首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Summary The endocrine-like cells (ELC), which together with nerve endings form the neuroepithelial bodies, are located on primary and secondary septa in the non-ciliated epithelium of the lung of Hyla arborea. ELC protrude markedly toward the lumen of the lung and are surrounded by pneumocytes, which separate ELC from the lumen by thin cytoplasmic processes. ELC possess a light cytoplasm containing two types of granules: (i) numerous small granules, 50–110 nm in diameter, and (ii) single large granules, 290–860 nm in diameter. Numerous nerve fibers, often forming synaptic junctions, can be observed in contact with ELC.This study was supported by a grant No. 476/II from the Polish Academy of Sciences  相似文献   

2.
Drosophila suzukii attacks on developing soft fruits have recently caused important economic losses in Europe. This study explores the effectiveness of a new control strategy against this insect pest that is based on a plant chitinase extracted from the latex of the Mediterranean spurge, Euphorbia characias. The ability of the purified Euphorbia latex chitinase (ELC) to degrade the chitin exoskeleton of D. suzukii was assessed using confocal laser scanning microscopy. ELC treatment caused reduced larval growth, higher mortality and notable degradation of external insect structures. Therefore, the chitinase may induce a double effect on the D. suzukii larvae, a direct injury on the larval bodies and an action as antifeedant. The effects of the ELC treatment were also tested on leaves of the insect's host plants, Fragaria × ananassa and Rubus idaeus, using physiological parameters (chlorophyll concentration, chlorophyll fluorescence, leaf gas exchange and water potential) and defence gene expression (FaPGIP, FaChi2_1 and FaChi2_2) as stress indicators. ELC at concentrations effective against D. suzukii did not damage the host plants. Only plant defence gene expression was somewhat enhanced during the early hours after ELC application. In conclusion, ELC, a natural product, proved to be an effective tool for use in the development of an environmentally friendly integrated management strategy against D. suzukii, a pest whose control by conventional chemical insecticides is problematic.  相似文献   

3.
We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca(2+) binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218-8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation.  相似文献   

4.
5.
The orientation of the ELC region of myosin in skeletal muscle was determined by polarized fluorescence from ELC mutants in which pairs of introduced cysteines were cross-linked by BSR. The purified ELC-BSRs were exchanged for native ELC in demembranated fibers from rabbit psoas muscle using a trifluoperazine-based protocol that preserved fiber function. In the absence of MgATP (in rigor) the ELC orientation distribution was narrow; in terms of crystallographic structures of the myosin head, the LCD long axis linking heavy-chain residues 707 and 843 makes an angle (β) of 120-125° with the filament axis. This is ∼30° larger than the broader distribution determined previously from RLC probes, suggesting that, relative to crystallographic structures, the LCD is bent between its ELC and RLC regions in rigor muscle. The ELC orientation distribution in relaxed muscle had two broad peaks with β ∼70° and ∼110°, which may correspond to the two head regions of each myosin molecule, in contrast with the single broad distribution of the RLC region in relaxed muscle. During isometric contraction the ELC orientation distribution peaked at β ∼105°, similar to that determined previously for the RLC region.  相似文献   

6.
Previous studies indicated that single-headed smooth muscle myosin and S1 (a single head fragment) are not regulated through phosphorylation of the regulatory light chain (RLC). To investigate the importance of the double-headedness of myosin and of the S2 region for the phosphorylation-dependent regulation, we made three types of recombinant mutant smooth muscle HMMs with one intact head and an N-terminally truncated head. The truncated head of Delta MD lacked the motor domain, that of Delta(MD+ELC) lacked the motor and essential light chain binding domains, and single-headed HMM had one intact head alone. The basal ATPase activities of the three mutants decreased as the KCl concentration became less than 0.1 M. Such a decrease was not observed for S1, which had no S2 region, suggesting that S2 is necessary for this myosin behavior. This activity decrease also disappeared when RLCs of Delta MD and Delta(MD+ELC), but that of single-headed HMM, were phosphorylated. When their RLCs were unphosphorylated, the three mutants exhibited similar actin-activated ATPase levels. However, when they were phosphorylated, the actin-activated ATPase activities of Delta MD and Delta(MD+ELC) increased to the S1 level, while that of single-headed HMM remained unchanged. Even in the phosphorylated state, the actin-activated ATPase activities of the three mutants and S1 were much lower than that of wild-type HMM. We propose that S2 has an inhibitory function that is canceled by an interaction between two phosphorylated RLCs. We also propose that a cooperative interaction between two motor domains is required for a higher level of actin activation.  相似文献   

7.
The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-Δ43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing (≈ 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I(1,1)/I(1,0), indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-Δ43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-Δ43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.  相似文献   

8.
The functional significance of the actin binding region at the amino terminus of the cardiac essential myosin light chain (ELC) remains obscure. Previous experiments carried out in vitro indicated that modulation of residues 5-14 could induce an inotropic effect, increasing maximal ATPase activity at submaximal Ca(2+) concentrations (Rarick, H. M., Opgenorth, T. J., von Geldern, T. W., Wu-Wong, J. R., and Solaro, R. J. (1996) J. Biol. Chem. 271, 27039-27043). Using transgenesis, we effected a cardiac-specific replacement of ELC with a protein containing a 10-amino acid deletion at positions 5-14. Both the ventricular (ELC1vDelta5-14) and atrial (ELC1aDelta5-14) isoforms lacking this peptide were stably incorporated into the sarcomere at high efficiencies. Surprisingly when the kinetics of skinned fibers isolated from the ELC1vDelta5-14 or ELC1aDelta5-14 mice were examined, no alterations in either unloaded shortening or maximum shortening velocities were apparent. Myofibrillar Mg(2+)-ATPase activity was also unchanged in these preparations. No significant changes in the fiber kinetics in the cognate compartments were observed when either deletion-containing protein replaced endogenous ELC1v or ELC1a. The data indicate that the previously postulated importance of this region in mediating critical protein interactions between the cardiac ELCs and the carboxyl-terminal residues of actin in vivo should be reassessed.  相似文献   

9.
To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice by partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43-amino-acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle, and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force-generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of nonpathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin.  相似文献   

10.
BackgroundThe interaction of N-terminal extension of the myosin A1 essential light chain (A1 ELC) with actin is receiving increasing attention as a target in utilizing synthetic A1 ELC N-terminal-derived peptides in cardiac dysfunction therapy.MethodsTo elucidate the mechanism by which these peptides regulate actin-myosin interaction, here we have investigated their effects on the myosin subfragment 1 (S1)-induced polymerization of G-actin.ResultsThe MLCFpep and MLCSpep peptides spanning the 3–12 of A1 ELC sequences from fast and slow skeletal muscle, respectively, increased the rate of actin polymerization not only by S1(A2) but also the rate of S1(A1)-induced actin polymerization, suggesting that they did not interfere with the direct binding of A1 ELC with actin. The efficiency of actin polymerization in the presence of the N-terminal ELC peptides depended on their sequence. Substitution of aspartic acid for neutral asparagine at position 5 of MLCFpep dramatically enhanced its ability to stimulate S1-induced polymerization and enabled it to initiate polymerization of G-actin in the absence of S1.ConclusionsThese and other results presented in this work suggest that the modulation of myosin motor activity by N-terminal ELC peptides is exerted through a change in actin filament conformation rather than through blocking the A1 ELC-actin interaction.General significanceThe results imply the possibility of enhancing therapeutic effects of these peptides by modifications of their sequence.  相似文献   

11.
The antitumor efficacy of EBV-induced molecule 1 ligand CC chemokine (ELC/CCL19) was evaluated in a murine lung cancer model. The ability of ELC/CCL19 to chemoattract both dendritic cells and T lymphocytes formed the rationale for this study. Compared with diluent-treated tumor-bearing mice, intratumoral injection of recombinant ELC/CCL19 led to significant systemic reduction in tumor volumes (p < 0.01). ELC/CCL19-treated mice exhibited an increased influx of CD4 and CD8 T cell subsets as well as dendritic cells at the tumor sites. These cell infiltrates were accompanied by increases in IFN-gamma, MIG/CXCL9, IP-10/CXCL10, GM-CSF, and IL-12 but a concomitant decrease in the immunosuppressive molecules PGE(2) and TGFbeta. Transfer of T lymphocytes from ELC/CCL19 treated tumor-bearing mice conferred the antitumor therapeutic efficacy of ELC/CCL19 to naive mice. ELC/CCL19 treated tumor-bearing mice showed enhanced frequency of tumor specific T lymphocytes secreting IFN-gamma. In vivo depletion of IFN-gamma, MIG/CXCL9, or IP-10/CXCL10 significantly reduced the antitumor efficacy of ELC/CCL19. These findings provide a strong rationale for further evaluation of ELC/CCL19 in tumor immunity and its use in cancer immunotherapy.  相似文献   

12.
The murine paucity of lymph node T cell (plt) mutation leads to abnormalities in leukocyte migration and immune response. The causative defect is thought to be a loss of secondary lymphoid-organ chemokine (SLC) expression in lymphoid tissues. We now find that the plt defect is due to the loss of both SLC and EBI-1 ligand chemokine (ELC) expression in secondary lymphoid organs. In an examination of the plt locus, we find that commonly used inbred mouse strains demonstrate at least three different haplotypes. Polymorphism at this locus is due to duplications of at least four genes, three of them encoding chemokines. At least two cutaneous T cell-attracting chemokine (CTACK), three SLC, and four ELC genes or pseudogenes are present in some haplotypes. All haplotypes share a duplication that includes two SLC genes, which demonstrate different expression patterns, a single functional ELC gene, and an ELC pseudogene. The plt mutation represents a deletion that includes the SLC gene expressed in secondary lymphoid organs and the single functional ELC gene, leaving only an SLC gene that is expressed in lymphatic endothelium and an ELC pseudogene. This lack of CCR7 ligands in the secondary lymphoid organs of plt mice provides a basis for their severe abnormalities in leukocyte migration and immune response.  相似文献   

13.
Molecular modeling of the myosin-S1(A1) isoform   总被引:2,自引:0,他引:2  
Type II myosin is the molecular motor which drives contraction upon cyclic interaction with filamentous actin while consuming ATP. The contemporary crystallographic structure of the myosin subfragment-1 (S1) of myosin covers both the motor domain of the heavy chain (MHC) as well as the essential (ELC) and regulatory light chains (RLC). A part of the N-terminus of the ELC is, however, missing in the 3D-models of Type II myosin. The N-terminal domain of the ELC comprises interesting functional features since it binds to actin thus controlling myosin motor activity. For the first time, we modeled the missing 46 N-terminal amino acid of the ELC to the contemporary actin-myosin-S1 complex. We show a rod-like 91 A structure being long enough to bridge the gap between the ELC core of myosin-S1 and the appropriate binding site of the ELC on the actin filament.  相似文献   

14.
The essential light chain of myosin (ELC) is known to be important for structural stability of the alpha-helical lever arm domain of the myosin head, but its function in striated muscle contraction is poorly understood. Two ELC isoforms are expressed in fast skeletal muscle, a long isoform and its NH(2)-terminal approximately 40 amino acid shorter counterpart, whereas only the long ELC is observed in the heart. Biochemical and structural studies revealed that the NH(2)-terminus of the long ELC can make direct contacts with actin, but the effects of the ELC on the affinity of myosin for actin, ATPase, force, and the kinetics of force generating myosin cross-bridges are inconclusive. Myosin containing the long ELC has been shown to have slower cross-bridge kinetics than myosin with the short isoform. A difference was also reported among myosins with long isoforms. Increased shortening velocity was observed in atrial compared with ventricular muscle fibers. The common findings suggest that ELC provides the fine tuning of the myosin motor function, which is regulated in an isoform and tissue-dependent manner. The functional importance of the ELC is further implicated by the discovery of ELC mutations associated with Familial Hypertrophic Cardiomyopathy. The pathological phenotypes vary in severity, but more notably, almost all ELC mutations result in sudden cardiac death at a young age. This review summarizes the functional roles of striated muscle ELC in normal healthy muscle and in disease. Transgenic animal models and phenotypic characterization of ELC-mediated remodeling of the heart are also discussed.  相似文献   

15.
The incidence of ear lobe crease (ELC) was studied in 1576 healthy Malay subjects (566 males and 1010 females), randomly selected from the residents of Kota Bharu, Malaysia. ELC was present in 31.1% of males and in 3.6% of females; this difference in incidence between the two sexes is statistically significant (p > 0.05). In males the incidence of Type I crease was highest (10.1%) while that of Type III crease was lowest (2.3%). In females Type II crease showed the highest incidence (1.9%) and Type III the lowest. The incidence of bilateral presence of all three types of ELC showed an age-related increase in males. The ELC often starts unilaterally and later develops bilaterally and earlier in males than in females.  相似文献   

16.
The epidermis is a stratified epithelium consisting of inter follicular regions and appendages (hair follicles, sweat glands, sebaceous glands). The dominant cell type (the keratinocyte) is arranged in groups of cells termed epidermal proliferative units (EPUs), and one centrally-located clonogenic stem cell is ultimately responsible for replacing the remainder of the cells in the unit. Evidence is reviewed which indicates that the epidermal Langerhan's cell (ELC), and the cells comprising the dermis, may modify the keratinocyte microenvironment to create stem cell ‘niches’ and cellular diversity within the basal layer.  相似文献   

17.
In the IsTaR 1 serodeme of T. brucei the 3 variant surface glycoprotein (VSG) gene family contains about 10 members, one of which has a telomeric location on a minichromosome. The expression linked copy (ELC) of the 3 VSG gene which occurs in an antigenic variant expressing the 3 VSG, also has a telomeric location but unlike the minichromosomal 3 VSG gene has restriction sites upstream from the 5' barren region. This ELC is retained on the same telomere in a subsequent variant that expresses a telomeric 7 VSG ELC and in relapse variants and procyclic forms derived from variant antigenic types (VATs) 3 and 7. The 7 ELC has a restriction map upstream from the 5' barren region that differs from, but is similar to, that of the 3 ELC. These data indicate that the 3 and 7 ELCs are on different telomeres when expressed.  相似文献   

18.
G A Buck  C Jacquemot  T Baltz  H Eisen 《Gene》1984,32(3):329-336
Variable surface glycoprotein (VSG) genes in African trypanosomes are often activated by the duplicative transposition of a silent basic copy (BC) gene into an unlinked telomerically located expression site, producing an active expression-linked copy (ELC) of that gene. However, some BC genes that are already linked to a telomere are activated without apparent duplication or transposition. We have recently shown that an active VSG ELC can be inactivated in situ, apparently without rearrangement. To explain these observations it has been suggested that VSG genes that are associated with chromosome telomeres are activated by chromosome end exchanges that occur at a considerable distance upstream from the genes themselves and place them cis to a unique VSG expression element. In an attempt to test this model we derived five VSG-1 expressing variants from BoTat-2, a VSG-2 expressing variant of Trypanosoma equiperdum which carries an inactive residual VSG-1 ELC (R-ELC) as well as the active VSG-2 ELC near unlinked chromosome telomeres. We examined the fates of the VSG-2 ELC and the VSG-1 R-ELC in these variants. All five had maintained the VSG-1 R-ELC; three in a reactivated form and two in an inactive state. The latter two variants carried new, active VSG-1 ELCs: one in the site that had previously contained the VSG-2 ELC and one in a previously unidentified site. The VSG-2 ELC was lost in all five of the variants. The results are not consistent with the simple chromosome end exchange model, which predicts that the VSG-2 ELC would be inactivated but not deleted when the VSG-1 R-ELC was reactivated.  相似文献   

19.
The effect of radiation therapy combined with lymphoid cells against spontaneous murine fibrosarcoma (FSa-II) was investigated bothin vivo andin vitro. In thein vivo experiment, syngeneic C3H mice were divided into 3 groups. Animals in the first group were injected with 1 x 105 tumor cells into the right hind leg. Animals in the second and third groups were injected with 1 x 105 tumor cells mixed with 1 x 107 normal lymphoid cells (NLC) or effector lymphoid cells (ELC), respectively. ELC were obtained from spleen and lymph nodes of FSa-II-bearing mice and incubatedin vitro for 40 hr to eliminate suppressor T cell function. NLC were obtained from normal mice and incubated in the same way. Irradiation was given using137Cs unit 3 days after cell inoculation. 12 out of 14 mice (85.7%) inoculated with tumor cells mixed with NLC did not show any tumor growth at 60 Gy local irradiation. 12 out of 21 mice (57.1 %) inoculated with tumor cells alone and 6 out of 10 (60%) with tumor cells mixed with ELC rejected tumors at the same radiation dose. This synergistic effect with NLC was not observed when NLC was inoculated after irradiation, indicating that lymphoid cells should be in contact with tumor cells before irradiation. In the51Cr release assay, lymphoid cells obtained from whole body irradiated (WBI) mice showed 17.8% lysis without irradiation and 28.8% lysis at 5 Gy irradiation. Untreated NLC showed almost no cytotoxic effect at the same radiation dose. This synergistic effect disappeared when WBI lymphoid cells were treated with anti asialo GM1 and complement. These results suggested that NK cells might be important in this synergistic effect with irradiation. To obtain a sufficient level of synergistic effect by in vitro combined treatment of mixed tumor cell - NLC culture and irradiation - incubation for more than 12 hrs and 8 hrs appeared to be necessary before and after irradiation, respectively.  相似文献   

20.
T Palm  K Sale  L Brown  H Li  B Hambly  P G Fajer 《Biochemistry》1999,38(40):13026-13034
The relative movement of the catalytic and regulatory domains of the myosin head (S1) is likely to be the force generating conformational change in the energy transduction of muscle [Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., and Milligan, R. A. (1993) Science 261, 58-65]. To test this model we have measured, using frequency-modulated FRET, three distances between the catalytic domain and regulatory domains and within the regulatory domain of myosin. The donor/acceptor pairs included MHC cys707 and ELC cys177; ELC cys177 and RLC cys154; and ELC cys177 and gizzard RLC cys108. The IAEDANS (donor) or acceptor (DABMI or IAF) labeled light chains (ELC and RLC) were exchanged into monomeric myosin and the distances were measured in the putative prepower stroke states (in the presence of MgATP or ADP/AlF(4-)) and the postpower stroke states (ADP and the absence of nucleotides). For each of the three distances, the donor/acceptor pairs were reversed to minimize uncertainty in the distance measured, arising from probe orientational factors. The distances obtained from FRET were in close agreement with the distances in the crystal structure. Importantly, none of the measured distances varied by more than 2 A, putting a strong constraint on the extent of conformational changes within S1. The maximum axial movement of the distal part of myosin head was modeled using FRET distance changes within the myosin head reported here and previously. These models revealed an upper bound of 85 A for a swing of the regulatory domain with respect to the catalytic domain during the power stroke. Additionally, an upper bound of 22 A could be contributed to the power stroke by a reorientation of RLC with respect to the ELC during the power stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号