首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Lewy body disease is a heterogeneous group of neurodegenerative disorders characterized by α-synuclein accumulation that includes dementia with Lewy bodies (DLB) and Parkinson''s Disease (PD). Recent evidence suggests that impairment of lysosomal pathways (i.e. autophagy) involved in α-synuclein clearance might play an important role. For this reason, we sought to examine the expression levels of members of the autophagy pathway in brains of patients with DLB and Alzheimer''s Disease (AD) and in α-synuclein transgenic mice.

Methodology/Principal Findings

By immunoblot analysis, compared to controls and AD, in DLB cases levels of mTor were elevated and Atg7 were reduced. Levels of other components of the autophagy pathway such as Atg5, Atg10, Atg12 and Beclin-1 were not different in DLB compared to controls. In DLB brains, mTor was more abundant in neurons displaying α-synuclein accumulation. These neurons also showed abnormal expression of lysosomal markers such as LC3, and ultrastructural analysis revealed the presence of abundant and abnormal autophagosomes. Similar alterations were observed in the brains of α-synuclein transgenic mice. Intra-cerebral infusion of rapamycin, an inhibitor of mTor, or injection of a lentiviral vector expressing Atg7 resulted in reduced accumulation of α-synuclein in transgenic mice and amelioration of associated neurodegenerative alterations.

Conclusions/Significance

This study supports the notion that defects in the autophagy pathway and more specifically in mTor and Atg7 are associated with neurodegeneration in DLB cases and α-synuclein transgenic models and supports the possibility that modulators of the autophagy pathway might have potential therapeutic effects.  相似文献   

2.

Background

Mutations of the gene for PTEN-induced kinase 1 (PINK1) are a cause of familial Parkinson''s disease (PD). PINK1 protein has been localised to mitochondria and PINK1 gene knockout models exhibit abnormal mitochondrial function. The purpose of this study was to determine whether cells derived from PD patients with a range of PINK1 mutations demonstrate similar defects of mitochondrial function, whether the nature and severity of the abnormalities vary between mutations and correlate with clinical features.

Methodology

We investigated mitochondrial bioenergetics in live fibroblasts from PINK1 mutation patients using single cell techniques. We found that fibroblasts from PINK1 mutation patients had significant defects of bioenergetics including reduced mitochondrial membrane potential, altered redox state, a respiratory deficiency that was determined by substrate availability, and enhanced sensitivity to calcium stimulation and associated mitochondrial permeability pore opening. There was an increase in the basal rate of free radical production in the mutant cells. The pattern and severity of abnormality varied between different mutations, and the less severe defects in these cells were associated with later age of onset of PD.

Conclusions

The results provide insight into the molecular pathology of PINK1 mutations in PD and also confirm the critical role of substrate availability in determining the biochemical phenotype – thereby offering the potential for novel therapeutic strategies to circumvent these abnormalities.  相似文献   

3.

Background

Loss of function mutations in the DJ-1 gene have been linked to recessively inherited forms of Parkinsonism. Mitochondrial dysfunction and increased oxidative stress are thought to be key events in the pathogenesis of Parkinson’s disease. Although it has been reported that DJ-1 serves as scavenger for reactive oxidative species (ROS) by oxidation on its cysteine residues, how loss of DJ-1 affects mitochondrial function is less clear.

Methodology/Principal Findings

Using primary mouse embryonic fibroblasts (MEFs) or brains from DJ-1−/− mice, we found that loss of DJ-1 does not affect mitochondrial respiration. Specifically, endogenous respiratory activity as well as basal and maximal respiration are normal in intact DJ-1−/− MEFs, and substrate-specific state 3 and state 4 mitochondrial respiration are also unaffected in permeabilized DJ-1−/− MEFs and in isolated mitochondria from the cerebral cortex of DJ-1−/− mice at 3 months or 2 years of age. Expression levels and activities of all individual complexes composing the electron transport system are unchanged, but ATP production is reduced in DJ-1−/− MEFs. Mitochondrial transmembrane potential is decreased in the absence of DJ-1. Furthermore, mitochondrial permeability transition pore opening is increased, whereas mitochondrial calcium levels are unchanged in DJ-1−/− cells. Consistent with earlier reports, production of reactive oxygen species (ROS) is increased, though levels of antioxidative enzymes are unaltered. Interestingly, the decreased mitochondrial transmembrane potential and the increased mitochondrial permeability transition pore opening in DJ-1−/− MEFs can be restored by antioxidant treatment, whereas oxidative stress inducers have the opposite effects on mitochondrial transmembrane potential and mitochondrial permeability transition pore opening.

Conclusions/Significance

Our study shows that loss of DJ-1 does not affect mitochondrial respiration or mitochondrial calcium levels but increases ROS production, leading to elevated mitochondrial permeability transition pore opening and reduced mitochondrial transmembrane potential.  相似文献   

4.

Introduction

Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn''s disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα), both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB), which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells.

Methods

We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine.

Results

TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability.

Conclusions

Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells susceptible to mitochondrial damage and cytotoxicity. Repletion of PHB may represent a therapeutic approach to combat oxidant and cytokine-induced mitochondrial damage in diseases such as inflammatory bowel disease.  相似文献   

5.

Background

Sporadic Parkinson''s disease (PD) is a progressive neurodegenerative disorder with unknown cause, but it has been suggested that neuroinflammation may play a role in pathogenesis of the disease. Neuroinflammatory component in process of PD neurodegeneration was proposed by postmortem, epidemiological and animal model studies. However, it remains unclear how neuroinflammatory factors contribute to dopaminergic neuronal death in PD.

Findings

In this study, we analyzed the relationship among inducible nitric oxide synthase (iNOS)-derived NO, mitochondrial dysfunction and dopaminergic neurodegeneration to examine the possibility that microglial neuroinflammation may induce dopaminergic neuronal loss in the substantia nigra. Unilateral injection of lipopolysaccharide (LPS) into the striatum of rat was followed by immunocytochemical, histological, neurochemical and biochemical analyses. In addition, behavioral assessments including cylinder test and amphetamine-induced rotational behavior test were employed to validate ipsilateral damage to the dopamine nigrostriatal pathway. LPS injection caused progressive degeneration of the dopamine nigrostriatal system, which was accompanied by motor impairments including asymmetric usage of forelimbs and amphetamine-induced turning behavior in animals. Interestingly, some of the remaining nigral dopaminergic neurons had intracytoplasmic accumulation of α-synuclein and ubiquitin. Furthermore, defect in the mitochondrial respiratory chain, and extensive S-nitrosylation/nitration of mitochondrial complex I were detected prior to the dopaminergic neuronal loss. The mitochondrial injury was prevented by treatment with L-N6-(l-iminoethyl)-lysine, an iNOS inhibitor, suggesting that iNOS-derived NO is associated with the mitochondrial impairment.

Conclusions

These results implicate neuroinflammation-induced S-nitrosylation/nitration of mitochondrial complex I in mitochondrial malfunction and subsequent degeneration of the nigral dopamine neurons.  相似文献   

6.

Background

Parkinson''s disease (PD) is a neurodegenerative pathology whose molecular etiopathogenesis is not known. Novel contributions have come from familial forms of PD caused by alterations in genes with apparently unrelated physiological functions. The gene coding for alpha-synuclein (α-syn) (PARK1) has been investigated as α-syn is located in Lewy bodies (LB), intraneuronal inclusions in the substantia nigra (SN) of PD patients. A-syn has neuroprotective chaperone-like and antioxidant functions and is involved in dopamine storage and release. DJ-1 (PARK7), another family-PD-linked gene causing an autosomal recessive form of the pathology, shows antioxidant and chaperone-like activities too.

Methodology/Principal Findings

The present study addressed the question whether α-syn and DJ-1 interact functionally, with a view to finding some mechanism linking DJ-1 inactivation and α-syn aggregation and toxicity. We developed an in vitro model of α-syn toxicity in the human neuroblastoma cell line SK-N-BE, influencing DJ-1 and α-syn intracellular concentrations by exogenous addition of the fusion proteins TAT-α-syn and TAT-DJ-1; DJ-1 was inactivated by the siRNA method. On a micromolar scale TAT-α-syn aggregated and triggered neurotoxicity, while on the nanomolar scale it was neuroprotective against oxidative stress (induced by H2O2 or 6-hydroxydopamine). TAT-DJ-1 increased the expression of HSP70, while DJ-1 silencing made SK-N-BE cells more susceptible to oxidative challenge, rendering TAT-α-syn neurotoxic at nanomolar scale, with the appearance of TAT-α-syn aggregates.

Conclusion/Significance

DJ-1 inactivation may thus promote α-syn aggregation and the related toxicity, and in this model HSP70 is involved in the antioxidant response and in the regulation of α-syn fibril formation.  相似文献   

7.

Aims

Metabolic syndrome induces cardiac dysfunction associated with mitochondria abnormalities. As low levels of carbon monoxide (CO) may improve myocardial and mitochondrial activities, we tested whether a CO-releasing molecule (CORM-3) reverses metabolic syndrome-induced cardiac alteration through changes in mitochondrial biogenesis, dynamics and autophagy.

Methods and Results

Mice were fed with normal diet (ND) or high-fat diet (HFD) for twelve weeks. Then, mice received two intraperitoneal injections of CORM-3 (10 mg.kg−1), with the second one given 16 hours after the first. Contractile function in isolated hearts and mitochondrial parameters were evaluated 24 hours after the last injection. Mitochondrial population was explored by electron microscopy. Changes in mitochondrial dynamics, biogenesis and autophagy were assessed by western-blot and RT-qPCR. Left ventricular developed pressure was reduced in HFD hearts. Mitochondria from HFD hearts presented reduced membrane potential and diminished ADP-coupled respiration. CORM-3 restored both cardiac and mitochondrial functions. Size and number of mitochondria increased in the HFD hearts but not in the CORM-3–treated HFD group. CORM-3 modulated HFD-activated mitochondrial fusion and biogenesis signalling. While autophagy was not activated in the HFD group, CORM-3 increased the autophagy marker LC3-II. Finally, ex vivo experiments demonstrated that autophagy inhibition by 3-methyladenine abolished the cardioprotective effects of CORM-3.

Conclusion

CORM-3 may modulate pathways controlling mitochondrial quality, thus leading to improvements of mitochondrial efficiency and HFD-induced cardiac dysfunction.  相似文献   

8.

Background

Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria.

Methodology/Principal Findings

We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation.

Conclusions

We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage.  相似文献   

9.

Background

Denatonium, a widely used bitter agonist, activates bitter taste receptors on many cell types and plays important roles in chemical release, ciliary beating and smooth muscle relaxation through intracellular Ca2+-dependent pathways. However, the effects of denatonium on the proliferation of airway epithelial cells and on the integrity of cellular components such as mitochondria have not been studied. In this study, we hypothesize that denatonium might induce airway epithelial cell injury by damaging mitochondria.

Methods

Bright-field microscopy, cell counting kit-8 (CCK-8) assay and flow cytometry analysis were used to examine cellular morphology, proliferation and cell cycle, respectively. Transmission electron microscopy (TEM) was used to examine mitochondrial integrity. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and protein expression, respectively.

Results

For airway epithelial cells, we observed that denatonium significantly effects cellular morphology, decreases cell proliferation and reduces the number of cells in S phase in a dose-dependent manner. TEM analysis demonstrated that denatonium causes large amplitude swelling of mitochondria, which was confirmed by the loss of mitochondrial membrane potential, the down-regulation of Bcl-2 protein and the subsequent enhancement of the mitochondrial release of cytochrome c and Smac/DIABLO after denatonium treatment.

Conclusions

In this study, we demonstrated for the first time that denatonium damages mitochondria and thus induces apoptosis in airway epithelial cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0183-9) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Apaf1 (apoptotic protease activating factor 1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. Other cellular roles, including a pro-survival role, have also been described for Apaf1, while the relative contribution of each function to cell death, but also to cell homeostatic conditions, remain to be clarified.

Methodology and Principal Findings

Here we examined the response to apoptosis induction of available embryonic fibroblasts from Apaf1 knockout mice (MEFS KO Apaf1). In the absence of Apaf1, cells showed mitochondria with an altered morphology that affects cytochrome c release and basal metabolic status.

Conclusions

We analysed mitochondrial features and cell death response to etoposide and ABT-737 in two different Apaf1-deficient MEFS, which differ in the immortalisation protocol. Unexpectedly, MEFS KO Apaf1 immortalised with the SV40 antigen (SV40IM-MEFS Apaf1) and those which spontaneously immortalised (SIM-MEFS Apaf1) respond differently to apoptotic stimuli, but both presented relevant differences at the mitochondria when compared to MEFS WT, indicating a role for Apaf1 at the mitochondria.  相似文献   

11.
《PloS one》2013,8(7)

Objectives

To compare the dopaminergic neuronal imaging features of different subtypes of genetic Parkinson''s Disease.

Methods

A retrospective study of genetic Parkinson''s diseases cases in which DaTSCAN (123I-FP-CIT) had been performed. Specific non-displaceable binding was calculated for bilateral caudate and putamen for each case. The right:left asymmetry index and striatal asymmetry index was calculated.

Results

Scans were available from 37 cases of monogenetic Parkinson''s disease (7 glucocerebrosidase (GBA) mutations, 8 alpha-synuclein, 3 LRRK2, 7 PINK1, 12 Parkin). The asymmetry of radioligand uptake for Parkinson''s disease with GBA or LRRK2 mutations was greater than that for Parkinson''s disease with alpha synuclein, PINK1 or Parkin mutations.

Conclusions

The asymmetry of radioligand uptake in Parkinsons disease associated with GBA or LRRK2 mutations suggests that interactions with additional genetic or environmental factors may be associated with dopaminergic neuronal loss.  相似文献   

12.

Background

Mitochondria contain their own DNA genome (mtDNA), as well as specific DNA replication and protein synthesis machineries. Relaxation of the circular, double-stranded mtDNA relies on the presence of topoisomerase activity. Three different topoisomerases have been identified in mitochondria: Top1mt, Top3α and a truncated form of Top2β.

Methodology/Principal Findings

The present study shows the importance of Top1mt in mitochondrial homeostasis. Here we show that Top1mt−/− murine embryonic fibroblasts (MEF) exhibit dysfunctional mitochondrial respiration, which leads decreased ATP production and compensation by increased glycolysis and fatty acid oxidation. ROS production in Top1mt−/− MEF cells is involved in nuclear DNA damage and induction of autophagy. Lack of Top1mt also triggers oxidative stress and DNA damage associated with lipid peroxidation and mitophagy in Top1mt−/− mice.

Conclusion/Significance

Together, our data implicate Top1mt for mitochondrial integrity and energy metabolism. The compensation mechanism described here contributes to the survival of Top1mt−/− cells and mice despite alterations of mitochondrial functions and metabolism. Therefore, this study supports a novel model for cellular adaptation to mitochondrial damage.  相似文献   

13.

Objective

Parkinson''s disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.

Methods

High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.

Results

Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.

Conclusion

These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients.  相似文献   

14.

Background

Cortical changes associated with cognitive decline in Parkinson''s disease (PD) are not fully explored and require investigations with established diagnostic classification criteria.

Objective

We used MRI source-based morphometry to evaluate specific differences in grey matter volume patterns across 4 groups of subjects: healthy controls (HC), PD with normal cognition (PD-NC), PD with mild cognitive impairment (MCI-PD) and PD with dementia (PDD).

Methods

We examined 151 consecutive subjects: 25 HC, 75 PD-NC, 29 MCI-PD, and 22 PDD at an Italian and Czech movement disorder centre. Operational diagnostic criteria were applied to classify MCI-PD and PDD. All structural MRI images were processed together in the Czech centre. The spatial independent component analysis was used to assess group differences of local grey matter volume.

Results

We identified two independent patterns of grey matter volume deviations: a) Reductions in the hippocampus and temporal lobes; b) Decreases in fronto-parietal regions and increases in the midbrain/cerebellum. Both patterns differentiated PDD from all other groups and correlated with visuospatial deficits and letter verbal fluency, respectively. Only the second pattern additionally differentiated PD-NC from HC.

Conclusion

Grey matter changes in PDD involve areas associated with Alzheimer-like pathology while fronto-parietal abnormalities are possibly an early marker of PD cognitive decline. These findings are consistent with a non-linear cognitive progression in PD.  相似文献   

15.
Liu H  Wang EQ  Metman LV  Larson CR 《PloS one》2012,7(3):e33629

Background

One of the most common symptoms of speech deficits in individuals with Parkinson''s disease (PD) is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency.

Methodology/Principal Findings

Twelve individuals with Parkinson''s disease and 13 age- and sex- matched healthy control subjects sustained a vowel sound (/α/) and received unexpected, brief (200 ms) perturbations in voice loudness (±3 or 6 dB) or pitch (±100 cents) auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD.

Conclusions/Significance

The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing.  相似文献   

16.

Objective

To determine that 1) an age-dependent loss of inducible autophagy underlies the failure to recover from AKI in older, adult animals during endotoxemia, and 2) pharmacologic induction of autophagy, even after established endotoxemia, is of therapeutic utility in facilitating renal recovery in aged mice.

Design

Murine model of endotoxemia and cecal ligation and puncture (CLP) induced acute kidney injury (AKI).

Setting

Academic research laboratory.

Subjects

C57Bl/6 mice of 8 (young) and 45 (adult) weeks of age.

Intervention

Lipopolysaccharide (1.5 mg/kg), Temsirolimus (5 mg/kg), AICAR (100 mg/kg). Measurements and Main Results: Herein we report that diminished autophagy underlies the failure to recover renal function in older adult mice utilizing a murine model of LPS-induced AKI. The administration of the mTOR inhibitor temsirolimus, even after established endotoxemia, induced autophagy and protected against the development of AKI.

Conclusions

These novel results demonstrate a role for autophagy in the context of LPS-induced AKI and support further investigation into like interventions that have potential to alter the natural history of disease.  相似文献   

17.
18.

Objective

Decrease of olfactory function in Parkinson''s disease (PD) is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from “training” with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function.

Methods

We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training). Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves). Olfactory testing was performed before and after training using the “Sniffin'' Sticks” (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification) in addition to threshold tests for the odors used in the training process.

Results

Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin'' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training.

Conclusion

The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.  相似文献   

19.

Background

Parkinson''s disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD.

Methodology/Principal Findings

Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of α-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons.

Conclusion

Thus, aging Pink1−/− mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号