine (L-NMMA)] can reverse the drop in blood pressure that occurs after exercise in humans. Eight healthy subjects underwent parallel experiments on 2 separate days. The order of the experiments was randomized between sham (60 min of seated upright rest) and exercise (60 min of upright cycling at 60% peak aerobic capacity). After both sham and exercise, subjects received, in sequence, systemic alpha-adrenergic blockade (phentolamine) and L-NMMA. Phentolamine was given first to isolate the contribution of nitric oxide to postexercise hypotension by preventing reflex changes in sympathetic tone that result from systemic nitric oxide synthase inhibition and to control for alterations in resting sympathetic activity after exercise. During each condition, systemic and regional hemodynamics were measured. Throughout the study, arterial pressure and vascular resistances remained lower postexercise vs. postsham despite nitric oxide synthase inhibition (e.g., mean arterial pressure after L-NMMA was 108.0+/-2.4 mmHg postsham vs. 102.1+/-3.3 mmHg postexercise; P<0.05). Thus it does not appear that postexercise hypotension is dependent on increased production of nitric oxide in humans.  相似文献   

19.
We studied the effects of normovolemic hemodilution on tissue oxygen extraction capabilities in a canine model of endotoxic shock. Eighteen anesthetized and mechanically ventilated dogs underwent normovolemic hemodilution with 6% hydroxyethyl starch solution to reach hematocrit (Hct) levels around 40, 30, or 20% before the administration of 2 mg/kg of Escherichia coli endotoxin. Cardiac tamponade was then induced by repeated injections of normal saline into the pericardial sac to reduce cardiac output and study whole body oxygen extraction capabilities. Whole body critical oxygen delivery was lower in the Hct 20% and 30% groups (8.4 +/- 0.4 and 10.4 +/- 0.7 ml. kg(-1). min(-1), respectively) than in the Hct 40% group (12.8 +/- 0.8 ml. kg(-1). min(-1)) (both P < 0.005). The whole body critical oxygen extraction ratio was higher in the Hct 30% and 20% groups (49.1 +/- 8.2 and 55.2 +/- 4.6%, respectively) than in the Hct 40% group (37.1 +/- 4.4 %) (both P < 0.05). Liver critical oxygen extraction ratio was also higher in the Hct 30% and 20% groups than in the Hct 40% group. The arterial lactate concentrations and the gradient between ileum mucosal PCO(2) and arterial PCO(2) were lower in the Hct 20% and 30% groups than in the Hct 40% group. We conclude that, during an acute reduction in blood flow during endotoxic shock in dogs, normovolemic hemodilution is associated with improved tissue perfusion and increased oxygen extraction capabilities.  相似文献   

20.
诱导型一氧化氮合酶对内毒素休克小肠微循环的影响   总被引:3,自引:0,他引:3  
Shi EY  Jiang XJ  Bai H  Gu TX  Yoshiki N 《生理学报》2005,57(1):39-44
采用静脉注射脂多糖(1ipopolysaccharide,LPS)的方法建立小鼠内毒素休克模型,探讨内毒素休克时小肠微循环的变化以及诱导型一氧化氮合酶(iNOS)对小肠微循环的影响。实验过程中连续监测小鼠平均动脉血压(mean afterial pressure,MAP)变化情况。利用FTTC标记红细胞和活体显微镜方法直接观察并计算小鼠小肠绒毛尖端小动脉和毛细血管内红细胞的流速和流量,并观察敲除小鼠iNOS基因和选择性iNOS抑制剂S-methylthiourea sulfate(SMT)对实验过程中小肠微循环的影响。结果显示,对于野生型小鼠,应用SMT处理和敲除iNOS基因对基线的MAP、小肠绒毛尖端小动脉和毛细血管的红细胞流速和流量没有显著性差别。给予LPS后,小鼠的MAP进行性下降。给予LPS前,应用SMT和敲除小鼠iNOS基因可以显著提高MAP:给予LPS后,小鼠小肠绒毛尖端小动脉和毛细血管内红细胞流速和流量显著下降。给予LPS前,应用SMT和敲除小鼠iNOS基因可以显著提高小肠绒毛尖端小动脉和毛细血管的红细胞流速和流量。结果表明,iNOS在内毒素休克小肠微循环衰竭的过程中发挥重要作用。一能性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号