首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The transport of cytoplasmically synthesized mitochondrial proteins was investigated in whole cells of Neurospora crassa, using dual labelling and immunological techniques. In pulse and pulse-chase labelling experiments the mitochondrial proteins accumulate label. The appearance of label in mitochondrial protein shows a lag relative to total cellular protein, ribosomal, microsomal and cytosolic proteins. The delayed appearance of label was also found in immunoprecipitated mitochondrial matrix proteins, mitochondrial ribosomal proteins, mitochondrial carboxyatractyloside-binding protein and cytochrome c. Individual mitochondrial proteins exhibit different labelling kinetics. Cycloheximide inhibition of translation does not prevent import of proteins into the mitochondria. Mitochondrial matrix proteins labelled in pulse and pulse-chase experiments can first be detected in the cytosol fraction and subsequently in the mitochondria. The cytosol matrix proteins and those in the mitochondria show a precursor-product type relationship. The results suggest that newly synthesized mitochondrial proteins exist in an extra-mitochondrial pool from which they are imported into the mitochondria.  相似文献   

2.
Multiple biotin-containing proteins in 3T3-L1 cells.   总被引:2,自引:1,他引:1       下载免费PDF全文
Extracts of 3T3-L1 cells prepared after labelling the monolayer cultures with [3H]biotin contained numerous protein bands that were detected by fluorography of dried SDS/polyacrylamide electrophoresis gels. All labelled proteins in the extracts could be removed by avidin affinity chromatography. The biotin-containing subunits of acetyl-CoA carboxylase, pyruvate carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase, with molecular masses of approx. 220, 120, 75 and 72 kDa respectively, were detected together with minor bands at 100, 85 and 37 kDa that did not appear to be partial degradation products. Additional labelled bands increased in amount during incubation of cell extracts or did not occur in extracts prepared with trichloroacetic acid, 9.5 M-urea or proteolytic inhibitors, and were tentatively classified as partial degradation products. The unknown bands were not removed by incubation of cell monolayers for 24 h, a treatment that gave degradation rate constants of 0.47 day-1 for acetyl-CoA carboxylase and 0.28 day-1 for pyruvate carboxylase. Upon two-dimensional electrophoresis, pyruvate carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase had isoelectric points of 6.4, 7.2 and 6.4 respectively. Several additional discrete spots with isoelectric points below 6.2 were also present. All the unknown biotin-containing proteins banded with intact mitochondria during density-gradient centrifugation. We conclude that several unknown biotin-containing proteins are present in the mitochondria of 3T3-L1 cells, whereas others are partial breakdown products of mitochondrial proteolysis.  相似文献   

3.
The covalent attachment of polyamines to proteins in plant mitochondria.   总被引:4,自引:0,他引:4  
Plant mitochondria from both potato and mung bean incorporated radioactivity into acid insoluble material when incubated with labelled polyamines (spermine, spermidine and putrescine). Extensive washing of mitochondrial precipitates with trichloroacetic acid and the excess of cold polyamine failed to remove bound radioactivity. Addition of nonradioactive polyamine stopped further incorporation of radioactivity but did not release radioactivity already bound. The radioactivity is incorporated into the membrane fraction. The labelling process has all the features of an enzymatic reaction: it is long lasting with distinctive kinetics peculiar to each polyamine, it is temperature dependent and is affected by N-ethylmaleimide. The latter inhibits the incorporation of putrescine but stimulates the incorporation of spermine and spermidine. Treatment of prelabelled mitochondria with pepsin releases bound radioactivity thus indicating protein to be the ligand for the attachment of polyamines. HPLC of mitochondrial hydrolysates revealed that the radioactivity bound to mitochondria is polyamines; traces of acetyl polyamines were also found in some samples. On autoradiograms of SDS/PAGE gels several radioactive bands of proteins were detected. Protein sequencing of labelled spots from a 2D gel gave a sequence which was 60% identical to catalase. We suggest that the attachment of polyamines to mitochondrial proteins occurs cotranslationally possibly via transglutaminases.  相似文献   

4.
A micromethod was developed for investigating the interactions between fluorescent dyes and cellular proteins. The lipophilic cationic dye APMC (azopentylmethylcarbocyanine) contains a photosensitive diazirine ring and is suitable for photoaffinity labelling. By combining photoaffinity labelling of cultured cells, micro-gel electrophoresis and detection of the fluorescence with a microfluorimeter, we established a highly sensitive and rapid procedure to identify APMC labelled proteins. Cells which had been incubated for 10 min with 10–8 M APMC could be analysed for APMC binding without difficulty. Under our experimental conditions this corresponds to about 0.2 nmol APMC per mg protein. The lipophilic APMC specifically stains the mitochondria in living HeLa and LM cells. The fluorescing mitochondria can be easily detected under a fluorescence microscope. By photoaffinity labelling we were able to show that at low dye concentrations APMC preferentially marks four proteins with apparent molecular masses of 31, 40, 66, and 74 kDa. In order to establish that these are mitochondrial proteins, we isolated and analysed the mitochondria from incubated HeLa and LM cells; again, the same four proteins were detected. They are most probably proteins of the inner mitochondrial membranes, which accumulate the lipophilic APMC cations.  相似文献   

5.
For the first time, to our knowledge, a nucleoside diphosphate kinase (NDPK) has been purified from plant mitochondria (Pisum sativum L.). In intact pea leaf mitochondria, a 17.4-kDa soluble protein was phosphorylated in the presence of EDTA when [gamma-32P]ATP was used as the phosphate donor. Cell fractionation demonstrated that the 17.4-kDa protein is a true mitochondrial protein, and the lack of accessibility to EDTA of the matrix compartment in intact mitochondria suggested it may have an intermembrane space localization. The 17.4-kDa protein was purified from mitochondrial soluble proteins using ATP-agarose and anion exchange chromatography. Amino-acid sequencing of two peptides, resulting from a trypsin digestion, revealed high similarity with the conserved catalytic phosphohistidine site and with the C-terminal of NDPKs. Acid and alkali treatments of [32P]-labelled pea mitochondrial NDPK indicated the presence of acid-stable as well as alkali-stable phosphogroups. Thin-layer chromatography experiments revealed serine as the acid-stable phosphogroup. The alkali-stable labelling probably reflects phosphorylation of the conserved catalytic histidine residue. In phosphorylation experiments, the purified pea mitochondrial NDPK was labelled more heavily on serine than histidine residues. Furthermore, kinetic studies showed a faster phosphorylation rate for serine compared to histidine. Both ATP and GTP could be used as phosphate donor for histidine as well as serine labelling of the pea mitochondrial NDPK.  相似文献   

6.
Mitochondrial membrane proteins synthesized in vivo in the presence of cycloheximide were analyzed on electrofocusing polyacrylamide gels. Five of the six protein bands observed have their isoelectric points below pH 7. The six proteins are not synthesized when both cycloheximide and chloramphenicol are present, and they are absent in a petite mutant lacking mitochondrial deoxyribonucleic acid (DNA), leading to the conclusion that the proteins are synthesized on mitochondrial ribosomes. By labeling cells of Saccharomyces cerevisiae cultivated in a chemostat under different degrees of glucose limitation, the effect of glucose repression on the synthesis of the mitochondrial membrane proteins was determined. Two of the protein bands showed a relatively reduced synthesis under the strongest glucose repression tested. The specific activity of the cytochrome oxidase and the percentage of mitochondrial DNA in the total DNA were found to be influenced at a lower level of glucose repression.  相似文献   

7.
The lipophilic cationic fluorescent dye azopentylmethylindocarbocyanine (APMC) specifically stains the mitochondria in living cells. The dye contains a photosensitive diazirine ring and is suitable for photoaffinity labelling of mitochondrial proteins. By a combination of photoaffinity labelling of cell cultures of mouse fibroblasts (LM) with APMC, lysis of the labelled cells, subsequent micro-gel electrophoresis and detection of the fluorescence of the labelled proteins in the gel lanes with a sensitive microfluorimeter, we determined the number, apparent molecular masses, and relative intensity of the labelled proteins. In LM cells, three proteins with apparent molecular masses of 31, 40, and 74 kDa were labelled with high intensity, and proteins of 28, 29, 44, 48, 49, 66, and 105 kDa with low intensity. Two effects mainly determine the binding of lipophilic dye cations to mitochondrial proteins in living cells: (1) interaction of the trans-membrane potential of the inner mitochondrial membrane with the dye cations; and (2) hydrophobic interactions between the strongly lipophilic proteins of the inner membrane and the lipophilic dye molecules. Preincubation of the cell cultures with drugs that dissipate the trans-membrane potential, such as valinomycin, 2,4-dinitrophenol (DNP) and 3-chlorcarbonylcyanidephenylhydrazon (CCCP), strongly reduces or even prevents APMC labelling of mitochondrial proteins. The influence of hydrophobic interactions was investigated by competitive staining experiments using dyes with very different lipophilic properties. The lipophilicity of the dyes was characterized by their R m values in reversed phase thin-layer chromatography. Prestaining with an excess of strongly lipophilic cationic acridine and phenanthridine dyes, such as pentyl acridinium orange chloride (PAO), nonyl acridinium orange chloride (NAO) and tetramethylpropidium chloride (MP), respectively, completely prevents protein labelling with APMC. Obviously, the dyes occupy the same mitochondrial binding sites as APMC. At equal concentrations the intensity of the 40-kDa signal is strongly reduced, whereas the 31-kDa and 74-kDa signals are unaffected. Using phenanthridine dyes with lower lipophilicity, namely propidium chloride (P), M, and N reduces the peak of the 40-kDa protein in APMC labelling, indicating that the 40-kDa protein preferentially binds lipophilic dye cations.  相似文献   

8.
The in vivo administration of [1-14C]pantothenic acid, which is the precursor of coenzyme A, resulted in the radioactive labelling of several mitochondrial proteins in rat liver. The incorporated radioactivity could be released by glutathione or 2-mercaptoethanol. Two mitochondrial matrix proteins acetyl-CoA acetyltransferase (liver and heart), an enzyme involved in the biosynthesis or degradation of ketone bodies, and 3-oxoacyl-CoA thiolase (liver), a protein participating in fatty acid oxidation were identified as modified proteins. The radioactivity was localized exclusively in forms A1 and A2 indicating that these forms represent the modified states of the acetyl-CoA acetyltransferase protein. Kinetics of incorporation of radioactivity revealed an accumulation of the modified forms. The ratio of specific radioactivities of A2 compared to A1 was 2.41 +/- 0.15 (n = 10). After in vivo labelling with [14C]leucine, the specific radioactivity of acetyl-CoA acetyltransferase depended on the state of the enzyme protein. The unmodified enzyme exhibited a lower specific radioactivity than its modified forms suggesting different turnover rates of these proteins.  相似文献   

9.
James Guikema  Louis Sherman 《BBA》1982,681(3):440-450
The protein composition of the photosynthetic membrane from the cyanobacterium, Anacystis nidulans R2, was analyzed by acrylamide gel electrophoresis following solubilization with lithium dodecyl sulfate. Autoradiograms of 35S-labelled membranes revealed over 90 bands by this procedure. The effect of solubilization conditions on protein resolution was analyzed by modifying temperature and sulfhydryl concentrations. Labelling cells with 59Fe yielded nine iron-containing bands on these gels. Three of these bands, at 33, 19, and 14 kDa, were also heme proteins as determined by tetramethylbenzidine staining, and represent cytochromes f, b6 and c-552, respectively. The remaining iron proteins are highly sensitive to solubilization conditions, especially the presence of 2-mercaptoethanol, and we suggest that these bands may be Fe-S proteins. Lactoperoxidase-catalyzed iodination of the membranes indicated that at least 41 proteins have surface-exposed domains. Some of the known proteins with external surfaces include cytochrome c-552 and the chlorophyll-binding proteins of Photosystems I and II. Neither cytochrome f nor b6 appear to be accessible to external labelling. When this structural information was combined with the isolation of functional submembrane complexes, we constructed a topological model of the membrane. Using this model we have discussed the protein architecture of the cyanobacterial membrane.  相似文献   

10.
Mitochondrial proteins soluble in neutral chloroform-methanol (2:1) were separated from lipids by ether precipitation and resolved by Sephadex G-200 filtration in the presence of dodecylsulfate into two major fractions eluting in the excluded region (peak I) and in a region of an apparent molecular weight 8000 (peak II). Residual phospholipids are found only in peak II. Peak I consists of several aggregated small polypeptides of molecular weights around 8000, which can be disaggregated by mild oxidation with performic acid. Cycloheximide stimulates almost two-fold incorporation of radioactive phenylalanine into peak I proteins but inhibits labelling of peak II proteins by 95%. Chloramphenicol and ethidium bromide inhibit the synthesis of peak I proteins by 70% and 95% respectively, but do not affect labelling of peak II proteins. At least 30% of the translation products of mitochondrial DNA in vitro behave like peak I proteins: they are soluble in organic solvents, they aggregate in dodecylsulfate buffer after removal of phospholipids and they contain species of molecular weights around 8000 that disaggregate upon oxidation. The data strongly suggest that the proteins of peak I are encoded by mitochondrial genes and synthesized on mitochondrial ribosomes, whereas the proteins of peak II are encoded by nuclear genes and synthesized on cytoplasmic ribosomes. Both groups of lipophilic proteins are very similar in their molecular weights, but the mitochondrially coded peak I proteins have the unique property of forming large heat-stable aggregates in the presence of dodecylsulfate.  相似文献   

11.
The phosphorylation of thylakoid membrane proteins was studied using isolated chloroplasts from Euglena gracilis. We have found, using [32P] labelling, that this phenomenon was light-driven, reversible in the dark, and completely inhibited by Carbonyl cyanide m-chlorophenyl-hydrazone (CCCP). Polyacrylamide gel electrophoresis containing SDS has revealed five main bands which have been found to be proteins. Amino acid analysis of the bands has shown that [32P] is incorporated into phosphothreonine.  相似文献   

12.
The aminoacid composition of protein stained bands in polyacrylamide gels, after electrophoresis of proteins from inner mitochondrial membranes, was investigated hydrolyzing directly the gel slices. The Hydrophobicity Index of 18 prominent polypeptide bands was calculated after their aminoacid analysis. The polypeptides less related to the membrane have low hydrophobicity as inferred from their Hydrophobicity Indexes.  相似文献   

13.
Conjugate ubiquitin was previously found in the nucleus, cytoplasm, and membranes of eukaryotic cells while the enzymes of the ubiquitin-conjugating system appear to be cytoplasmic. We have prepared the mitochondrial fraction from rabbit brain by discontinuous density gradient ultracentrifugation and by Western blotting, using a specific antibody against conjugate ubiquitin, showing that it contains ubiquitin conjugates in a very wide molecular weight range. Electron microscopy and measurement of specific enzyme markers show that this fraction not only contains mitochondria but also some endoplasmic reticulum vesicles. Immunostaining with anti-ubiquitin IgG followed by immunodecoration with colloidal gold particles provides evidence for the presence of conjugate ubiquitin both in mitochondria and in the endoplasmic reticulum. Furthermore, this "mitochondrial fraction" shows a pronounced ATP-dependent ability to conjugate 125I-ubiquitin into a number of endogenous proteins as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Addition of E1, E2, and E3, the enzymes of the ubiquitin conjugating system purified from rabbit reticulocytes, does not further increase this ubiquitination nor incorporate 125I-ubiquitin into additional protein bands. The same mitochondrial fraction is not able to carry out any ATP-dependent degradation of 125I-albumin; however, it contains an isopeptidase activity able to release the covalently incorporated 125I-ubiquitin and is also able to conjugate 125I-ubiquitin to exogenous proteins as oxidized RNase. By affinity chromatography on ubiquitin-agarose of fraction II of a crude Triton X-100 extract of the mitochondrial fraction, several proteins corresponding in Mr to the E1 and E2s enzymes were obtained. These proteins were also able to form specific ubiquitin-thiol ester bounds on sodium dodecyl sulfate-polyacrylamide gels and to support 125I-ubiquitin conjugation to oxidized RNase. Detergent fractionation of the mitochondrial fraction provided evidence for a possible localization of the ubiquitin conjugating activity in the mitochondrial external membrane and endoplasmic reticulum. The presence of an active ubiquitin protein conjugating system in mitochondria and endoplasmic reticulum may be related to the turnover of organelle proteins as well as to specific cell functions such as import of proteins into mitochondria and ubiquitination of externally oriented membrane-bound proteins.  相似文献   

14.
The presence of protein-bound pantothenate in Neurospora crassa was investigated by labelling a pantothenate auxotroph (pan-2) with [14C]pantothenate and examining mycelial homogenates on dodecyl sulfate/polyacrylamide gels. Five peaks of radioactivity were found, with apparent molecular masses of 200, 140, 22, 19, and 9 kDa. The 200-kDa peak was identified as fatty acid synthetase, based on its absence in a fatty acid synthetase mutant. The 22-kDa and 19-kDa peaks co-purified with mitochondrial markers on sucrose gradients. When purified mitochondria were fractionated, the 19-kDa protein was associated with the inner membrane and the 22-kDa protein was enriched in the soluble mitochondrial fraction. The label was quantitatively recovered from the mitochondrial proteins as 4'-phosphopantetheine after mild alkaline hydrolysis. Although the function of this post-translational modification of mitochondrial proteins is not known, several possibilities are discussed: the 4'-phosphopantetheine may act as a carrier group in an enzymatic reaction, or it may perform a regulatory function as part of an enzyme complex.  相似文献   

15.
After intraocular injections of [3H]leucine, six regions of the visual pathway of adult rabbit were used to study the spatio-temporal pattern of the slow anterograde axonal transport of radioactive proteins associated with the particulate fraction, the water-soluble fraction and the myelin fraction. Unlike other fractions, myelin-associated labelled proteins represented a time-constant (for a given region) percentage of total tissue radioactivity. This percentage increased from the first half to the second half of the optic nerve and remained high in the chiasma and tract. The peak specific radioactivity of myelin decreased in the same direction. Myelin proteins were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the labelling patterns obtained in different regions and at different survival times were compared. At the peak of myelin radioactivity of a given region the label was typically associated with four protein bands, L1, L2, L3 and L4, of 40000, 44000, 62000, and 68000 mol.wts. respectively. The basic protein, the proteolipid protein and the W1 component (mol.wt. 51000-53000) of the Wolfgram proteins were not significantly labelled. The radioactivity associated with the W2 component (mol.wt 60000) of the Wolfgram proteins could be derived from the closely migrating L3 component. At shorter survival times no clear labelling pattern could be detected. At longer survival times radioactivity was almost totally localized around band L3. The results presented underline the importance of choosing appropriate experimental conditions to obtain a consistent labelling pattern of myelin-associated proteins and to investigate the possible mechanism responsible for this phenomenon.  相似文献   

16.
A cDNA clone was isolated from an Arabidopsis leaf cDNA library that shared a high degree of protein sequence identity with mitochondrial acyl carrier proteins (mtACPs) isolated from Neurospora crassa and bovine heart muscle. The cDNA encoded an 88-amino acid mature protein that was preceded by a putative 35-amino acid presequence. In vitro protein import studies have confirmed that the presequence specifically targets this protein into pea mitochondria but not into chloroplasts. These studies indicated that pea mitochondria were not only able to import and process the precursor protein but also possessed the ability to acylate the mature protein. The mitochondrial localization of this protein, mtACP-1, was confirmed by western blot analysis. Arabidopsis mitochondrial protein extracts contained two cross-reacting bands that comigrated with the mature mtACP-1 and acylated mtACP-1 proteins. The acylated form of mtACP-1 was approximately 4 times more abundant than the unacylated form and appeared to be localized predominantly in the mitochondrial membrane where the unacylated mtACP-1 was present mostly in the matrix fraction. A chloroplast fatty acid synthase system was used, and mtACP-1 was able to function as a cofactor for fatty acid synthesis. However, predominantly short- and medium-chain fatty acids were produced in fatty acid synthase reactions supplemented with mtACP-1, suggesting that mtACP-1 may be causing premature fatty acid chain termination.  相似文献   

17.
At 22° in Earle's medium, Krebs cells synthesize proteins. After a brief `pulse' with [14C]valine followed by a `chase' of [12C]valine the radioactivity appears first in microsomes and is transferred after `chase' to the cell sap. Kinetics of labelling of the mitochondrial protein are different from that of either microsomal or cell-sap protein. When Krebs cells in buffer are mixed with ribonuclease in water the nuclease penetrates the cell membrane. The ribonuclease-treated cells are still viable but have lost most of their cytoplasmic ribosomes (electron micrograph). Such cells still synthesize mitochondrial protein at near normal rate but synthesis of microsomal protein is severely inhibited. The results indicate that some mitochondrial proteins are synthesized independently of the microsome–cell-sap system.  相似文献   

18.
Four monoclonal antibodies were raised against polypeptides present in a high-salt detergent-insoluble fraction from cells of Chlamydomonas reinhardtii. Indirect immunofluorescence microscopy of fibroblasts and epithelial cells grown in culture using these plant antibodies revealed staining arrays identical to those obtained with well characterised antibodies to animal intermediate filaments. Immunofluorescence microscopy of Chlamydomonas with these monoclonal antibodies and a monoclonal antibody that recognises all animal intermediate filaments (anti-IFA) gave a diffuse, patchy cytoplasmic staining pattern. Both the plant antibodies and anti-IFA stained interphase onion root tip cells in a diffuse perinuclear pattern. In metaphase through to telophase, the labelling patterns colocalised with those of microtubules. Labelling of the phragmoplast was also detected but not staining of the preprophase band. On Western blots of various animal cell lines and tissues, all the antibodies labelled known intermediate filament proteins. On Western blots of whole Chlamydomonas proteins, all the antibodies labelled a broad band in the 57,000 Mr range, and three antibodies labelled bands around 66,000 and 140,000 Mr but with variable intensities. On Western blots of whole onion root tip proteins, all the antibodies labelled 50,000 Mr (two to three bands) polypeptides and a diffuse band around 60,000 Mr and three of the antibodies also labelled several polypeptides in the 90,000-200,000 Mr range. The consistent labelling of these different bands by several different monoclonal antibodies recognising animal intermediate filaments makes these polypeptides putative plant intermediate filament proteins.  相似文献   

19.
1. Brush border membranes purified from rat kidney cortex were incubated in the presence of ATP and analysed by SDS polyacrylamide gel electrophoresis. 2. Quantitative analysis of phosphorylation was performed with a calibration curve obtained by autoradiography. 3. The presence of magnesium was required for the phosphorylation of membrane proteins. 4. EDTA completely inhibited the labelling of all bands, except for the alkaline phosphatase band. 5. In contrast, alkaline phosphatase was inhibited by 52, 65 and 85% in the presence of 1 mM bromotetramisole, 10 mM NaF and 10 mM Na arsenate respectively. 6. However these inhibitors had only minor effects on the labelling of other proteins. 7. High concentrations of magnesium caused a pronounced inhibition on the labelling of the alkaline phosphatase band but had no effect on the phosphorylation of other proteins.  相似文献   

20.
To isolate mitochondrial complexes, we have combined elements from the classic Laemmli protocol and blue native polyacrylamide gel electrophoresis (BN–PAGE) methods to develop a straightforward modified native electrophoresis protocol. This modified protocol presented good resolution for native electrophoresis of inner mitochondrial membrane proteins, where bands were easily visualized with no leftover stain or gel lanes overlap. Enzymatic tests revealed that complexes I and V remain active in the gel. This protocol, designed to overcome specific limitations of the standard protocols, provides a potential methodology to study membrane proteins in their functional form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号