首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ATP-dependent simian virus 40 T-antigen-Hsc70 complex formation   总被引:3,自引:0,他引:3       下载免费PDF全文
Simian virus 40 large T antigen is a multifunctional oncoprotein that is required for numerous viral functions and the induction of cellular transformation. T antigen contains a J domain that is required for many of its activities including viral DNA replication, transformation, and virion assembly. J-domain-containing proteins interact with Hsc70 (a cellular chaperone) to perform multiple biological activities, usually involving a change in the conformation of target substrates. It is thought that Hsc70 associates with T antigen to assist in performing its numerous activities. However, it is not clear if T antigen binds to Hsc70 directly or induces the binding of Hsc70 to other T-antigen binding proteins such as pRb or p53. In this report, we show that T antigen binds Hsc70 directly with a stoichiometry of 1:1 (dissociation constant = 310 nM Hsc70). Furthermore, the T-antigen--Hsc70 complex formation is dependent upon ATP hydrolysis at the active site of Hsc70 (ATP dissociation constant = 0.16 microM), but T-antigen--Hsc70 complex formation does not require nucleotide hydrolysis at the T-antigen ATP binding site. N136, a J domain-containing fragment of T antigen, does not stably associate with Hsc70 but can form a transient complex as assayed by centrifugation analysis. Finally, T antigen does not associate stably with either of two yeast Hsc70 homologues or an amino-terminal fragment of Hsc70 containing the ATPase domain. These results provide direct evidence that the T-antigen--Hsc70 interaction is specific and that this association requires multiple domains of both T antigen and Hsc70. This is the first demonstration of a nucleotide requirement for the association of T antigen and Hsc70 and lays the foundation for future reconstitution studies of chaperone-dependent tumorigenesis induced by T antigen.  相似文献   

2.
3.
The N-terminal exon of DNA tumor virus T antigens represents a J domain that can direct interaction with the host-encoded Hsp70 chaperones. We have taken advantage of rapid Hsp40 cochaperone assays with Escherichia coli to assess simian virus 40 (SV40)-encoded J-domain loss of function. We found a strong correlation between loss of cochaperone function in E. coli and defective SV40 growth, suggesting that the major role of the J domain in DNA tumor viruses is to provide cochaperone function. We also report the expression of native SV40 virus T antigens in E. coli. Our results show that small t antigen, but not large T antigen (LT) or LT truncation TN125 or TN136, can functionally replace under limited growth conditions DnaJ (Hsp40) function in vivo. In addition, purified small t antigen can efficiently stimulate E. coli DnaK's (Hsp70) ATPase in vitro, thus behaving like a bona fide cochaperone. Furthermore, small t amino acids 83 to 174, which are adjacent to the viral J domain, can replace the E. coli DnaJ J-domain glycine-phenylalanine-rich domain, immediately adjacent to the J-domain sequences, even in the absence of significant amino acid similarity to their DnaJ counterpart. Taken together, our studies demonstrate that functionally related Hsp40 proteins from mammalian viral systems can be rapidly studied in bacteria and exploited to probe the universally conserved Hsp70 chaperone machine mechanism.  相似文献   

4.
The biochemical activities of a series of transformation-competent, replication-defective large T-antigen point mutants were examined. The assays employed reflect partial reactions required for the in vitro replication of simian virus 40 (SV40) DNA. Mutants which failed to bind specifically to SV40 origin sequences bound efficiently to single-stranded DNA and exhibited nearly wild-type levels of helicase activity. A mutation at proline 522, however, markedly reduced ATPase, helicase, and origin-specific unwinding activities. This mutant bound specifically to the SV40 origin of replication, but under certain conditions it was defective in binding to both single-stranded DNA and the partial duplex helicase substrate. This suggests that additional determinants outside the amino-terminal-specific DNA-binding domain may be involved in nonspecific binding of T antigen to single-stranded DNA and demonstrates that origin-specific DNA binding can be separated from binding to single-stranded DNA. A mutant containing a lesion at residue 224 retained nearly wild-type levels of helicase activity and recognized SV40 origin sequences, yet it failed to function in an origin-specific unwinding assay. This provides evidence that origin recognition and helicase activities are not sufficient for unwinding to occur. The distribution of mutant phenotypes reflects the complex nature of the initiation reaction and the multiplicity of functions provided by large T antigen.  相似文献   

5.
D McVey  B Woelker    P Tegtmeyer 《Journal of virology》1996,70(6):3887-3893
Previous studies have shown that phosphorylation of simian virus 40 (SV40) T antigen at threonine 124 enhances the binding of T antigen to the SV40 core origin of replication and the unwinding of the core origin DNA via hexamer-hexamer interactions. Here, we report that threonine 124 phosphorylation enhances the interaction of T-antigen amino acids 1 to 259 and 89 to 259 with the core origin of replication. Phosphorylation, therefore, activates the minimal DNA binding domain of T antigen even in the absence of domains required for hexamer formation. Activation is mediated by only one of three DNA binding elements in the minimal DNA binding domain of T antigen. This element, including amino acids 167, 215, and 219, enhances binding to the unique arrangement of four pentanucleotides in the core origin but not to other pentanucleotide arrangements found in ancillary regions of the SV40 origin of replication. Interestingly, the same four pentanucleotides in the core origin are necessary and sufficient for phosphorylation-enhanced DNA binding. Further, we show that phosphorylation of threonine 124 promotes the assembly of high-order complexes of the minimal DNA binding domain of T antigen with core origin DNA. We propose that phosphorylation induces conformational shifts in the minimal DNA binding domain of T antigen and thereby enhances interactions among T-antigen subunits oriented by core origin pentanucleotides. Similar subunit interactions would enhance both assembly of full-length T antigen into binary hexamer complexes and origin unwinding.  相似文献   

6.
7.
Salma A  Tsiapos A  Lazaridis I 《The FEBS journal》2007,274(19):5021-5027
Simian virus 40 large T antigen is a J-domain-containing protein with multiple functions. Among its numerous activities, T antigen can bind heat shock cognate 70 (hsc70) but the biological significance of this interaction has not been fully understood. Here, we show that T antigen can act as an hsc70 co-chaperone enhancing the protein-folding ability of the hsc70 chaperone machine. We also show that T antigen exerts its function in collaboration with the mammalian homologue of DnaJ. Moreover, we show that the participation of T antigen in the hsc70 chaperone machine has cell-type-specific characteristics.  相似文献   

8.
We have combined in vitro DNA replication reactions and immunological techniques to analyze biochemical interactions between simian virus (SV40) large T antigen and components of the cellular replication apparatus. First, in vitro SV40 DNA replication was characterized with specific origin mutants. Next, monoclonal antibodies were used to demonstrate that a specific domain of T antigen formed a complex with cellular DNA polymerase alpha. Several antibodies were identified that coprecipitated T antigen and DNA polymerase alpha, while others were found to selectively prevent this interaction and concomitantly inhibit DNA replication. DNA polymerase alpha also bound efficiently to a T-antigen affinity column, confirming the immunoprecipitation results and providing a useful method for purification of the complete protein complex. Taken together, these results suggest that the T-antigen-polymerase association may be a key step in the initiation of SV40 DNA replication.  相似文献   

9.
10.
Ott RD  Wang Y  Fanning E 《Journal of virology》2002,76(10):5121-5130
The recruitment of DNA polymerase alpha-primase (pol-prim) is a crucial step in the establishment of a functional replication complex in eukaryotic cells, but the mechanism of pol-prim loading and the composition of the eukaryotic primosome are poorly understood. In the model system for simian virus 40 (SV40) DNA replication in vitro, synthesis of RNA primers at the origin of replication requires only the viral tumor (T) antigen, replication protein A (RPA), pol-prim, and topoisomerase I. On RPA-coated single-stranded DNA (ssDNA), T antigen alone mediates priming by pol-prim, constituting a relatively simple primosome. T-antigen activities proposed to participate in its primosome function include DNA helicase and protein-protein interactions with RPA and pol-prim. To test the role of these activities of T antigen in mediating priming by pol-prim, three replication-defective T antigens with mutations in the ATPase or helicase domain have been characterized. All three mutant proteins interacted physically and functionally with RPA and pol-prim and bound ssDNA, and two of them displayed some helicase activity. However, only one of these, 5030, mediated primer synthesis and elongation by pol-prim on RPA-coated ssDNA. The results suggest that a novel activity, present in 5030 T antigen and absent in the other two mutants, is required for T-antigen primosome function.  相似文献   

11.
The simian virus 40 large T antigen (T antigen) inactivates tumor suppressor proteins and therefore has been used in numerous studies to probe the mechanisms that control cellular growth and to generate immortalized cell lines. Binding of T antigen to the Rb family of growth-regulatory proteins is necessary but not sufficient to cause transformation. The molecular mechanism underlying T-antigen inactivation of Rb function is poorly understood. In this study we show that T antigen associates with pRb and p130-E2F complexes in a stable manner. T antigen dissociates from a p130-E2F-4-DP-1 complex, coincident with the release of p130 from E2F-4-DP-1. The dissociation of this complex requires Hsc70, ATP, and a functional T-antigen J domain. We also report that the "released" E2F-DP-1 complex is competent to bind DNA containing an E2F consensus binding site. We propose that T antigen disrupts Rb-E2F family complexes through the action of its J domain and Hsc70. These findings indicate how Hsc70 supports T-antigen action and help to explain the cis requirement for a J domain and Rb binding motif in T-antigen-induced transformation. Furthermore, this is the first demonstration linking Hsc70 ATP hydrolysis to the release of E2F bound by Rb family members.  相似文献   

12.
We have characterized the simian virus 40 (SV40) origin-containing DNA (ori-DNA) replication functions of two SV40 conditional mutant T antigens: tsA438 A-V (tsA58) and tsA357 R-K (tsA30). Both tsA mutant T antigens, immunopurified from recombinant baculovirus-infected insect cells, mediated replication of SV40 ori-DNA in vitro to similar extents as did wild-type T antigen in reactions at 33 degrees C. However, at 41 degrees C, the restrictive temperature, while tsA438 T antigen still generated substantial levels of replication products, tsA357 T antigen did not support any detectable DNA synthesis. Furthermore, preincubation for approximately fourfold-longer time periods at 41 degrees C was required to heat inactivate tsA438 T antigen than to heat inactivate tsA357 T antigen. Unexpectedly, results of analyses of the various DNA replication activities of the two mutant T antigens did not correlate with results from ori-DNA replication reactions. In particular, although tsA357 T antigen was incapable of mediating replication at 41 degrees C at all protein concentrations examined, it displayed either wild-type levels or only partial reductions of the several T-antigen replication-associated activities. These data suggest either that tsA357 T antigen is defective in an as yet unidentified replication function of T antigen or that the combination of its partial defects result in a protein that is unable to support replication. The data also show that two conditional mutant T antigens can be markedly different with respect to thermal sensitivity.  相似文献   

13.
pSV2Neo, a plasmid that contains the wild-type simian virus 40 (SV40) origin of replication (ori), is widely used in mammalian cell transfection experiments. We observed that pSV2Neo transforms two nontumorigenic SV40-immortalized human uroepithelial cell lines (SV-HUC and CK/SV-HUC2) to G418 resistance (G418r) at a frequency lower than that at which it transforms SV-HUC tumorigenic derivatives (T-SV-HUC). Transient expression studies with the chloramphenicol transferase assay showed that these differences could not be explained by differences in Neo gene expression. However, when we replaced the SV40 ori in pSV2Neo with a replication-defective ori to generate G13.1Neo and G13.1'Neo, the G418r transformation frequency of the SV40-immortalized cell lines was elevated. Because SV40 T antigen stimulates replication at its ori, we tested plasmid replication in these transfected cell lines. The immortalized cell lines that showed low G418r transformation frequencies after transfection with pSV2Neo showed high levels of plasmid replication, while the T-SV-HUC that showed high G418r transformation frequencies failed to replicate pSV2Neo. To determine whether differences in the status of the T-antigen gene contributed to the phenomenon, we characterized the T-antigen gene in these cell lines. The results showed that the T-SV-HUC had sustained mutations in the T-antigen gene that would interfere with the ability of the T antigen to stimulate replication at its ori. Most T-SV-HUC contained a super-T-antigen replication-defective ori that apparently resulted from the partial duplication of SV40 early genes, but one T-SV-HUC had a point mutation in the ori DNA-binding domain of the T-antigen gene. These results correlate with the high G418r transformation frequencies with pSV2Neo in T-SV-HUC compared with SV-HUC and CK/SV-HUC2. Furthermore, these results suggest that alterations in SV40 T antigen may be important in stabilizing human cells immortalized by SV40 genes that contain the wild-type SV40 ori, thus contributing to tumorigenic transformation. This is the first report of a super T antigen occurring in human SV40-transformed cells.  相似文献   

14.
We describe a new complementation function within the simian virus 40 (SV40) A gene. This function is required for viral DNA replication and virus production in vivo but, surprisingly, does not affect any of the intrinsic enzymatic functions of T antigen directly required for in vitro DNA replication. Other well-characterized SV40 T-antigen mutants, whether expressed stably from integrated genomes or in cotransfection experiments, complement these mutants for in vivo DNA replication and plaque formation. These new SV40 mutants were isolated and cloned from human cells which stably carry the viral DNA. The alteration in the large-T-antigen gene was shown by marker rescue and nucleotide sequence analysis to be a deletion of 322 bp spanning the splice-donor site of the first exon, creating a 14-amino-acid deletion in the large T antigen. The mutant gene was expressed in H293 human cells from an adenovirus vector, and the protein was purified by immunoaffinity chromatography. The mutant protein directs greater levels of DNA replication in vitro than does the wild-type protein. Moreover, the mutant protein reduces the lag time for in vitro DNA synthesis and can be diluted to lower levels than wild-type T antigen and still promote good replication, which is in clear contrast to the in vivo situation. These biochemical features of the protein are independent of the source of the cellular replication factors (i.e., HeLa, H293, COS 7, or CV1 cells) and the cells from which the T antigens were purified. The mutant T antigen does not transform Rat-2 cells. Several different models which might reconcile the differences observed in vivo and in vitro are outlined. We propose that the function of T antigen affected prepares cells for SV40 replication by activation of a limiting cellular replication factor. Furthermore, a link between the induction of a cellular replication factor and transformation by SV40 is discussed.  相似文献   

15.
We have analyzed T antigens produced by a set of simian virus 40 (SV40) A gene deletion mutants for ATPase activity and for binding to the SV40 origin of DNA replication. Virus stocks of nonviable SV40 A gene deletion mutants were established in SV40-transformed monkey COS cells. Mutant T antigens were produced in mutant virus-infected CV1 cells. The structures of the mutant T antigens were characterized by immunoprecipitation with monoclonal antibodies directed against distinct regions of the T-antigen molecule. T antigens in crude extracts prepared from cells infected with 10 different mutants were immobilized on polyacrylamide beads with monoclonal antibodies, quantified by Coomassie blue staining, and then assayed directly for T antigen-specific ATPase activity and for binding to the SV40 origin of DNA replication. Our results indicate that the T antigen coding sequences required for origin binding map between 0.54 and 0.35 map units on the SV40 genome. In contrast, sequences closer to the C terminus of T antigen (between 0.24 and 0.20 map units) are required for ATPase activity. The presence of the ATPase activity correlated closely with the ability of the mutant viruses to replicate and to transform nonpermissive cells. The origin binding activity was retained, however, by three mutants that lacked these two functions, indicating that this activity is not sufficient to support either cellular transformation or viral replication. Neither the ATPase activity nor the origin binding activity correlated with the ability of the mutant DNA to activate silent rRNA genes or host cell DNA synthesis.  相似文献   

16.
Integrase function is required for retroviral replication in most instances. Although certain permissive T-cell lines support human immunodeficiency virus type 1 (HIV-1) replication in the absence of functional integrase, most cell lines and primary human cells are nonpermissive for integrase mutant growth. Since unintegrated retroviral DNA is lost from cells following cell division, we investigated whether incorporating a functional origin of DNA replication into integrase mutant HIV-1 might overcome the block to efficient gene expression and replication in nonpermissive T-cell lines and primary cells. Whereas the Epstein-Barr virus (EBV) origin (oriP) did little to augment expression from an integrase mutant reporter virus in EBV nuclear antigen 1-expressing cells, simian virus 40 (SV40) oriT dramatically enhanced integrase mutant infectivity in T-antigen (Tag)-expressing cells. Incorporating oriT into the nef position of a full-length, integrase-defective virus strain yielded efficient replication in Tag-expressing nonpermissive Jurkat T cells without reversion to an integration-competent genotype. Adding Tag to integrase mutant-oriT viruses yielded 11.3-kb SV40-HIV chimeras that replicated in Jurkat cells and primary monocyte-derived macrophages. Real-time quantitative PCR analyses of Jurkat cell infections revealed that amplified copies of unintegrated DNA likely contributed to SV40-HIV integrase mutant replication. SV40-based HIV-1 integrase mutant replication in otherwise nonpermissive cells suggests alternative approaches to standard integrase-mediated retroviral gene transfer strategies.  相似文献   

17.
18.
Topoisomerase I (topo I) is needed for efficient initiation of simian virus 40 (SV40) DNA replication and for the formation of completed DNA molecules. Two distinct binding sites for topo I have been previously mapped to the N-terminal (residues 83 to 160) and C-terminal (residues 602 to 708) regions of T antigen. By mutational analysis, we identified a cluster of six residues on the surface of the helicase domain at the C-terminal binding site that are necessary for efficient binding to topo I in enzyme-linked immunosorbent assay and far-Western blot assays. Mutant T antigens with single substitutions of these residues were unable to participate normally in SV40 DNA replication. Some mutants were completely defective in supporting DNA replication, and replication was not enhanced in the presence of added topo I. The same mutants were the ones that were severely compromised in binding topo I. Other mutants demonstrated intermediate levels of activity in the DNA replication assay and were correspondingly only partially defective in binding topo I. Mutations of nearby residues outside this cluster had no effect on DNA replication or on the ability to bind topo I. These results strongly indicate that the association of topo I with these six residues in T antigen is essential for DNA replication. These residues are located on the back edges of the T-antigen double hexamer. We propose that topo I binds to one site on each hexamer to permit the initiation of SV40 DNA replication.  相似文献   

19.
Simian virus 40 (SV40) large T antigen can immortalize a wide variety of mammalian cells in culture. We have taken advantage of this property of T antigen to use it as a carrier for the expression of cytotoxic T-lymphocyte (CTL) recognition epitopes. DNA sequences corresponding to an H-2Db-restricted SV40 T-antigen site I (amino acids 205 to 215) were translocated into SV40 T-antigen DNA at codon positions 350 and 650 containing EcoRI linkers. An H-2Kb-restricted herpes simplex virus glycoprotein B epitope (amino acids 498 to 505) was also expressed in SV40 T antigen at positions 350 and 650. Primary C57BL/6 mouse kidney cells were immortalized by transfection with the recombinant and wild-type T-antigen DNA. Clonal isolates of cells expressing chimeric T antigens were shown to be specifically susceptible to lysis by CTL clones directed to SV40 T-antigen site I and herpes simplex virus glycoprotein B epitopes, indicating that CTL epitopes restricted by two different elements can be processed, presented, and recognized by the epitope-specific CTL clones. Our results suggest that SV40 T antigen can be used as a carrier protein to express a wide variety of CTL epitopes.  相似文献   

20.
Functional analysis of a simian virus 40 super T-antigen.   总被引:15,自引:8,他引:7       下载免费PDF全文
The SV3T3 C120 line of simian virus 40-transformed mouse cells synthesizes no large T-antigen of molecular weight 94,000 but instead a super T-antigen of molecular weight 145,000. In the accompanying paper (Lovett et al., J. Virol. 44:963-973, 1982), we showed that the integrated viral DNA segment SV3T3-20-K contains a perfect, in-phase, tandem duplication of 1.212 kilobases within the large T-antigen coding sequences. Our data suggested that this integrated template encodes mRNAs of 3.9 and 3.6 kilobases, the smaller of which directs the synthesis of the super T-antigen of molecular weight 145,000. We transfected the DNA segment SV3T3-20-K into nonpermissive rat cells and into TK- mouse L cells and analyzed the T-antigens and viral mRNAs in the transfectants; these data prove directly the coding assignments suggested previously. The super T-antigen retained the ability to induce morphological transformation, and may even transform better than the wild-type protein. It also retained the ability to bind to the cell-coded p53 protein. Transfection into permissive CV-1 cells showed that the super T-antigen encoded by SV3T3-20-K was incapable of initiating DNA replication at the viral origin. The duplication in SV3T3-20-K thus defines a mutation which separates the transformation and DNA replication functions of large T-antigen. We discuss why such mutations may be selected in transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号