首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Lysyl-tRNA synthetase occurs in the high molecular weight form in rat liver. The high molecular weight lysyl-tRNA synthetase has been previously demonstrated to exist as multienzyme complexes of aminoacyl-tRNA synthetases. The multienzyme complexes can be dissociated by hydrophobic interaction chromatography and yield fully active, free lysyl-tRNA synthetase. The free form is found to be twice as active as the complexed form in lysylation. Bisubstrate and product inhibition kinetics of lysylation are systematically carried out for highly purified free lysyl-tRNA synthetase and the 18 S synthetase complex. Surprisingly, the two enzyme forms exhibit distinctly different kinetic patterns in bisubstrate and product inhibition kinetics under identical conditions. The 18 S synthetase complex shows kinetic patterns consistent with an ordered bi uni uni bi ping pong mechanism, while the results of free lysyl-tRNA synthetase do not. We conclude that structural organization of lysyl-tRNA synthetase beyond quaternary structure of proteins may alter the enzyme behavior.  相似文献   

2.
Lysyl-tRNA synthetase, dissociated from the multienzyme complexes of aminoacyl-tRNA synthetases from rat liver, was previously found to be 6-fold more active than the synthetase complex in the enzymatic synthesis of P1,P4-bis(5'-adenosyl)tetraphosphate. The bi-substrate and product inhibition kinetics of the reaction are analyzed. Free lysyl-tRNA synthetase exhibits distinctly different kinetic patterns from those of an 18 S synthetase complex containing lysyl-tRNA synthetase. The 18 S synthetase complex shows kinetic patterns which are consistent with an ordered Bi Uni Uni Bi ping-pong mechanism. Free lysyl-tRNA synthetase shows kinetic patterns consistent with a random mechanism. The differences in the enzymatic properties are attributed to the organization of the supramolecular structure of the synthetase complex. The results suggest that association of the synthetases may affect the mechanisms of the synthesis of AppppA.  相似文献   

3.
Affinity chromatography of rat liver aminoacyl-tRNA synthetase complex   总被引:3,自引:0,他引:3  
The affinity column lysyldiaminohexyl-Sepharose 4B has been synthesized for the purification of aminoacyl-tRNA synthetase complexes. Lysyl-tRNA synthetase (EC 6.1.1.6) bound specifically to the Sepharose-bound lysine. The purified lysyl-tRNA synthetase was associated with arginyl-tRNA synthetase (EC 6.1.1.16) and sedimented at 18S and 12S. A 24S lysyl-tRNA synthetase bound specifically to the affinity column and also found associated with arginyl-tRNA synthetase. The results favor the model of a heterotypic multienzyme complex of mammalian aminoacyl-tRNA synthetases.  相似文献   

4.
An 18 S multienzyme complex of aminoacyl-tRNA synthetases is found to be active in the synthesis of diadenosine-5',5'-P1,P4-tetraphosphate (AppppA). Most of the activity is attributed to lysyl-tRNA synthetase in the complex. Free lysyl-tRNA synthetase dissociated from the synthetase complex is about 6-fold more active than the complex in AppppA synthesis, while their apparent Michaelis constants for ATP and lysine are similar. AMP, which reportedly activates AppppA synthesis (Hilderman, R.H. (1983) Biochemistry 22, 4353-4357), has no effect on AppppA synthesis. The higher activity of free Lys-tRNA synthetase is in part due to the higher stimulation of AppppA synthesis by Zn2+. These results suggest that association of aminoacyl-tRNA synthetases may affect AppppA synthesis.  相似文献   

5.
The leucyl-tRNA and lysyl-tRNA synthetase components of the multienzyme complex from sheep liver were selectively dissociated by hydrophobic interaction chromatography on hexyl-agarose and purified to homogeneity. Conservation of activities during the purification required the presence of Triton X-100. The homogeneous enzymes corresponded to a monomer of Mr 129000 and a dimer of Mr 2 X 79000, respectively. Both were strongly adsorbed to the hydrophobic support phenyl-Sepharose, in conditions where the corresponding purified enzymes from yeast and Escherichia coli were not bound. Moreover, like the corresponding enzymes from yeast but unlike those of prokaryotic origin, the purified leucyl-tRNA and lysyl-tRNA synthetases derived from the complex displayed affinity for polyanionic supports. It is shown that proteolytic conversion of lysyl-tRNA synthetase to a fully active dimer of Mr 2 X 64000, leads to loss of both the hydrophobic and the polyanion-binding properties. These results support the view that each subunit of lysyl-tRNA synthetase is composed of a major catalytic domain, similar in size to the subunit of the prokaryotic enzyme, contiguous to a chain extension which carries both cationic charges and hydrophobic residues. The implications of these findings on the structural organization of the complex are discussed in relation to its other known properties.  相似文献   

6.
Methionyl-tRNA synthetase occurs free and as high-molecular-weight multi-enzyme complexes in rat liver. The free form is purified to near homogeneity by conventional column chromatography and affinity chromatography on tRNA-Sepharose. The native molecular weight of free methionyl-tRNA synthetase is 64 500, based on its sedimentation coefficient of 4.5 S and Stokes radius of 33 A. The free methionyl-tRNA synthetase apparently belongs to alpha-type subunit structure, since the subunit molecular weight is 68 000, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Methionyl-tRNA synthetase is dissociated from the high-molecular-weight synthetase complex by controlled trypsinization, according to Kellermann, O., Viel, C. and Waller, J.P. (Eur. J. Biochem. 88 (1978) 197-204). The dissociated, free methionyl-tRNA synthetase is subsequently purified to near homogeneity. The subunit structure of dissociated methionyl-tRNA synthetase is identical to that of endogenous free methionyl-tRNA synthetase. Anti-serum raised against Mr 104 000 protein in the synthetase complex, specifically inhibited methionyl-tRNA synthetase in both the free and the high-molecular-weight forms to the same extent. These results suggest that the occurrence of multiple forms of methionyl-tRNA synthetases in mammalian cells may, in part, be due to proteolytic cleavage.  相似文献   

7.
In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5')tetraphospho(5')adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.  相似文献   

8.
Aspartyl-tRNA synthetase from higher eukaryotes is a component of a multienzyme complex comprising nine aminoacyl-tRNA synthetases. The cDNA encoding cytoplasmic rat liver aspartyl-tRNA synthetase was previously cloned and sequenced. This work reports the identification of structural features responsible for its association within the multisynthetase complex. Mutant and chimeric proteins have been expressed in mammalian cells and their structural behavior analyzed. A wild-type rat liver aspartyl-tRNA synthetase, expressed in Chinese hamster ovary (CHO) cells, associates within the complex from CHO cells, whereas a mutant enzyme with a deletion of 34 amino acids from its amino-terminal extremity does not. A chimeric enzyme, made of the amino-terminal moiety of rat liver aspartyl-tRNA synthetase fused to the catalytic domain of yeast lysyl-tRNA synthetase, has been expressed in Lys-101 cells, a CHO cell line with a temperature-sensitive lysyl-tRNA synthetase. The fusion protein is stable in vivo, does not associate within the multisynthetase complex and cannot restore normal growth of the mutant cells. These results establish that the 3.7-kDa amino-terminal moiety of mammalian aspartyl-tRNA synthetase mediates its association with the other components of the complex. In addition, the finding that yeast lysyl-tRNA synthetase cannot replace the aspartyl-tRNA synthetase component of the mammalian complex, indicates that interactions between neighbouring enzymes also play a prominent role in stabilization of this multienzyme structure and strengthened the view that the multisynthetase complex is a discrete entity with a well-defined structural organization.  相似文献   

9.
The myositis-specific anti-Jo-1 autoantibody, which is directed against histidyl-tRNA-synthetase, is found in 30% of polymyositis patients. The Jo-1 antigen has been reported to be a nuclear antigen by some authors. On the contrary we show that less than 2% of the total histidyl-tRNA and lysyl-tRNA synthetase activities are associated with purified rat liver nuclei or the hepatocyte intermediate filament-nuclear fraction. In the presence of polyethylene glycol, in which the high Mr multi-enzyme complex containing lysyl-tRNA synthetase is insoluble, 65% of the lysyl-tRNA synthetase and only 15% of histidyl-tRNA synthetase activities remained associated with the cytoskeletal framework. The Jo-1 antigen exhibited a diffuse granular cytoplasmic distribution in cultured rat hepatocytes as determined by indirect immunofluorescent microscopy. Hence, the Jo-1 antigen is cytoplasmic and unassociated with the cytoskeletal framework or high Mr synthetase complex in situ.  相似文献   

10.
The major high molecular weight complex of aminoacyl-tRNA synthetases is purified about 1000-fold with 30% yield from rat liver. The synthetase complex sediments at 24 S with a molecular weight of 900,000 +/- 75,000 and contains aminoacylation activities for lysine, arginine, isoleucine, leucine, methionine, glutamine, glutamate, and proline. The 24 S synthetase complex dissociates into 21 S, 18 S, 13 S, 12 S, and 10 S complexes with specific enzymatic activities. Dissociation of the 24 S complex into active free synthetases is achieved by hydrophobic interaction chromatography. The disassembly of the synthetase complex is consistent with the structural model of a heterotypic multienzyme complex and suggests that the complex formation is due to the specific intermolecular interactions among the synthetases.  相似文献   

11.
Fast-growing revertants have been selected from a slow-growing lysyl-tRNA synthetase mutant. All of the revertants had increased lysyl-tRNA synthetase activity compared with the mutant (5- to 85-fold), and in some revertants this amounted to two to three times the wild-type synthetase activity. Two-dimensional gel electrophoresis of a whole-cell extract of revertant IH2018 (1.5- to 2-fold wild-type synthetase activity) showed that the increase in synthetase activity is due to the induction of cryptic lysyl-tRNA synthetase forms and not to a change in the constitutive lysyl-tRNA synthetase. Genetic studies have shown that a locus termed rlu (for regulation of lysU ) which is cotransducible with purF at 49.5 min influences the amount of the cryptic lysyl-tRNA synthetase.  相似文献   

12.
The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases.  相似文献   

13.
The phosphorylation of a highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes by the cyclic nucleotide-independent protein kinase, casein kinase I, has been examined, and the effects of phosphorylation on the synthetase activities were determined. The synthetase complex, purified as described (Kellermann, O., Tonetti, H., Brevet, A., Mirande, M., Pailliez, J.-P., and Waller, J.-P. (1982) J. Biol. Chem. 257, 11041-11048), contains seven aminoacyl-tRNA synthetases and four unidentified proteins and is free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP results in the phosphorylation of four synthetases, namely, glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I alters binding of the aminoacyl-tRNA synthetase complex to tRNA-Sepharose. The phosphorylated synthetase complex elutes from tRNA-Sepharose at 190 mM NaCl, while the nonphosphorylated complex elutes at 275 mM NaCl. Phosphorylation by casein kinase I results in a significant inhibition of aminoacylation by the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases; the activities of the nonphosphorylated synthetases remain unchanged. These data indicate that phosphorylation of aminoacyl-tRNA synthetases in the high molecular weight complex alters the activities of these enzymes. One of the unidentified proteins present in the complex (Mr 37,000) is also highly phosphorylated by casein kinase I. From a comparison of the properties and phosphopeptide pattern of this protein with that of casein kinase I, it appears that the Mr 37,000 protein in the synthetase complex is an inactive form of casein kinase I. This observation provides further evidence for a physiological role for casein kinase I in regulating synthetase activities.  相似文献   

14.
The functions of evolved mammalian supramolecular assemblies and extensions of enzymes are not well understood. Human lysyl-tRNA synthetase (hKRS) only upon the removal of the amino-terminal extension (hKRSΔ60) bound to EF1α and was stimulated by EF1α in vitro. HKRS and hKRSΔ60 were also differentially stimulated by aspartyl-tRNA synthetase (AspRS) from the multi-synthetase complex. The non-synthetase protein from the multi-synthetase complex p38 alone did not affect hKRS lysylation but inhibited the AspRS-mediated stimulation of hKRS. These results revealed the functional interactions of hKRS and shed new lights on the functional significance of the structural evolution of multienzyme complexes and appended extensions.  相似文献   

15.
Three groups of lysine-excreting, thialysine-resistant mutants of Saccharomyces cerevisiae were derived from the wild-type strain (X2180) by mutagenic treatment and selected on the basis of a cross-feeding assay. Mutants MNNG2-9, MNNG2-27, MNNG2-39 and MNNG2-62 (group 1) exhibited a 2:2 segregation for thialysine resistance following mating with a wild-type strain and a lower than wild-type lysyl-tRNA synthetase activity; the thialysine-resistant phenotype was dominant in specific hybrids. Mutant MNNG2-2 (group II) was similar to group I mutants except that the thialysine-resistant phenotype was recessive in the hybrid. Mutant MNNG3-142 (group III) exhibited an irregular ratio of segregation of thialysine resistance and a significantly lower lysyl-tRNA synthetase activity; the thialysine-resistant phenotype was recessive in the hybrid. The growth of both group I and group III mutants was temperature-sensitive. The thialysine-resistant mutants exhibited pleiotropic properties including the increased production and excretion of lysine, thermosensitive growth and an impairment of lysyl-tRNA synthetase activity.  相似文献   

16.
Aspergillus quadricinctus was grown under iron limitation to induce the enzymes for ferrichrome biosynthesis. The mycelium was disintegrated by ultraturrax homogenization, and ferrichrome synthetase was purified by column chromatography on DEAE cellulose, hydroxyapatite and Bio-Gel A-5m. The enzyme was almost homogeneous in single fractions as shown in gel electrophoresis under non-denaturating conditions. By fast-protein liquid chromatography on Superose 6, the purified ferrichrome synthetase (molecular weight 9.6.10(5) dissociated partly into an enzyme complex with reduced ferrichrome synthetase activity of 8 x 10(5) Da, one acetylhydroxyornithine (AHO) activating protein of 5.5 x 10(5) Da and one glycine activating protein of 4 x 10(5) Da. After SDS treatment the AHO activating protein dissociated into subunits of 9 x 10(4) Da, while the glycine activating protein dissociated into subunits of 5 x 10(4) Da and 4 x 10(4) Da in a molar ratio of 6:1. No subunits were found after SDS treatment of the larger of the two ferrichrome synthetizing enzyme complexes. Pantetheine was detected in protein bands of defined molecular weights (4 x 10(4), 9 x 10(4) and greater than 3.4 x 10(5) after SDS polyacrylamide gel electrophoresis. Gel slices were cut out, and the growth factor activity for Lactobacillus plantarum ATCC 8014 was analyzed. The calculated content was 2 mol of pantetheine per mol of ferrichrome synthetase of 9.6 x 10(5) Da.  相似文献   

17.
Abstract The gene encoding lysyl-tRNA synthetase ( lysS ) in Mycoplasma hominis was cloned and sequenced. The gene was found to have an open reading frame of 1466 bp encoding a polypeptide with a predicted molecular mass of 57 kDa. The amino acid sequence showed 44.3% and 43.7% identity to the Escherichia coli lysyl-tRNA synthetases, encoded by lysS and lysU . Only one lysyl-tRNA synthetase encoding gene was found in M. hominis . The G+C content of the gene was found to be 28.6%, which is significantly lower than in other prokaryotes. The gene was located 4 kb upstream of the M. hominis PG21 rRNA B operon.  相似文献   

18.
Eighteen aminoacyl-tRNA synthetases of the postribosomal supernatant fraction of brain cortex were characterized by glycerol density gradient centrifugation and gel filtration analysis. On the basis of sedimentation properties and gel elution profiles, four groups of enzyme activities were determined in the postribosomal supernatant fraction; the first group sedimenting at about 6 S contained 18 individual synthetase activities, the next successive groups of greater molecular sizes contained synthetase complexes, and the last group possessed activities of 15 synthetases. Each aminoacyl-tRNA synthetase appeared at least in two forms: free and bound in complexes of varying sizes and different enzyme compositions. Conventional purification methods of lysyl-tRNA synthetase from the post-ribosomal supernatant fraction of brain cortex gave a preparation containing four groups of aminoacylation activities. The obtained preparation contained a large complex, reduced number of intermediate complexes and some individual synthetases.  相似文献   

19.
Lysyl-tRNA can be synthesized by both a class I (LysRS-I) and a class II (LysRS-II) lysyl-tRNA synthetase. The crystal structure of LysRS-I from Pyrococcus horikoshii at 2.6 A resolution reveals extensive similarity with glutamyl-tRNA synthetase (GluRS). A comparison of the structures of LysRS-I and LysRS-II in complex with lysine shows that both enzymes use similar strategies for substrate recognition within unrelated active site topologies. A docking model based upon the GluRS-tRNA complex suggests how LysRS-I and LysRS-II can recognize the same molecular determinants in tRNALys, as shown by biochemical results, while approaching the acceptor helix of the tRNA from opposite sides.  相似文献   

20.
The synthesis of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) can be catalyzed in vitro by a tetrameric tRNA synthetase complex from rat liver containing two lysyl-tRNA synthetase and two arginyl-tRNA synthetase subunits. This reaction required ATP, AMP, 50-100 microM zinc, and inorganic pyrophosphatase. We show here that AMP can be omitted from the reaction and that the zinc levels can be markedly reduced provided catalytic amounts of tRNA(Lys) are added to the reaction mixture. Ap4A synthesis with purified tRNA(Lys) isoacceptors showed that the minor species, tRNA(4Lys), was 3-fold more active than either of the two major tRNA(Lys) species, tRNA(2Lys) and tRNA(5Lys). No activity could be demonstrated with tRNA(Lys) from Escherichia coli or with tRNA(Lys) or tRNA(Phe) from yeast. Aminoacylation of tRNA(4Lys) was strictly required as determined by the fact that Ap4A synthesis was not observed until aminoacylation was nearly complete, inhibitors of aminoacylation blocked Ap4A synthesis, and there was a strict requirement for added lysine. None of the above observations could be demonstrated, however, when lysyl-tRNA(Lys) was directly supplied to the reaction mixture. Optimum Ap4A synthesis was obtained by the addition of 1 mol of tRNA(Lys)/mol of the synthetase complex. This reaction is unique because it does not require the prior formation of an aminoacyl-AMP intermediate and because it can actively synthesize Ap4A at physiological zinc concentrations. The preferential role for tRNA(4Lys) in Ap4A synthesis is consistent with its prior implication in cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号