首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A sonicate of Corynebacterium flaccumfaciens AHU-1622 had the highest NAD+ kinase activity (1.22 mU/mL culture broth) of the strains of bacteria we investigated. This enzyme was thermostable, with activity maintained at 50 degrees C for 1 h. This treatment inactivated phosphatase activity. Resting cells of the bacterium also had NAD+ kinase activity when treated at 60 degrees C for 30 min with 0.2% Triton X-100. NADP+ production was achieved using 8 mumol NAD+, 8 mumol ATP, 16 mumol MgCl2, 1.6 mumol NaN3, and 12 mU NAD+ kinase (0.1 g of permeabilized wet cells) in 2 mL of 0.1 M phosphate buffer, pH 7.5. The conversion ratio of NADP+ from NAD+ was 75% after 10 h of incubation at 50 degrees C, and the amount of accumulated NADP+ was 3 mumol/mL of reaction mixture. The NAD+ kinase activity of the permeabilized cells was stable and did not decrease after repeated use.  相似文献   

2.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

3.
NAD(H) kinase catalyzes the phosphorylation of NAD(H) to form NADP(H) using ATP or inorganic polyphosphate as a phosphoryl donor. While the enzyme is conserved throughout prokaryotes and eukaryotes, remarkable differences in kinetic parameters including substrate preference, cation dependence, and physiological roles exist among the organisms. In the present study, we biochemically characterized NAD(H) kinase from the anaerobic/microaerophilic fermentative protozoan parasite Entamoeba histolytica, which lacks the conventional mitochondria capable of oxidative phosphorylation, leading to ATP. The kinetic properties of E. histolytica NAD(H) kinase recombinantly produced in Escherichia coli showed remarkable differences from those in bacteria and higher eukaryotes. Entamoeba NAD(H) kinase preferred NADH to NAD+ as the phosphoryl acceptor, utilized nucleoside triphosphates including ATP, GTP and deoxyATP, but not nucleoside di-, mono-phosphates, or inorganic polyphosphates, as the phosphoryl donor. To further understand the physiological roles in E. histolytica, we generated a stable transformant overexpressing NAD(H) kinase. Overexpression of NAD(H) kinase resulted in a 1.6–2 fold increase in the NADPH and NADP+ concentrations, a 40% reduction of the intracellular concentration of reactive oxygen species, and also led to increased tolerance toward hydrogen peroxide. These data, together with the essentially of NAD(H) kinase gene, underscore its significance as an NADP(H)-producing enzyme in this organism, and should help in designing of drugs targeting this enzyme.  相似文献   

4.
NADP is essential for biosynthetic pathways, energy, and signal transduction. In living organisms, NADP biosynthesis proceeds through the phosphorylation of NAD with a reaction catalyzed by NAD kinase. We expressed, purified, and characterized Bacillus subtilis NAD kinase. This enzyme represents a new member of the inorganic polyphosphate [poly(P)]/ATP NAD kinase subfamily, as it can use poly(P), ATP, or other nucleoside triphosphates as phosphoryl donors. NAD kinase showed marked positive cooperativity for the substrates ATP and poly(P) and was inhibited by its product, NADP, suggesting that the enzyme plays a major regulatory role in NADP biosynthesis. We discovered that quinolinic acid, a central metabolite in NAD(P) biosynthesis, behaved like a strong allosteric activator for the enzyme. Therefore, we propose that NAD kinase is a key enzyme for both NADP metabolism and quinolinic acid metabolism.  相似文献   

5.
1. Skeletal muscle mitochondrial NAD(P)-dependent malic enzyme [EC 1.1.1. 39, L-malate:NAD+ oxidoreductase (decarboxylating)] from herring could use both coenzymes, NAD and NADP, in a similar manner. 2. The coenzyme preference of mitochondrial NAD(P)-dependent malic enzyme was probed using dual wavelength spectroscopy and pairing the natural coenzymes, NAD or NADP with their respective thionicotinamide analogues, s-NADP or s-NAD, that have absorbance maxima in reduced forms at 400 nm. 3. s-NAD and s-NADP were found to be good alternate substrates for NAD(P)-dependent malic enzyme, the apparent Km values for the thioderivatives were similar to those of the corresponding natural coenzymes. 4. ATP produced greater inhibition of the NAD or s-NAD linked reactions than of the NADP or s-NADP-linked reactions of skeletal muscle mitochondrial NAD(P)-dependent malic enzyme. 5. At 5 mM malate concentration and in the presence of 2 mM ATP the NADP-linked reaction is favoured and the activity ratios, V(s-NADP)/V(NAD) or V(NADP)/V(s-NAD), are 6 and 26, respectively.  相似文献   

6.
The reversibility of the NAD+ kinase reaction was established, and the kinetic parameters of the rate equation in the reverse direction were determined. The equilibrium constant of the reaction was determined by using the purified pigeon liver enzyme and radioactively labelled nicotinamide nucleotides. The relationship between kinetic parameters of the forward and reverse reactions is in reasonable agreement with the measured equilibrium constant. As expected from the proposed mechanism of action, the enzyme does not catalyse isotope exchange between NAD+ and NADP+ in the absence of ADP and ATP. Although homogeneous as judged by polyacrylamide-gel electrophoresis, the enzyme preparation exhibits ADP/ATP isotope-exchange activity which could not be separated from NAD+ kinase activity, but kinetic evidence suggests that this is probably due to a contaminant.  相似文献   

7.
Rat liver 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase catalyzes, in addition to its normal biosynthetic or forward reaction (HMG-CoA + 2 NADPH + 2H+----mevalonate + 2 NAD+ + CoASH), the reverse reaction (mevalonate + CoASH + 2 NADP+----HMG-CoA + 2 NADPH + 2H+) and two "half-reactions" that involve the presumed intermediate mevaldate (mevaldate + CoASH + NADP+----HMG-CoA + NADPH + H+ and mevaldate + NADPH + H+----mevalonate + NADP+). These reactions were studied using both enzyme solubilized by the traditional freeze-thaw method and enzyme solubilized with a nonionic detergent in the presence of inhibitors of proteolysis. All four reactions were inhibited by mevinolin, a known inhibitor of the forward (biosynthetic) reaction catalyzed by HMG-CoA reductase. When the enzyme was inactivated by ATP and a cytosolic, ADP-dependent HMG-CoA reductase kinase, the rates of both the forward reaction and the half-reactions decreased to comparable extents. Although coenzyme A is not a stoichiometric participant in the second half-reaction (mevaldate + NADPH + H+----mevalonate + NADP+), it was required as an activator of this reaction. This observation implies that coenzyme A may remain bound to the enzyme throughout the normal catalytic cycle of HMG-CoA reductase.  相似文献   

8.
NAD kinase was purified 180-fold from Bacillus licheniformis to determine the role it plays in NADP turnover in this organism. The enzyme was found to have a pH optimum of 6.8 and an apparent K m for NAD of 2.7 mM. The ATP saturation curve was not hyperbolic; 5.5 mM ATP was required to reach half maximal activity. Both Mn2+ and Ca2+ could be substituted for Mg2+. Several compounds including nicotinic acid, nicotinamide, nicotinamide mononucleotide, quinolinic acid, NADPH, ADP, AMP and cyclic AMP did not affect NAD kinase activity. In contrast, the enzyme was inhibited by NADP at concentrations typically found in logarithmic cells of B. licheniformis. This inhibition was competitive with NAD and had a K i of 0.13 mM. It is suggested that in vivo NAD kinase activity is highly dependent on the concentrations of NAD and ATP and the proportion of oxidized and reduced NADP.This paper is dedicated to Sydney C. Rittenberg on the occassion of his retirement, with respect and much affection, in appreciation for his friendship and years of distinguished service as a teacher and scientist  相似文献   

9.
The NAD(P)-dependent malic enzyme from human term placental mitochondria was purified 108-fold with a final yield of 72% and specific activity of about 2 mumol per minute per milligram protein. The final preparation was completely free of fumarase, malic, and lactic dehydrogenases. Divalent cations were required for NAD(P)-dependent malic enzyme activity, Mn2+ and Co2+ were by far more effective activators than Mg2+ and Ni2+, whereas the reaction did not proceed in the presence of Ca2+. The optimum pH with NAD and NADP as coenzymes was at around 7.1 and 6.4, respectively. The ratio of the rate of NAD:NADP reduction was 7.4 and 1.3 at pH 7.1 and 6.4, respectively. The enzyme is activated by succinate and fumarate and inhibited by ATP. In the absence of fumarate the Michaelis constants for L-malate and NAD were 2.82 and 0.33 mM; and in the presence of fumarate 1.18 and 0.22 mM, respectively. This study presents the first report showing the purification and kinetic properties of NAD(P)-dependent malic enzyme from human tissue.  相似文献   

10.
NAD kinase is a ubiquitous enzyme that catalyzes the phosphorylation of NAD to NADP using ATP or inorganic polyphosphate (poly(P)) as phosphate donor, and is regarded as the only enzyme responsible for the synthesis of NADP. We present here the crystal structures of an NAD kinase from the archaeal organism Archaeoglobus fulgidus in complex with its phosphate donor ATP at 1.7 A resolution, with its substrate NAD at 3.05 A resolution, and with the product NADP in two different crystal forms at 2.45 A and 2.0 A resolution, respectively. In the ATP bound structure, the AMP portion of the ATP molecule is found to use the same binding site as the nicotinamide ribose portion of NAD/NADP in the NAD/NADP bound structures. A magnesium ion is found to be coordinated to the phosphate tail of ATP as well as to a pyrophosphate group. The conserved GGDG loop forms hydrogen bonds with the pyrophosphate group in the ATP-bound structure and the 2' phosphate group of the NADP in the NADP-bound structures. A possible phosphate transfer mechanism is proposed on the basis of the structures presented.  相似文献   

11.
The structure of Pseudomonas fluorescens mannitol 2-dehydrogenase with bound NAD+ leads to the suggestion that the carboxylate group of Asp(69) forms a bifurcated hydrogen bond with the 2' and 3' hydroxyl groups of the adenosine of NAD+ and contributes to the 400-fold preference of the enzyme for NAD+ as compared to NADP+. Accordingly, the enzyme with the Asp(69)-->Ala substitution was found to use NADP(H) almost as well as wild-type enzyme uses NAD(H). The Glu(68)-->Lys substitution was expected to enhance the electrostatic interaction of the enzyme with the 2'-phosphate of NADP+. The Glu(68)-->Lys:Asp(69)-->Ala doubly mutated enzyme showed about a 10-fold preference for NADP(H) over NAD(H), accompanied by a small decrease in catalytic efficiency for NAD(H)-dependent reactions as compared to wild-type enzyme.  相似文献   

12.
Measurable levels of activity of NAD+ kinases of actinomycetes Micrococcus luteus and Corynebacterium ammoniagenes were observed after substituting inorganic tripolyphosphate for ATP, whereas the enzyme from the eubacterium Escherichia coli was not active with this substrate. Gradient PAGE found two molecular isoforms of NAD+ kinase in C. ammoniagenes and E. coli; four forms were found in M. luteus. All isoforms of this enzyme found in C. ammoniagenes and M. luteus displayed a NADP-synthesizing activity in the presence of either ATP or tripolyphosphate. Because of its capability of utilizing inorganic tripolyphosphate, M. luteus is the most promising NADP producer organism.  相似文献   

13.
An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups.  相似文献   

14.
1. The effects of injecting nicotinamide, 5-methylnicotinamide, ethionine, nicotinamide+5-methylnicotinamide and nicotinamide+ethionine on concentrations in rat liver of NAD, NADP and ATP were investigated up to 5hr. after injection. 2. Nicotinamide induced three- to four-fold increases in hepatic NAD concentration even in the presence of 5-methylnicotinamide or ethionine, whereas 5-methylnicotinamide or ethionine alone did not cause marked changes in hepatic NAD concentration. 3. Nicotinamide alone also induced a twofold increase in hepatic NADP concentration. However, in the presence of 5-methylnicotinamide+nicotinamide, the NADP concentration decreased by 25% after 5hr., and in the presence of nicotinamide+ethionine by 30% in the same time. In the presence of 5-methylnicotinamide or ethionine alone hepatic NADP concentrations fell by 50% after 5hr. 4. 5-Methylnicotinamide inhibited the microsomal NAD(+) glycohydrolase (EC 3.2.2.6) by 60% at a concentration of 1mm and the NADP(+) glycohydrolase by 40% at the same concentration. 5. The rat liver NAD(+) kinase (EC 2.7.1.23) was found to have V(max.) 4.83mumoles/g. wet wt./hr. and K(m) (NAD(+)) 5.8mm. This enzyme was also inhibited by 5-methylnicotinamide in a ;mixed' fashion. 6. The results are discussed with respect to the control of NAD synthesis. It is suggested that in vivo the NAD(P)(+) glycohydrolases are effectively inactive and that the increased NAD concentrations induced by nicotinamide are due to increased substrate concentration available to both the nicotinamide and nicotinic acid pathways of NAD formation.  相似文献   

15.
Thermoproteus tenax possesses two different glyceraldehyde-3-phosphate dehydrogenases, one specific for NADP+ and the other for NAD+. NADP(H) inhibits the NAD+-specific enzyme competetively with respect to NAD+ whereas NAD(H) virtually does not interact with the NADP+-specific enzyme. Both enzymes represent homomeric tetramers with subunit molecular masses of 39 kDa (NADP+-specific enzyme) and 49 kDa (NAD+-specific enzyme), respectively. The NADP+-specific enzyme shows significant homology to the known glyceraldehyde-3-phosphate dehydrogenases from eubacteria and eukaryotes as indicated by partial sequencing. The enzymes are thermostable, the NADP+-specific enzyme with a half-life of 35 min at 100 degrees C, the NAD+-specific enzyme with a half-line of greater than or equal to 20 min at 100 degrees C, depending on the protein concentration. Both enzymes show conformational and functional changes at 60-70 degrees C.  相似文献   

16.
Acetylpyridine NADP replaced NADP in promoting the Mn2+ ion-requiring mitochondrial "malic" enzyme of Hymenolepis diminuta. Disrupted mitochondria displayed low levels of an apparent oxaloacetate-forming malate dehydrogenase activity when NAD or acetylpyridine NAD served as the coenzyme. Significant malate-dependent reduction of acetylpyridine NAD by H. diminuta mitochondria required Mn2+ ion and NADP, thereby indicating the tandem operation of "malic" enzyme and NADPH:NAD transhydrogenase. Incubation of mitochondrial preparations with oxaloacetate resulted in a non-enzymatic decarboxylation reaction. Coupling of malate oxidation with electron transport via the "malic" enzyme and transhydrogenase was demonstrated by polarographic assessment of mitochondrial reduced pyridine nucleotide oxidase activity.  相似文献   

17.
Two malic enzymes in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extract supernatant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)- or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP) --> pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + CO(2)), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn(2+) being more effective than Mg(2+). The NADP-dependent enzyme is activated by K(+) and low concentrations of NH(4) (+). Both reactions are reversible, as shown by incubation with pyruvate, CO(2), NADH, or NADPH and Mn(2+). The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).  相似文献   

18.
NADPH is the key cofactor in L-isoleucine (Ile) biosynthetic pathway. To increase the Ile biosynthesis in Corynebacterium glutamicum ssp. lactofermentum JHI3-156, NADPH supply needs to be enhanced. Here NAD kinase, the key enzyme for the de novo biosynthesis of NADP(+) and NADPH, were cloned and expressed in JHI3-156, and their influences on Ile production were analysed. Meanwhile, enzyme properties of NAD kinase from JHI3-156 (CljPpnK) were compared with that from C. glutamicum ssp. lactofermentum ATCC 13869 (ClPpnK). Four variations existed between CljPpnK and ClPpnK. Both PpnKs were poly(P)/ATP-dependent NAD kinases that used ATP as the preferred phosphoryl donor and NAD(+) as the preferred acceptor. CljPpnK exhibited a higher activity and stability than ClPpnK and less sensitivity towards the effectors NADPH, NADP(+), and NADH, partly due to the variations between them. The S57P variation decreased their activity. Expression of CljppnK and ClppnK in JHI3-156 increased the ATP-NAD(+) kinase activity by 69- and 47-fold, respectively, the intracellular NADP(+) concentration by 36% and 101%, respectively, the NADPH concentration by 95% and 42%, respectively, and Ile production by 37% and 24%, respectively. These results suggest that overexpressing NAD kinase is a useful metabolic engineering strategy to improve NADPH supply and isoleucine biosynthesis.  相似文献   

19.
The functions of NAD(H) (NAD(+) and NADH) and NADP(H) (NADP(+) and NADPH) are undoubtedly significant and distinct. Hence, regulation of the intracellular balance of NAD(H) and NADP(H) is important. The key enzymes involved in the regulation are NAD kinase and NADP phosphatase. In 2000, we first succeeded in identifying the gene for NAD kinase, thereby facilitating worldwide studies of this enzyme from various organisms, including eubacteria, archaea, yeast, plants, and humans. Molecular biological study has revealed the physiological function of this enzyme, that is to say, the significance of NADP(H), in some model organisms. Structural research has elucidated the tertiary structure of the enzyme, the details of substrate-binding sites, and the catalytic mechanism. Research on NAD kinase also led to the discovery of archaeal NADP phosphatase. In this review, we summarize the physiological functions, applications, and structure of NAD kinase, and the way we discovered archaeal NADP phosphatase.  相似文献   

20.
Various kinetic approaches were carried out to investigate kinetic attributes for the dual coenzyme activities of mitochondrial aldehyde dehydrogenase from rat liver. The enzyme catalyses NAD(+)- and NADP(+)-dependent oxidations of ethanal by an ordered bi-bi mechanism with NAD(P)+ as the first reactant bound and NAD(P)H as the last product released. The two coenzymes presumably interact with the kinetically identical site. NAD+ forms the dynamic binary complex with the enzyme, while the enzyme-NAD(P)H complex formation is associated with conformation change(s). A stopped-flow burst of NAD(P)H formation, followed by a slower steady-state turnover, suggests that either the deacylation or the release of NAD(P)H is rate limiting. Although NADP+ is reduced by a faster burst rate, NAD+ is slightly favored as the coenzyme by virtue of its marginally faster turnover rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号