首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Flavodoxins in combination with the flavin mononucleotide (FMN) cofactor play important roles for electron transport in prokaryotes. Here, novel insights into the FMN‐binding mechanism to flavodoxins‐4 were obtained from the NMR structures of the apo‐protein from Lactobacillus acidophilus (YP_193882.1) and comparison of its complex with FMN. Extensive reversible conformational changes were observed upon FMN binding and release. The NMR structure of the FMN complex is in agreement with the crystal structure (PDB ID: 3EDO ) and exhibits the characteristic flavodoxin fold, with a central five‐stranded parallel β–sheet and five α‐helices forming an α/β‐sandwich architecture. The structure differs from other flavoproteins in that helix α2 is oriented perpendicular to the β‐sheet and covers the FMN‐binding site. This helix reversibly unfolds upon removal of the FMN ligand, which represents a unique structural rearrangement among flavodoxins.  相似文献   

3.
To photomodulate the interaction of the phosphatidylinositol 3‐kinase SH3 domain with a peptide ligand, a cyclic peptide (cyclic‐1) with a photolabile side chain‐to‐side chain linker was synthesized. The conformation of cyclic‐1 differs from that of the parent linear peptide, but becomes identical by UV‐irradiation. Accordingly, the binding affinity of cyclic‐1 to the SH3 domain increased upon conversion of the cyclic to a linear flexible structure by irradiation (Kd: 3.4 ± 1.7 and 0.9 ± 0.3 mM , respectively). These results confirm the usefulness of a photocleavable peptide for photocontrol of peptide–protein interactions. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Mainly present in the mitochondria, the translocator protein, TSPO, previously known as the peripheral benzodiazepine receptor, is a small essential membrane protein, involved in the translocation of cholesterol across mitochondrial membranes, a rate determining step in steroids biosynthesis. We previously reported the structure of five fragments encompassing the five putative transmembrane helices and showed that each of these fragments constitutes an autonomous folding unit. To further characterize the structural determinants responsible for helix–helix association of this membrane protein, we now investigate the folding of double transmembrane domains in various detergent micelles. Herein, we present the successful biosynthesis of a double transmembrane domain encompassing the last two C‐terminal helices (TM4TM5). For optimal production of this domain in Escherichia coli, the evaluation of various peptide constructs, including TM4TM5 fused to different purification tags or to solubilizing proteins, was necessary. The protocol of production of TM4TM5 with more than 95% purity is reported. This domain was further characterized using circular dichroism and solution state NMR. Far‐UV circular dichroism studies indicate that the secondary structure of TM4TM5 is highly helical when solubilized in various detergent micelles including n‐dodecyl‐β‐d ‐maltoside, n‐octyl‐β‐d ‐glucoside, n‐dodecylphosphocholine, 1,2‐dihexanoyl‐sn‐glycero‐3‐phosphocholine (DHPC), and 1‐palmitoyl‐2‐hydroxy‐sn‐glycero‐3‐phospho‐(1′‐rac‐glycerol). In addition, the solubilization conditions of the domain were optimized for NMR experiments, and preliminary analysis indicates that TM4TM5 adopts a stable tertiary fold within the TM4TM5‐DHPC complex. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
6.
Detection of protein–protein interactions involved in signal transduction in live cells and organisms has a variety of important applications. We report a fluorogenic assay for G protein‐coupled receptor (GPCR)–β‐arrestin interaction that is genetically encoded, generalizes to multiple GPCRs, and features high signal‐to‐noise because fluorescence is absent until its components interact upon GPCR activation. Fluorescence after protease‐activated receptor‐1 activation developed in minutes and required specific serine–threonine residues in the receptor carboxyl tail, consistent with a classical G protein‐coupled receptor kinase dependent β‐arrestin recruitment mechanism. This assay provides a useful complement to other in vivo assays of GPCR activation.  相似文献   

7.
The Z‐molecule is a small, engineered IgG‐binding affinity protein derived from the immunoglobulin‐binding domain B of Staphylococcus aureus protein A. The Z‐domain consists of 58 amino acids forming a well‐defined antiparallel three‐helix structure. Two of the three helices are involved in ligand binding, whereas the third helix provides structural support to the three‐helix bundle. The small size and the stable three‐helix structure are two attractive properties comprised in the Z‐domain, but a further reduction in size of the protein is valuable for several reasons. Reduction in size facilitates synthetic production of any protein‐based molecule, which is beneficial from an economical viewpoint. In addition, a smaller protein is easier to manipulate through chemical modifications. By omitting the third stabilizing helix from the Z‐domain and joining the N‐ and C‐termini by a native peptide bond, the affinity protein obtains the advantageous properties of a smaller scaffold and in addition becomes resistant to exoproteases. We here demonstrate the synthesis and evaluation of a novel cyclic two‐helix Z‐domain. The molecule has retained affinity for its target protein, is resistant to heat treatment, and lacks both N‐ and C‐termini. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
A 34‐residue α/β peptide [IG(28–61)], derived from the C‐terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C‐terminal part (a 16‐residue‐long fragment) of this peptide, which corresponds to the sequence of the β‐hairpin in the native structure, forms structure similar to the β‐hairpin only at T = 313 K, and the structure is stabilized by non‐native long‐range hydrophobic interactions (Val47–Val59). On the other hand, the N‐terminal part of IG(28–61), which corresponds to the middle α‐helix in the native structure, is unstructured at low temperature (283 K) and forms an α‐helix‐like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long‐range connectivities which would have supported packing between the C‐terminal (β‐hairpin) and the N‐terminal (α‐helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726–736), based on Monte‐Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 469–480, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
Arabidopsis thaliana gene At5g06450 encodes a putative DnaQ‐like 3′‐5′ exonuclease domain‐containing protein (AtDECP). The DnaQ‐like 3′‐5′ exonuclease domain is often found as a proofreading domain of DNA polymerases. The overall structure of AtDECP adopts an RNase H fold that consists of a mixed β‐sheet flanked by α‐helices. Interestingly, AtDECP forms a homohexameric assembly with a central six fold symmetry, generating a central cavity. The ring‐shaped structure and comparison with WRN‐exo, the best structural homologue of AtDECP, suggest a possible mechanism for implementing its exonuclease activity using positively charged patch on the N‐terminal side of the homohexameric assembly. The homohexameric structure of AtDECP provides unique information about the interaction between the DnaQ‐like 3′‐5′ exonuclease and its substrate nucleic acids.Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
LDL cholesterol (LDL‐C) is cleared from plasma via cellular uptake and internalization processes that are largely mediated by the low‐density lipoprotein cholesterol receptor (LDL‐R). LDL‐R is targeted for lysosomal degradation by association with proprotein convertase subtilisin‐kexin type 9 (PCSK9). Gain of function mutations in PCSK9 can result in excessive loss of receptors and dyslipidemia. On the other hand, receptor‐sparing phenomena, including loss‐of‐function mutations or inhibition of PCSK9, can lead to enhanced clearance of plasma lipids. We hypothesize that desolvation and resolvation processes, in many cases, constitute rate‐determining steps for protein–ligand association and dissociation, respectively. To test this hypothesis, we analyzed and compared the predicted desolvation properties of wild‐type versus gain‐of‐function mutant Asp374Tyr PCSK9 using WaterMap, a new in silico method for predicting the preferred locations and thermodynamic properties of water solvating proteins (“hydration sites”). We compared these results with binding kinetics data for PCSK9, full‐length LDL‐R ectodomain, and isolated EGF‐A repeat. We propose that the fast kon and entropically driven thermodynamics observed for PCSK9‐EGF‐A binding stem from the functional replacement of water occupying stable PCSK9 hydration sites (i.e., exchange of PCSK9 H‐bonds from water to polar EGF‐A groups). We further propose that the relatively fast koff observed for EGF‐A unbinding stems from the limited displacement of solvent occupying unstable hydration sites. Conversely, the slower koff observed for EGF‐A and LDL‐R unbinding from Asp374Tyr PCSK9 stems from the destabilizing effects of this mutation on PCSK9 hydration sites, with a concomitant increase in the persistence of the bound complex. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The tetratricopeptide repeat (TPR) motif is a protein–protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self‐association. In the present work we characterize the trimeric TPR‐containing protein YbgF, which is linked to the Tol system in Gram‐negative bacteria. By subtracting previously identified TPR consensus residues required for stability of the fold from residues conserved across YbgF homologs, we identified residues involved in oligomerization of the C‐terminal YbgF TPR domain. Crafting these residues, which are located in loop regions between TPR motifs, onto the monomeric consensus TPR protein CTPR3 induced the formation of oligomers. The crystal structure of this engineered oligomer shows an asymmetric trimer where stacking interactions between the introduced tyrosines and displacement of the C‐terminal hydrophilic capping helix, present in most TPR domains, are key to oligomerization. Asymmetric trimerization of the YbgF TPR domain and CTPR3Y3 leads to the formation of higher order oligomers both in the crystal and in solution. However, such open‐ended self‐association does not occur in full‐length YbgF suggesting that the protein's N‐terminal coiled‐coil domain restricts further oligomerization. This interpretation is borne out in experiments where the coiled‐coil domain of YbgF was engineered onto the N‐terminus of CTPR3Y3 and shown to block self‐association beyond trimerization. Our study lays the foundations for understanding the structural basis for TPR domain self‐association and how such self‐association can be regulated in TPR domain‐containing proteins. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
The sensor histidine kinases of two‐component signal‐transduction systems (TCSs) are essential for bacteria to adapt to variable environmental conditions. The two‐component regulatory system BaeS/R increases multidrug and metal resistance in Salmonella and Escherichia coli. In this study, we report the X‐ray structure of the periplasmic sensor domain of BaeS from Serratia marcescens FS14. The BaeS sensor domain (34–160) adopts a mixed α/β‐fold containing a central four‐stranded antiparallel β‐sheet flanked by a long N‐terminal α‐helix and additional loops and a short C‐terminal α‐helix on each side. Structural comparisons revealed that it belongs to the PDC family with a remarkable difference in the orientation of the helix α2. In the BaeS sensor domain, this helix is situated perpendicular to the long helix α1 and holds helix α1 in the middle with the beta sheet, whereas in other PDC domains, helix α2 is parallel to helix α1. Because the helices α1 and α2 is involved in the dimeric interface, this difference implies that BaeS uses a different dimeric interface compared with other PDC domains. Proteins 2017; 85:1784–1790. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
Previous studies have demonstrated that AMP‐activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc‐51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β‐guanidinopropionic acid (β‐GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β‐GPA and aging remains elusive. In this study, we hypothesized that feeding β‐GPA to adult Drosophila produces the lifespan extension via activation of AMPK‐dependent autophagy. It was found that dietary administration of β‐GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β‐GPA treatment, indicating that autophagic activity plays a role in the effect of β‐GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β‐GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β‐GPA treatment significantly elevated the expression of phospho‐T172‐AMPK levels, while inhibition of AMPK by either AMPK‐RNAi or compound C significantly attenuated the expression of autophagy‐related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β‐GPA can induce an extension of the lifespan of Drosophila via AMPK‐Atg1‐autophagy signaling pathway.  相似文献   

15.
16.
The 173–195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ‘spots’ of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation‐prone conformations. Here, we report CD and NMR studies on the α2‐helix‐derived peptide of maximal length (hPrP[180–195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other α2‐helix‐derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C‐terminal sequence of the PrPC full‐length α2‐helix and includes the highly conserved threonine‐rich 188–195 segment. At neutral pH, its conformation is dominated by β‐type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of α‐helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173–179 segment, as occurring in wild‐type and mutant peptides corresponding to the full‐length α2‐helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180–195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full‐length α2‐helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Mimicry of structural motifs is a common feature in proteins. The 10‐membered hydrogen‐bonded ring involving the main‐chain C?O in a β‐turn can be formed using a side‐chain carbonyl group leading to Asx‐turn. We show that the N? H component of hydrogen bond can be replaced by a Cγ‐H group in the side chain, culminating in a nonconventional C? H···O interaction. Because of its shape this β‐turn mimic is designated as ω‐turn, which is found to occur ~three times per 100 residues. Three residues (i to i + 2) constitute the turn with the C? H···O interaction occurring between the terminal residues, constraining the torsion angles ?i + 1, ψi + 1, ?i + 2 and χ1(i + 2) (using the interacting Cγ atom). Based on these angles there are two types of ω‐turns, each of which can be further divided into two groups. Cβ‐branched side‐chains, and Met and Gln have high propensities to occur at i + 2; for the last two residues the carbonyl oxygen may participate in an additional interaction involving the S and amino group, respectively. With Cys occupying the i + 1 position, such turns are found in the metal‐binding sites. N‐linked glycosylation occurs at the consensus pattern Asn‐Xaa‐Ser/Thr; with Thr at i + 2, the sequence can adopt the secondary structure of a ω‐turn, which may be the recognition site for protein modification. Location between two β‐strands is the most common occurrence in protein tertiary structure, and being generally exposed ω‐turn may constitute the antigenic determinant site. It is a stable scaffold and may be used in protein engineering and peptide design. Proteins 2015; 83:203–214. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Interference with protein–protein interactions of interfaces larger than 1500 Å2 by small drug‐like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot‐spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot‐spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug‐like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot‐spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano‐ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. Proteins 2014; 82:2713–2732. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The rotational strengths and the robustness values of amide‐I and amide‐II vibrational modes of For(AA)nNHMe (where AA is Val, Asn, Asp, or Cys, n = 1–5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α‐helix and β‐sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide‐I and amide‐II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. Chirality 27:625–634, 2015 © 2015 Wiley Periodicals, Inc.  相似文献   

20.
AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)–SH heme complex was quickly converted into Fe(II) and Fe(II)–O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)–SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)–OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号