首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholinesterase activities in rat forebrain, erythrocytes, and plasma were assessed after a single oral administration of metrifonate or dichlorvos. In 3-month-old rats, the dichlorvos (10 mg/kg p.o.)-induced inhibition of cholinesterase reached its peak in brain after 15–45 min and after 10–30 min in erythrocytes and plasma. Cholinesterase activity recovered rapidly after the peak of inhibition, but did not reach control values in brain and erythrocytes within 24 h after drug administration. The recovery of plasma cholinesterase activity, in contrast, was already complete 12 h after dichlorvos treatment. Metrifonate (100 mg/kg p.o.) had qualitatively similar inhibition kinetics as dichlorvos, albeit with a slightly delayed onset. Peak values were attained 45–60 min (brain) and 20–45 min (blood), after drug administration. Apparently complete recovery of cholinesterase activity was noted in both tissues 24 h after treatment. The dose-dependence of drug-induced inhibition of cholinesterase in rat blood and brain was determined at the time of maximal inhibition, i.e., 30 min after dichlorvos treatment and 45 min after metrifonate treatment. The oral ED50 values obtained for dichlorvos were 8 mg/kg for brain and 6 mg/kg for both erythrocyte and plasma cholinesterase. The corresponding oral ED50 values for metrifonate were 10 to 15 times higher, i.e., 90 mg/kg in brain and 80 mg/kg in erythrocytes and plasma. In rats deprived of food for 18 h before drug treatment, the corresponding ED50 values for metrifonate were 60 and 45 mg/kg, respectively, indicating an about two-fold higher sensitivity of fasted rats to metrifonate-induced cholinesterase inhibition compared to non-fasted rats. Compared to 3-month-old rats, 19-month-old rats showed a higher sensitivity towards metrifonate and dichlorvos. At the time of maximal inhibition, there was a strong correlation between the degree of cholinesterase inhibition in brain and blood. These results demonstrate that single oral administration of metrifonate and dichlorvos induces an inhibition of blood and brain cholinesterase in the conscious rat in a dose-dependent and apparently fully reversible manner. While the efficiency of a given dose of inhibitor may vary with the satiety status or age of the animal, the extent of brain ChE inhibition can be estimated from the level of blood ChE activity.  相似文献   

2.
The effects of five cholinesterase inhibitors on forebrain monoamine and their metabolite levels, and on forebrain and plasma cholinesterase (ChE) activity in rat were studied in acute and chronic conditions. Acute tetrahydroaminoacridine (THA) dosing caused lower brain (68%) and higher plasma (90%) ChE inhibition than the other drugs studied increased levels of brain dihydroxyphenylacetic acid (DOPAC) (236%), homovanillic acid (HVA) (197%) and 5-hydroxyindolaecetic acid (5-HIAA) (130%). Acute physostigmine (PHY) administration caused a 215% increase in brain DOPAC content. Despite high brain ChE inhibition induced by metrifonate (MTF), dichlorvos (DDVP) or naled no changes in brain noradrenaline (NA), dopamine (DA) or serotonin (5-HT) occurred due to treatment with the study drugs in the acute study. In the chronic 10-day study THA or PHY caused no substantial ChE inhibition in brain when measured 18 hours after the last dose, whereas MTF induced 74% ChE inhibition. Long-term treatment with THA or MTF caused no changes in monoamine levels, but PHY treatment resulted in slightly increased 5-HT values. These results suggest that MTF, DDVP and naled seem to act solely by cholinergic mechanisms. However, the central neuropharmacological mechanism of action of THA and PHY may involve changes in cholinergic as well as dopaminergic and serotoninergic systems.  相似文献   

3.
Inhibition of cholinesterase (ChE) activity produced by a single acute intraperitoneal administration of dimethoate was studied in the wood mouse, Apodemus sylvaticus, and the common shrew, Sorex araneus, under laboratory conditions. ChE values from serum and whole blood were compared with those obtained from brain in order to obtain a non-destructive tool for predicting the severity of brain acetylcholinesterase (AChE) inhibition. In addition, serum and brain inhibition following oral exposure to dimethoate was also measured in the wood mouse. Normal ChE activity was higher in the brain and whole blood of the shrews than in wood mice. There was no difference between species in serum ChE activity. Exposure to dimethoate caused a dose-dependent reduction in ChE activity and there was a significant recovery in activity with increasing time after administration. In both species, serum and whole blood were more sensitive than brain for revealing organophosphate-induced ChE inhibition and serum was more sensitive than whole blood. Statistically significant relationships were defined between whole blood and brain ChE activity and between serum and brain ChE activity. Compared with serum, whole blood ChE activity was the more accurate predictor of brain AChE levels. The relationships between brain and serum ChE activity did not appear to be affected by the route of administration of the pesticide.  相似文献   

4.
《Biomarkers》2013,18(3):202-207
Abstract

Inhibition of cholinesterase (ChE) activity produced by a single acute intraperitoneal administration of dimethoate was studied in the wood mouse, Apodemus sylvaticus, and the common shrew, Sorex araneus, under laboratory conditions. ChE values from serum and whole blood were compared with those obtained from brain in order to obtain a non-destructive tool for predicting the severity of brain acetylcholinesterase (AChE) inhibition. In addition, serum and brain inhibition following oral exposure to dimethoate was also measured in the wood mouse. Normal ChE activity was higher in the brain and whole blood of the shrews than in wood mice. There was no difference between species in serum ChE activity. Exposure to dimethoate caused a dose-dependent reduction in ChE activity and there was a significant recovery in activity with increasing time after administration. In both species, serum and whole blood were more sensitive than brain for revealing organophosphate-induced ChE inhibition and serum was more sensitive than whole blood. Statistically significant relationships were defined between whole blood and brain ChE activity and between serum and brain ChE activity. Compared with serum, whole blood ChE activity was the more accurate predictor of brain AChE levels. The relationships between brain and serum ChE activity did not appear to be affected by the route of administration of the pesticide.  相似文献   

5.
S M Somani  S N Dube 《Life sciences》1989,44(25):1907-1915
Dose response of physostigmine (Phy) was studied in rat using various doses (25-500 micrograms/kg i.m.). Rats were sacrificed 15 min after Phy administration. Blood and tissues were analyzed for ChE activity by radiometric method and Phy concentration by HPLC method. A comparison of ChE values in different tissues of rats indicated that ChE activity was highest in brain (7.11 mumol/min/g) and least in diaphragm (0.67 mumol/min/g). The enzyme activity was eleven times more in brain as compared to diaphragm. Phy produced a dose-dependent inhibition of ChE in RBC (18-42%), brain (23-35%) and diaphragm (25-35%) from 50 to 200 micrograms/kg, then ChE inhibition was plateaued from 200 to 500 micrograms/kg in these tissues. A dose related ChE inhibition was seen in heart (16-50%) and thigh muscle (8-53%) from 50 to 500 micrograms/kg. Phy concentration increased linearly from 50 to 400 micrograms/kg in plasma, brain, heart and thigh muscle. These results indicate that ChE inhibition is linear up to 200 micrograms/kg in RBC, 150 micrograms/kg in brain and 300 micrograms/kg in heart. This linearity is not consistent in other tissues.  相似文献   

6.
In previous metrifonate (MTF) studies, there has been evidence for a preferential functional effect of the drug in cortical but not in striatal regions. In the present study we investigated the kinetics of brain cholinesterase (ChE) inhibition following an acute administration of MTF (100 mg/kg) in various brain regions of young and old Fischer 344 rats. The main objective was to test the hypothesis that the functional regional selectivity, observed in previous studies, was correlated with the extent of ChE inhibition. Using Karnovsky's method for histochemical staining, the highest staining intensity in control rats was found in the striatum and hippocampus, compared to a low basal activity in the frontal and frontoparietal cortices. In the striatum of drug treated old rats, enzyme inhibition was somewhat greater than that found in young rats. However, in the hippocampus, four to eight hours following MTF administration, the inhibition was greater in young compared to old rats. The differences in the sensitivity of various brain regions towards MTF induced ChE inhibition could not be correlated with the regional variation of MTF functional effects.  相似文献   

7.
Kinetic analysis of the activating effect of substrate on the cholinesterase catalysis is performed. There are determined values of coefficient of activation A in the pH zone 5.0-7.5 for the process of hydrolysis of acetylcholine, indophenylacetate (IPA), and 2,6-dichlorophenolindophenylacetate (DIPA) by cholinesterase (ChE) of horse blood serum, as well as of IPA and DIPA by ChE of optical ganglia of the Pacific squid Todarodes pacificus. The phenomenon of activation has not been revealed at hydrolysis of phenylacetate by the horse blood serum ChE. The conclusion is made that the cause of the activating effect of substrate on the process of enzymatic hydrolysis by ChEs of different origin is the presence of the onium grouping in the structure of substrates.  相似文献   

8.
Kinetic analysis of the activating effect of substrate on the cholinesterase catalysis is performed. There are determined values of coefficient of activation A in the pH zone 5 for the process of hydrolysis of acetylcholine, indophenylacetate (IPhA), and 2,6-dichlorophenolindoph enylacetate (DIPhA) by cholinesterase (ChE) of horse blood serum, as well as of IPhA and DIPhA by ChE of optical ganglia of the Pacific squid Todarodes pacificus. The phenomenon of activation has not been revealed at hydrolysis of phenylacetate by the horse blood serum ChE. The conclusion is made that the cause of the activating effect of substrate on the process of enzymatic hydrolysis by ChEs of different origin is the presence of the onium grouping in the structure of substrates.  相似文献   

9.
A wide range of evidences show that cholinesterase (ChE) inhibitors can interfere with the progression of Alzheimer's disease (AD). The earliest known ChE inhibitors, namely, physostigmine and tacrine, showed modest improvement in the cognitive function of AD patients. However, clinical studies show that physostigmine has poor oral activity, brain penetration and pharmacokinetic parameters while tacrine has hepatotoxic liability. Studies were then focused on finding a new type of acetylcholinesterase (AChE) inhibitor that would overcome the disadvantages of these two compounds. During the study, by chance we found a seed compound. We then conducted a structure-activity relationship (SAR) study of this compound. After four years of exploratory research, we found donepezil hydrochloride (donepezil). Recently, acetylcholinesterase inhibitors (AChEIs) have been studied for other mechanisms of action, such as neuroprotective action and lowering of beta-amyloid (beta-amyloid). Donepezil also reduced beta-amyloid plaque in in vitro. The amyloid hypothesis is believed to be the most promising approach in the development of anti-AD drugs. We speculate the mechanism of lowering beta-amyloid by donepezil implicate alpha-secretase (alpha-secretase) enhancer.  相似文献   

10.
Enzymes capable of hydrolyzing esters of thiocholine have been assayed in extracts of Solanum melongena L. (eggplant) and Zea Mays L. (corn). The enzymes from both species are inhibited by the anti-cholinesterases neostigmine, physostigmine, and 284c51 and by AMO-1618, a plant growth retardant and they both have pH optima near pH 8.0. The enzyme from eggplant is maximally active at a substrate concentration of 0.15 mM acetylthiocholine and is inhibited at higher substrate concentrations. On the basis of this last property, the magnitude of inhibition by the various inhibitors, and the substrate specificity, we conclude that the enzyme from eggplant, but not that from corn, is a cholinesterase.  相似文献   

11.
We have characterized the cholinesterase (ChE) of muscularis muscle of Bufo marinus by selectively using specific inhibitors of acetylcholinesterase and pseudocholinesterase and observing susceptibility to inhibition when substrate is present in excess. The ChE activity in this preparation due to acetylcholinesterase (AChE) and pseudocholinesterase (BuChE) was 90 and 10%, respectively. The optimum temperature and pH for the ChE were 38 degrees C and 7.4, respectively and the excess substrate inhibition was noted above a pS of 2.6. The Km for acetylthiocholine (ASCh) was 0.76 X 10(-4) M.  相似文献   

12.
Comparative enzymologic study of catalytic properties of cholinesterase (ChE) in blood serum of the American mink Mustela vison Schr. has revealed several peculiarities of this enzyme. First, using the method of substrate–inhibitor analysis, homogeneity of the ChE preparation has been established, i.e. only one ChE has been found in mink serum. Second, the rate of acetylcholine hydrolysis was higher than of thiocholine substrates, among which propionylthiocholine was hydrolyzed at the highest rate. Third, propionylthiocholine had the highest V/K M value that reflects to a degree affinity of the substrate to enzyme. Fourth, the phenomenon of substrate inhibition, which is not inherent for mammalian serum cholinesterases, is revealed and kinetically analyzed. Fifth, study of inhibitory specificity has not revealed differences of the mink serum ChE from other serum ChE.  相似文献   

13.
Heptyl-physostigmine (Heptyl-Phy; MF-201) is a new carbamate derivative of physostigmine (Phy) with greater lipophilicity and longer inhibitory action on cholinesterase (ChE) activity than the parent compound. Following single dose administration of 5 mg/kg heptyl-Phy i.m., maximal whole brain acetylcholinesterase (AChE) inhibition (82%) if reached at 60 min. Inhibition of plasma BuChE butyrylcholinesterase (BuChE) remains close to the steady state level (60%) between 120 and 360 min. At 360 min, whole brain AChE activity is still 67% inhibited compared to controls. Inhibition of AChE activity displays brain regional differences which are more significant at 360 min. At this time point, AChe activity in cerebellum is only 40% inhibited while frontal cortex and medial septum are still 80% inhibited. Increases in acetycholine (ACh) levels also show regional differences, however, there is no direct relationship between AChE inhibition and ACh increase. The electrically evoked [3H]ACh release in cortical slices was inhibited only by the highest concentration of heptyl-Phy tested (10–4M). At this concentration ChE activity was 97% inhibited in vitro. In conclusion, our results demonstrate that heptyl-Phy compares favorably to other reversible cholinesterase inhibitors (ChEI), particularly to Phy as far as producing a more long-lasting inhibition of AChE and a more prolonged increase of ACh in brain with less severe side effects. Therefore, it represents an interesting candidate for cholinomimetic therapy of Alzheimer disease (AD).Dept. of Pharmacology, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 20031 China.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

14.
Hallak  Marta  Giacobini  Ezio 《Neurochemical research》1986,11(7):1037-1048
The relationship between physostigmine (Phy) concentration, acetylcholine (ACh), choline (Ch) and cholinesterase (ChE) activity was examined in whole rat brain after the administration of [3H]Phy (650 g/kg i.m.). Cholinesterase inhibition was found to be inversely related to Phy levels. Maximal inhibition (80%) was seen at 5 min and by 2 hrs ChE activity had returned to control levels. Acetylcholine levels in whole brain peaked at 30 min at a concentration (80 nmol/g) 2.3 times higher than controls (33 nmol/g). Choline levels were not significantly altered. The regional distribution of Phy concentration and ChE activity was studied in six areas of the brain following i.m. administration of three different dosages of [3H]Phy. Physostigmine concentration and ChE activity showed a dose dependency in each area examined except in SP (medial septum). Striatum (ST) showed the greatest relative increase of ACh up to 30 min, when compared to other areas. Choline levels were not changed in any area with the exception of ST at 5 min where a decrease was seen. There was a relationship between ChE activity, Phy concentration and ACh levels in all areas examined with exception of the medulla oblongata (MO). Our results indicate that even though ChE was inhibited practically uniformly in all brain areas, the percent increase with respect to control animals and the relative increase of ACh varied widely from area to area. This finding has clinical implications in cases in which cholinomimetic therapy is used to elevate ACh levels in specific brain areas which show a cholinergic deficit.Special issue dedicated to Prof. Eduardo De Robertis.  相似文献   

15.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are thought to be the result of a gene duplication event early in vertebrate evolution. To learn more about the evolution of these enzymes, we expressed in vitro, characterized, and modeled a recombinant cholinesterase (ChE) from a teleost, the medaka Oryzias latipes. In addition to AChE, O. latipes has a ChE that is different from either vertebrate AChE or BChE, which we are classifying as an atypical BChE, and which may resemble a transitional form between the two. Of the fourteen aromatic amino acids in the catalytic gorge of vertebrate AChE, ten are conserved in the atypical BChE of O. latipes; by contrast, only eight are conserved in vertebrate BChE. Notably, the atypical BChE has one phenylalanine in its acyl pocket, while AChE has two and BChE none. These substitutions could account for the intermediate nature of this atypical BChE. Molecular modeling supports this proposal. The atypical BChE hydrolyzes acetylthiocholine (ATCh) and propionylthiocholine (PTCh) preferentially but butyrylthiocholine (BTCh) to a considerable extent, which is different from the substrate specificity of AChE or BChE. The enzyme shows substrate inhibition with the two smaller substrates but not with the larger substrate BTCh. In comparison, AChE exhibits substrate inhibition, while BChE does not, but may instead show substrate activation. The atypical BChE from O. latipes also shows a mixed pattern of inhibition. It is effectively inhibited by physostigmine, typical of all ChEs. However, although the atypical BChE is efficiently inhibited by the BChE-specific inhibitor ethopropazine, it is not by another BChE inhibitor, iso-OMPA, nor by the AChE-specific inhibitor BW284c51. The atypical BChE is found as a glycophosphatidylinositol-anchored (GPI-anchored) amphiphilic dimer (G(2) (a)), which is unusual for any BChE. We classify the enzyme as an atypical BChE and discuss its implications for the evolution of AChE and BChE and for ecotoxicology.  相似文献   

16.
This study was performed in order to delineate differences in kinetic enzyme characteristics of brain monoamine oxidase (MAO) and plasma cholinesterase (ChE) derived from the Walker-Walker (Fawn Hooded, FH) rat and from its putative ancestors, the Wistar (W) and Long-Evans (LE). As compared with the enzyme isolated from the other two strains, brain MAO from FH has both a higher V max and increased reaction rate at lower substrate concentrations. It may thus be described as a “more efficient” enzyme. This study confirms previous work which shows that plasma ChE activity of females is higher than that of males. Fluoride ion is a noncompetitive inhibitor of the Wistar ChE, is a competitive inhibitor of the FH enzyme, and has no effect on the LE enzyme. Dibucaine is a competitive inhibitor in all cases except one: ChE derived from the FH female is uncompetitively inhibited. A comparison of the inhibitor constants shows that FH ChE is more resistant to Dibucaine than is that of W, and that LE is the most sensitive. FH cholinesterase is twice as resistant to the action of fluoride as is the Wistar enzyme.  相似文献   

17.
The organophosphate azinphos methyl (AzMe) and the carbamate carbaryl are the insecticides mostly used in the irrigated valley of Río Negro and Neuquén, Patagonia, Argentina. Juvenile rainbow trout were exposed to AzMe and carbaryl and the sensitivity of skeletal muscular cholinesterase (ChE) and the time course of inhibition and recovery were evaluated. EC50 values demonstrated that AzMe was a stronger in vivo inhibitor of muscular ChE (1.05+/-0.23 microg/L) than carbaryl (270+/-62.23 microg/L). Muscular ChE was significantly less sensitive to both insecticides than brain ChE. EC50 values obtained for muscular ChE were closer than those for brain ChE to the respective pesticide lethal concentrations, pointing out the relevance of the muscular enzyme in determining acute toxicity. The recovery process of ChE activity after carbaryl exposure (500 microg/L) was fast, whereas no significant recovery was observed with AzMe (1 microg/L) after 21 days in uncontaminated media. Brain and muscular ChE were inhibited and showed a significant but not complete recovery after three consecutive 48-h exposures to AzMe (1 microg/L) followed by a recovery period of 7 days. This scheme mimics the periodical application of the insecticides in the region and suggests a certain probability of a sustained ChE inhibition under field conditions, affecting fish development and survival.  相似文献   

18.
Studies have been made of the effect of several organophosphorus inhibitors, R1(R2)P(O) . SCH2CH2SR and R1(R2)P(O)SCH2CH2SRR . -O4SCH3 (or -I), which differ by the structure of split (R, P) and phosphoryl (R1, R2) parts of the molecule, on cholinesterase (ChE) from the brain of the fly Delia brassicae, acetylcholinesterase (AChE) of the bovine erythrocytes and butyrylcholinesterase (BuChE) from the blood serum of the horse. For fly ChE, higher values of a constant (kII) of the inhibition rate (at pH 7.5 and temperature 25 degrees C) were obtained both with thiophosphates and with thiophosphonates. This finding reveals higher reactivity of the active centre of this enzyme, as well as significantly lower selectivity of the latter to the structure of organophosphorus inhibitors. The data obtained suggest the existence of differences in the size of hydrophobic regions of anionic and esterase parts of the active centre in ChE of the fly and AChE of mammals, as well as the existence of some similarity between ChE of the fly and BuChE.  相似文献   

19.
Abstract— The effects of cholinergic drugs on thiamine diphosphatase (TDPase) in rat brain, liver and kidney were studied to clarify the role of the enzyme in the central nervous system.
Brain TDPase activity was markedly increased by intraperitoneal injection of a sub-lethal dose of physostigmine, ambenonium or pentetrazol. These drugs also increased the activity in the kidney, but not liver. Strychnine, atropine, and scopolamine did not affect the activity of brain TDPase, but decreased the enzyme activity of liver and kidney. Physostigmine also increased the activity of brain thiamine monophosphatase.
Brain TDPase activity reacheda maximum 30 minafterphysostigmine injection (1.0mg/kg). However, inhibition of brain acetylcholinesterase activity was greatest 45 min after physostigmine injection. The TDPase and AChE activities had both returned to normal values 60 min after the injection. The durations of these changes of TDPase and AChE activity corresponded to the duration of the tremor induced by physostigmine. The contents of total and phosphorylated thiamines in the brain but not in the liver or kidney were significantly reduced by physostigmine.
The relationship between ACh and activation of TDPase activity by cholinesterase inhibitors is discussed.  相似文献   

20.
Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and >250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AchE possess hydrophobic domain(s) different from the 20 kD peptide already described.Abbreviations used AChE acetylcholinesterase - BSA bovine serum albumin - ChE serum (butyryl) cholinesterase - ConA-Sepharose concanavalin A-Sepharose 4B - DMAEBA-Sepharose dimethylaminoethylbenzoic acid-Sepharose 4B - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TMA tetramethylammonium chloride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号