首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A protocol for in vitro multiplication of Capparis decidua (Forsk.) Edgew. has been developed from cultured leaves procured from multiplying axillary shoots on the cultured nodal explants. The highest efficiency of shoot formation was observed on Murashige and Skoog (MS) medium containing 2 mg dm−3 benzyladenine (BA) and 0.5 mg dm−3 1-naphthaleneacetic acid. The regenerated shoots were transferred to MS medium containing 3 mg dm−3 BA for growth and proliferation. Shoots above 2 cm in length were transferred to MS medium supplemented with 1 mg dm-3 indole-3-butyric acid plus 0.5 mg dm−3 indole-3-acetic acid for root induction. No variation was detected among the micropropagated plants by randomly amplified polymorphic DNA (RAPD) markers.  相似文献   

2.
A rapid and efficient in vitro plant regeneration method was developed for Aristolochia indica. Multiple shoot formation was induced from shoot tip and nodal explants on Murashige and Skoog (MS) medium with 1 – 6 mg dm−3 2-isopentenyl-adenine (2-iP) or 1 – 4 mg dm−3 6-benzyladenine (BA). Maximum number of shoots were induced with 5 mg dm−3 2-iP alone (about 12 – 14 shoots). Shoot differentiation occurred directly from the leaf bases as well as from the internodes when cultured on 1 – 4 mg dm−3 BA and 0.8 – 2 mg dm−3 α-naphthaleneacetic acid (NAA) containing medium. Regeneration from the callus occurred when the calli initiated on MS medium containing 0.6 – 4 mg dm−3 NAA in combination with 0.8 – 3 mg dm−3 BA were transferred to 1 – 6 mg dm−3 BA alone containing medium. Elongated shoots were separated and rooted in MS medium containing 1 mg dm−3 indole-3-butyric acid. These were then transferred to soil after gradual acclimatization.  相似文献   

3.
The organogenic competence of leaf explants of eleven Carthamus species including C. tinctorius on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) + α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) + NAA was investigated. Highly prolific adventitious shoot regeneration was observed in C. tinctorius and C. arborescens on both growth regulator combinations and the shoot regeneration frequency was higher on medium supplemented with TDZ + NAA. Nodal culture of nine Carthamus species on media supplemented with BA and kinetin (KIN) individually revealed the superiority of media supplemented with BA over that of KIN in facilitating a higher shoot proliferation index. Proliferating shoots from axillary buds and leaf explants were transferred to medium supplemented with 1.0 mg dm−3 KIN or 0.5 mg dm−3 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium supplemented with 1.0 mg dm−3 each of indole-butyric acid (IBA) and phloroglucinol. The plantlets thus obtained were hardened and transferred to soil.  相似文献   

4.
An in vitro method for propagation of Holarrhena antidysenterica Wall. has been developed using nodal explants from mature trees growing in the field. Irrespective of concentrations and combinations of growth regulators used, the axillary and terminal buds sprouted and elongated when inoculated on Murashige and Skoog (MS) medium. The highest numbers of shoots were formed when sprouted shoots were subcultured from MS basal medium onto MS medium containing 2 mg dm−3 N6-benzyladenine (BA) and 0.5 mg dm−3 α-naphthalene acetic acid (NAA). The shoot number further increased upon subculture on MS medium containing 0.5 mg dm−3 BA. By repeated sub-culturing of shoots derived from nodal axillary buds, a high frequency multiplication rate was established. The elongated shoots were excised and rooted in auxin free MS basal medium. Ex vitro rooting of in vitro formed shoots was achieved upon dipping the microshoots for 2 min in 2 mg dm−3 of indole-3-butyric acid solution. Successful field establishment and high (80–90 %) survival of plants was observed.  相似文献   

5.
An efficient in vitro plant regeneration system from leaves of Ophiorrhiza japonica Blume was established for the first time. Callus formation rate was more than 90.4 % from leaf segments on Murashige and Skoog (MS) supplemented with either α-naphthaleneacetic acid (NAA) alone or in combination with 6-benzyladenine (BA). The highest shoot regeneration (78.9 %) was achieved on MS medium containing 2.0 mg dm−3 BA and 0.2 mg dm−3 NAA, with an average of 9.4 shoots developed per leaf segment. Shoot regeneration was also improved when the leaf explants were cultured in MS basal medium supplemented with 0.5 % (m/v) polyvinylpyrrolidone (PVP). The leaf explants from seedlings with age of about 18–27 d showed the highest shoot regeneration. The regenerated shoots were rooted on half-strength basal MS medium supplemented with 0.5 mg dm−3 indole-3-butyric acid (IBA), which averagely produced 24.8 roots per shoot. The plantlets were transferred to soil, where 100 % survived after 1 month of acclimatization.  相似文献   

6.
A high frequency in vitro shoot bud differentiation and multiple shoot production protocol from hypocotyl segments of 8 to 10-d-old seedlings of cotton has been developed. Murashige and Skoog (MS) basal medium with Nitsch and Nitsch vitamins was found to be optimal in shoot regeneration. A combination of 2 mg dm−3 thidiazuron and 0.05 mg dm−3 naphthaleneacetic acid was the most effective for shoot regeneration (76 %) and an average of 10.6 shoots per responding explant. Combination of the cytokinins benzylaminopurine and kinetin induced better regeneration response than their individual treatments. Supplementation of the culture medium with ethylene inhibitor silver nitrate and activated charcoal showed beneficial effects. Optimal rooting was obtained on half-strength MS medium supplemented with 1 mg dm−3 indolebutyric acid and activated charcoal. Scanning electron micrographs of in vitro cultured explants revealed that shoot primordia were formed de novo.  相似文献   

7.
In the present study, in vitro regeneration system for a recalcitrant woody tree legume, Leucaena leucocephala (cvs. K-8, K-29, K-68 and K-850) from mature tree derived nodal explants as well as seedling derived cotyledonary node explants was developed. Best shoot initiation and elongation was found on full-strength Murashige and Skoog (MS) medium supplemented with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 100 mg dm−3 glutamine, 20.9 μM N 6-benzylamino-purine (BAP) and 5.37 μM 1-naphthalene acetic acid (NAA). Rooting was induced in half-strength MS medium containing 2 % (m/v) sucrose, 100 mg dm−3 myoinositol, 14.76 μM indole-3-butyric acid (IBA) and 0.23 μM kinetin. The cultivar K-29 gave the best response under in vitro conditions. Rooted plantlets were subjected to hardening and successfully transferred to greenhouse. Further, somatic embryogenesis from nodal explants of cv. K-29 via an intermittent callus phase was also established. Pronounced callusing was observed on full-strength MS medium containing 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 40.28 μM NAA and 12.24 μM BAP. These calli were transferred to induction medium and maximum number of globular shaped somatic embryos was achieved in full-strength MS medium fortified with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 15.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 5.0 μM BAP and 1.0 mM proline. Moreover, an increase in endogenous proline content up to 28th day of culture in induction medium was observed. These globular shaped somatic embryos matured in full-strength MS medium with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 10.0 μM BAP, 2.5 to 5.0 μM IBA and 0.5 mM spermidine.  相似文献   

8.
High frequency plant regeneration from the cotyledonary node of common bean   总被引:2,自引:0,他引:2  
An efficient regeneration system for Phaseolus vulgaris was developed from mature seeds germinated on Murashige and Skoog (MS) medium supplemented with thidiazuron or N6-benzylaminopurine (BA) for 6 d. Using cotyledonary nodes, multiple buds were induced on the MS medium supplemented with 5.0 mg dm−3 BA with the induction frequency 71.9 % after 4-week culture. The buds were then transferred onto shoot formation medium containing 1.0 mg dm−3 BA, 0.1 mg dm−3 gibberellic acid and 2.0 mg dm−3 silver nitrate. The addition of AgNO3 enhanced the frequency of the shoot formation from 61.3 to 87.6 %. Root induction medium was half-strength MS medium with 0.75 mg dm−3 indolebutyric acid and 0.02 mg dm−3 BA. The average root frequency was 84.3 %. The regenerated plantlets with healthy roots grew successfully when transferred to soil. Using this system we obtained over 10 regenerated plantlets from one explant.  相似文献   

9.
A simple and efficient micropropagation system was developed for Cotoneaster wilsonii through node and shoot tip explants obtained from mature field-grown plants. Of the two explants, node explants were found to be the most effective for axillary shoot proliferation. The highest frequency of shoot induction was achieved when nodal explants were incubated on Murashige and Skoog (MS) medium supplemented with 0.5 mg L−1 thidiazuron (TDZ) and 0.1 mg L−1 α- naphthaleneacetic acid (NAA) with an average of 34 shoots per explant. The microshoots were separated from the multiple shoots and subcultured on MS medium supplemented with 3% (w/v) sucrose and 0.8% (w/v) agar for further shoot growth. Maximum rooting was obtained on half-strength MS medium supplemented with 0.5 mg L−1 indole-3-butyric acid (IBA). The in vitro-grown plantlets were successfully acclimatized in a glasshouse with 98% of survival. High concentrations of TDZ (1.5–2.0 mg L−1) and repeated subcultures resulted hyperhydric shoots. Supplementation of the culture medium with silicon significantly reduced the induction of hyperhydric shoots. Increasing silicon concentration significantly decreased malondialdehyde content of the regenerated shoots. Data indicate that addition of silicon to the culture medium can effectively control hyperhydricity.  相似文献   

10.
Plants of two cytotypes (2n=2x=20, and 2n=3x=30) of pinto peanut (Arachis pintoi Krapov. & W.C. Gregory) were regenerated through somatic embryogenesis. Embryogenic calli were induced from shoot tips or immature leaves dissected from in vitro growing plants. In the case of the diploid peanut the best somatic embryogenesis was achieved when shoot tips were cultured on Murashige and Skoog (MS) medium supplemented with 10 mg dm−3 Picloram (PIC) and 0.1 mg dm−3 6-benzylaminopurine (BAP) or when explants from immature leaves were cultured on MS + 10 mg dm−3 PIC + 0.01 mg dm−3 BAP. In the case of triploid peanut the highest number of somatic embryos was obtained when shoot tips were cultured on MS + 10 mg dm−3 PIC + 0.01 mg dm−3 BAP or when immature leaves were cultured on MS + 20 mg dm−3 PIC + 0.01 mg dm−3 BAP. Somatic embryos were converted into plants by culture on MS + 0.01 mg dm−3 naphthaleneacetic acid + 0.01 mg dm−3 BAP. Plants were successfully transferred to pots in greenhouse.  相似文献   

11.
Rapid shoot multiplication of Nyctanthes arbor-tristis L. was achieved from axillary meristems on Murashige and Skoog (MS) basal medium supplemented with 1.0–1.5 mg dm−3 6-benzylaminopurine (BA), 50 mg dm−3 adenine sulfate (Ads) and 3 % (m/v) sucrose. Inclusion of indole-3-acetic acid (IAA) in the culture medium along with BA + Ads promoted a higher rate of shoot multiplication. Maximum mean number of microshoots per explant (6.65) was achieved on the MS medium supplemented with 1.5 mg dm−3 BA, 50 mg dm−3 Ads and 0.1 mg dm−3 IAA after 4 weeks of culture. The elongated shoots rooted within 13 to 14 d on half-strength MS medium supplemented with either indole-3-butyric acid (IBA), IAA or 1-naphthaleneacetic acid (NAA) with 2 % sucrose. Maximum percentage of rooting was obtained on medium having 0.25 mg dm−3 IBA and 0.1 mg dm−3 IAA. About 70 % of the rooted plantlets survived in the greenhouse. The in vitro raised plants were grown normally in the field.  相似文献   

12.
An improved protocol for generation of viable cormlets from tissue culture derived shoots of saffron has been developed. Multiple shoots were generated from apical buds, small corms and in vitro developed single shoots. Bunches of two to three shoots when cultured on half strength Murashige and Skoog (MS) medium containing 3 mg dm−3 benzyladenine (BA) and 80 g dm−3 sucrose developed 1.89 cormlets per shoot bunch with an average fresh mass of 1.18 g. It took nine months from culture of apical buds to the harvest of cormlets but under field conditions 22 months. Sucrose appeared to be essential for cormlet induction as no cormlets were developed in the medium devoid of sucrose and only 0.29 per shoot in medium containing mannitol. In vitro derived cormlets sprouted from apical and axillary buds on MS medium containing 12 mg dm−3 BA, 3 mg dm−3 indolebutyric acid and 30 g dm−3 sucrose. Daughter cormlet formation from in vitro derived cormlets was also observed.  相似文献   

13.
A rapid and efficient plant regeneration protocol for a wide range of alfalfa genotypes was developed via direct organogenesis. Through a successive excision of the newly developed apical and axillary shoots, a lot of adventitious buds were directly induced from the cotyledonary nodes when hypocotyl of explants were vertically inserted into modified Murashige and Skoog (MS) medium supplemented with 0.025 mg dm−3 thidiazuron (TDZ) and 3 mg dm−3 AgNO3. When the lower part of shoots excised from explants were immersed into the liquid medium with 1.0 mg dm−3 α-naphthaleneacetic acid (NAA) for 2 min, and then transferred to hormone free half-strength MS medium, over 83.3 % of the shoots developed roots, and all plantlets could acclimatize and establish in soil. The protocol has been successfully applied to eight genotypes, with regeneration frequencies ranging from 63.8 to 82.5 %.  相似文献   

14.
Multiple shoots of Spilanthes acmella Murr. were induced from nodal buds of in vivo and in vitro seedlings on Murashige and Skoog (MS) medium containing 1.0 mg dm−3 6-benzyladenine (BA) and 0.1 mg dm−3 α-naphthalene-acetic acid (NAA). Adventitious shoots were successfully regenerated from the leaf explants derived from the above mentioned multiple shoots. The efficiency of shoot regeneration was tested in the MS medium containing BA, kinetin, or 2-isopentenyl adenine in combination with NAA, indole-3-acetic acid (IAA), or indole-3-butyric acid (IBA) and gibberellic acid. Maximum number of shoots per explant (20 ± 0.47) was recorded with 3.0 mg dm−3 BA and 1.0 mg dm−3 IAA. An anatomical study confirmed shoot regeneration via direct organogenesis. About 95 % of the in vitro shoots developed roots after transfer to half strength MS medium containing 1.0 mg dm−3 IBA. 95 % of the plantlets were successfully acclimatized and established in soil. The transplanted plantlets showed normal flowering without any morphological variation.  相似文献   

15.
A rapid and highly-effective method for micropropagation from nodal segment and shoot tip explants was established for Coleus blumei Benth. Nodal segments and shoot tips were inoculated on MS medium containing 0.7 % agar, 3 % commercial sugar, and different combinations of 6-benzyladenine (BA) with indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthaleneacetic acid (NAA). Hundred percent shoot induction from both explants was achieved on the medium containing BA (2 mg dm−3) and NAA (1 mg dm−3). Shoot tips were proved to be the better explant in comparison to nodal segments in having high rate of shoot induction and more number of shoots. The same media conditions were found suitable for shoot multiplication. Multiplied shoots rooted best on MS medium supplemented with IBA (2 mg dm−3). Micropropagated plants were successfully established in soil after hardening, with 100 % survival rate.  相似文献   

16.
A novel protocol for plant regeneration from cotyledon explants of eggplant (Solanum melongena) reducing concentration of sucrose was established. The most efficient bud induction medium consisted of Murashige and Skoog (MS) medium supplemented with 2.0 mg dm−3 zeatin, 0.1 mg dm−3 indoleacetic acid and 10 g dm−3 sucrose. After 15 d, the shoot buds were fragmented and transferred to the shoot elongation MS supplemented with 1.0–2.0 mg dm−3 gibberellic acid and 4.0–8.0 mg dm−3 AgNO3, which promoted shoots elongation. The genetic stability of the regenerated plants was analyzed by flow cytometry, RAPD and SSR molecular markers. The results indicated that almost no somaclonal variation was detected among the regenerants.  相似文献   

17.
A high frequency shoot regeneration system for ornamental kale [Brassica oleracea L. var. acephala (D.C.) Alef.] was firstly established from seedling cotyledon and hypocotyl explants. The ability of cotyledon and hypocotyl to produce adventitious shoots varied depending upon genotype, seedling age and culture medium. The maximum shoot regeneration frequency was obtained when the explants from cv. Nagoya 4-d-old seedlings were cultured on Murashige and Skoog (MS) medium supplemented with 3 mg dm−3 6-benzylaminopurine (BA) and 0.1 mg dm−3 naphthaleneacetic acid (NAA). The frequency of shoot regeneration was 65.0 % for cotyledons, 76.1 % for hypocotyls; and the number of shoots per explant was 4.3 for cotyledons, 8.2 for hypocotyls. Hypocotyl explants were found to be more responsive for regeneration when compared with cotyledons. Among the 4 cultivars tested, Nagoya showed the best shoot regeneration response. The addition of 3.0 mg dm−3 AgNO3 was beneficial to shoot regeneration. Roots were formed on the base of the shoots when cultured on half-strength MS medium.  相似文献   

18.
A highly efficient protocol for plant regeneration from cotyledonary node of two chickpea (Cicer arietinum L.) cultivars ICCV-10 and Annigeri used phenylacetic acid (PAA). The Murashige and Skoog (MS) medium supplemented with 2.0 mg dm−3 6-benzylaminopurine (BAP) and 1.0 mg dm−3 PAA was used for induction of bud formation. Buds were elongated on MS medium supplemented either with only 0.75 mg dm−3 gibberellic acid (GA3) or 0.2 mg dm−3 GA3 + 0.6 mg dm−3 PAA. The elongated shoots were then transferred onto rooting medium containing 1 mg dm−3 PAA. The frequency of multiple shoot induction and rooting was higher in Annigeri as compared to ICCV-10. The complete plantlets with well-developed roots were transferred to pots containing sterilized soil and sand in the ratio 3:1 where they survived (74 %) and set normal seeds.  相似文献   

19.
Rapid micropropagation was achieved in Chlorophytum borivilianum Santapau and Fernandes using shoot base as explants. Multiple shoots were induced on Murashige and Skoog’s (MS) medium supplemented with 3.0 mg dm−3 6-benzylaminopurine, 0.1 mg dm−3 1-naphthaleneacetic acid, 150 mg dm−3 adenine sulphates and 3 % saccharose. Rooting was readily achieved upon transferring the shoots onto half strength MS medium supplemented with 0.1 mg dm−3 indolebutyric acid and 2 % saccharose. Micropropagated plantlets were hardened in the greenhouse and successfully established in soil. Random amplified polymorphic DNA (RAPD) markers were used to evaluate the genetic stability of the micropropagated plants. Thirty one arbitrary decamers were used to amplify genomic DNA from in vitro and in vivo plant material to assess the genetic stability. All RAPD profile analysis from micropropagated plants was genetically similar to mother plants.  相似文献   

20.
The regeneration ability of primary explants derived from mericlones of two commercial Bohemian hops was investigated. It was found that these hops are able to regenerate shoots by direct organogenesis on media containing BAP or zeatin at concentrations 0.5–2 mg dm−3. The highest regeneration of shoots was achieved from either petioles or internodes at frequencies 21% and 52%, respectively, on the medium containing zeatin (2 mg dm−3), while relatively low amount of regenerated shoots (1.3%) was observed for leaf blade explants. On the other hand, more efficient rooting occurred on the leaf blades then on other explants. A similar pattern of regeneration we observed for HLVd-infected mericlones of clone Osvald 31 even though viroid concentration inin vitro cultures was about 8-fold higher than in field-grown plants and was 31.1 pg mg−1 of fresh mass in the average. These results suggest that HLVd infection did not impair organogenesis. We found that high 2,4-D concentration pretreatment (11 mg dm−3) did not promote somatic embryogenesis. Although this treatment suppressed direct organogenesis, the inhibition was not complete and in low frequency the shoot regeneration was seen. Sensitivity of hop explants to antibiotics commonly used inAgrobacterium-mediated transformation was assayed. It was found that kanamycin (100–200 mg dm−3) suppressed efficiently callogenesis, root formation and shoot proliferation. An estimation of effect of kanamycin (200 mg dm−3) and ticarcillin (500 mg dm−3) on morphogenesis was performed using regeneration medium. The inhibitory effects observed suggest that these conditions could be used inAgrobacterium transformation/selection system. Communicated by J. TUPY  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号