首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic and environmental influences on the worker honey bee retinue response to queen mandibular gland pheromone (QMP) were investigated. Worker progeny were reared from queens originating from four sources: Australia, New Zealand, and two locations in British Columbia, Canada (Simon Fraser University and Vancouver Island). Progeny from New Zealand queens responded significantly higher (P < 0.05) than progeny from Australia in a QMP retinue bioassay. Retinue response was not related to queen production of pheromone or colony environment, and the strain-dependent differences in retinue bioassay responses were maintained over a wide range of dosages. Selected high- and low-responding colonies were bioassayed over the course of 1 year. High-responding colonies contacted QMP lures more frequently than low-responding colonies (P < 0.05) throughout the year except in late summer. We conclude that there is a strong genetic component to QMP response by worker honey bees, as well as a seasonal effect on response.  相似文献   

2.
Holzer B  Chapuisat M  Keller L 《Oecologia》2008,157(4):717-723
Understanding social evolution requires us to understand the processes regulating the number of breeders within social groups and how they partition reproduction. Queens in polygynous (multiple queens per colony) ants often seek adoption in established colonies instead of founding a new colony independently. This mode of dispersal leads to potential conflicts, as kin selection theory predicts that resident workers should favour nestmate queens over foreign queens. Here we compared the survival of foreign and resident queens as well as their relative reproductive share. We used the ant Formica exsecta to construct colonies consisting of one queen with workers related to this resident queen and introduced a foreign queen. We found that the survival of foreign queens did not differ from that of resident queens over a period of 136 days. However, the genetic analyses revealed that resident queens produced a 1.5-fold higher number of offspring than introduced queens, and had an equal or higher share in 80% of the colonies. These data indicate that some discrimination can occur against dispersing individuals and that dispersal can thus have costs in terms of direct reproduction for dispersing queens.  相似文献   

3.
This study deals with dispersal behavior of sexuals and intraspecificvariation in queen numbers. The specific questions are: (1)Is there an association between male and female dispersal behaviorand the number of queens in a colony? (2) Is there an associationbetween individual behavior and physiological condition? (3)Do males and females from monogyne (one queen per colony) andpolygyne (several functional queens per colony) colonies differwith respect to size, weight, and physiological condition? Theresults show that both males and females are more prone to dispersein monogyne than in polygyne colonies. Moreover, males and femalesof both monogyne and polygyne colonies show dispersal polymorphism,suggesting that an increased tendency of reproductive femalesto stay in the maternal colony may cause monogyne colonies toswitch to polygyny. The propensity to disperse is associatedwith the physiological condition of individuals. Larger andheavier females containing more fat and glycogen preferentiallydisperse, whereas smaller ones with less fat and glycogen moreeasily dealate and mate without a previous nuptial flight. Maledispersal correlates positively to larger size and higher levelsof glycogen; fat contents do not increase during maturation.The females produced in monogyne colonies are larger, heavier,and contain more fat and glycogen than those produced in polygynecolonies. The males produced in monogyne colonies have relativelylonger wings and are heavier than those produced in polygynecolonies. However, there are no differences in size and fatcontents between males from monogyne and polygyne colonies.  相似文献   

4.
The disjunct allotetraploid lineage of the North American genus Microseris in New Zealand and Australia originated from one or a few diaspores after a single introduction via long‐distance dispersal. The plants have evolved into four morphologically distinct ecotypes: ‘fine‐pappus’, ‘coastal’, ‘murnong’, and ‘alpine’, from which the first two are grouped as Microseris scapigera, mainly from New Zealand and Tasmania, and the latter two as M. lanceolata, endemic to the Australian mainland. Three chloroplast (cp) DNA types were distinguished in each of the species, but their distribution, especially in M. lanceolata, showed discrepancies with ecotype differentiation. Here, we analyse the genetic structure of the nuclear (n) DNA among two plants of each of 55 New Zealand, Tasmanian, and Australian Microseris populations for amplified fragment length polymorphisms (AFLPs). The nuclear genetic structure is compared to geographical, ecotype, and cpDNA distribution, in order to resolve and illustrate the early process of adaptive radiation. The strongest signal in the AFLP pattern was related to geographical separation, especially between New Zealand and Australian accessions, and suggested an initial range expansion after establishment. The ecotypic differentiation was less‐well reflected in the AFLP pattern, and evidence was found for the occurrence of hybridization among plants at the same geographical region, or after dispersal, irrespective of the cpDNA‐ and ecotypes. This indicated that the ecotype characteristics were maintained or re‐established by selection. It also showed that genetic differentiation is not an irreversible and progressive process in the early stage of adaptive radiation. Our results illustrate the precarious balance between geographical isolation and selection as factors that favour differentiation, and hybridization as factor that reduces differentiation.  相似文献   

5.
In social Hymenoptera (ants, bees, and wasps), the number of males that mate with the same queen affects social and genetic organization of the colony. However, the selective forces leading to single mating in certain conditions and multiple mating in others remain enigmatic. In this study, I investigated whether queens of the wood ant Formica paralugubris adopting different dispersal strategies varied in their mating frequency (the number of males with whom they mated). The frequency of multiple mating was determined by using microsatellite markers to genotype the sperm stored in the spermatheca of queens, and the validity of this method was confirmed by analysing mother–offspring combinations obtained from experimental single-queen colonies. Dispersing queens, which may found new colonies, did not mate with more males than queens that stayed within polygynous colonies, where the presence of numerous reproductive individuals ensured a high level of genetic diversity. Hence, this study provides no support to the hypotheses that multiple mating is beneficial because it increases genetic variability within colonies. Most of the F. paralugubris queens mated with a single male, whatever their dispersal strategy and life history. Moreover, multiple mating had little effect on colony genetic structure: the effective mating frequency was 1.11 when calculated from within-brood relatedness, and 1.13 when calculated from the number of mates detected in the sperm. Hence, occasional multiple mating by F. paralugubris queens may have no adaptive significance.  相似文献   

6.
Several eusocial wasps are prominent invaders to remote islands. The paper wasp Polistes chinensis antennalis is native to East Asia, was introduced to New Zealand in 1979 and has expanded its distribution there. This provides an excellent opportunity to examine the impacts of an initial bottleneck and subsequent expansion on genetic structure. We analysed and compared the genetic population structures of the native (Japan and South Korea) and invasive New Zealand populations. Although 94% of individuals had shared haplotypes detected across both populations, the remaining 6% had private haplotypes identified in only one of the three countries. The genetic variation at microsatellite loci was lower in New Zealand than in native countries, and the genetic structure in New Zealand was clearly distinct from that in its native range. Higher frequencies of diploid‐male‐ and triploid‐female‐producing colonies were detected in New Zealand than in the native countries, showing the reduction in genetic variation via a genetic bottleneck. At least two independent introductions were suggested, and the putative source regions for New Zealand were assigned as Kanto (central island) and Kyushu (south island) in Japan. Serial founder events following the initial introduction were also indicated. The estimated dispersal distance between mother and daughter in New Zealand was twice that in Japan. Thus, the introduction history of P. chinensis antennalis in New Zealand is probably the result of at least two independent introductions, passing through a bottleneck during introduction, followed by population expansion from the point of introduction.  相似文献   

7.
In a population of the monogynous, polyandrous ant Cataglyphis cursor , we analysed the spatial genetic structure of queens, colony fathers and workers at a microgeographical scale to infer the extent of sex-biased dispersal and to assess the impact of limited dispersal on the patterns of relatedness within the colony. To this end, four microsatellite markers were scored for the queen and an average of 26 workers from each of 35 mapped colonies. We used pair-wise kinship coefficients between all pairs of genotypes, including the reconstructed colony father genotypes (1) to test and quantify isolation by distance patterns within each sex or caste through the analysis of kinship–distance curves, and (2) to compute the average relatedness between categories of colony members. The kinship–distance curve was much steeper for colony queens than colony fathers, indicating male-biased dispersal. However, colony fathers also displayed a non-random spatial genetic structure, so that even males show some dispersal limitation at the scale of the population, which extends over less than 250 m. The degree of relatedness between the different sexes and castes of colonies was well predicted from the number of mates per queen and the inbreeding of queens, and the impact of limited dispersal was very weak at this scale of observation. We discuss the interest of kinship–distance curves to assess sex-biased dispersal on a local scale and we compare our results with large-scale analyses of genetic structure in Cataglyphis cursor and other monogynous ant species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 465–473.  相似文献   

8.
Social insects rank among the most invasive of terrestrial species. The success of invasive social insects stems, in part, from the flexibility derived from their social behaviors. We used genetic markers to investigate if the social system of the invasive wasp, Vespula pensylvanica, differed in its introduced and native habitats in order to better understand variation in social phenotype in invasive social species. We found that (1) nestmate workers showed lower levels of relatedness in introduced populations than native populations, (2) introduced colonies contained workers produced by multiple queens whereas native colonies contained workers produced by only a single queen, (3) queen mate number did not differ significantly between introduced and native colonies, and (4) workers from introduced colonies were frequently produced by queens that originated from foreign nests. Thus, overall, native and introduced colonies differed substantially in social phenotype because introduced colonies more frequently contained workers produced by multiple, foreign queens. In addition, the similarity in levels of genetic variation in introduced and native habitats, as well as observed variation in colony social phenotype in native populations, suggest that colony structure in invasive populations may be partially associated with social plasticity. Overall, the differences in social structure observed in invasive V. pensylvanica parallel those in other, distantly related invasive social insects, suggesting that insect societies often develop similar social phenotypes upon introduction into new habitats.  相似文献   

9.
Physogastric queens of Melipona marginata were removed from their colonies in order to verify the acceptance of a new queen by workers. Colony strength was evaluated according to queen oviposition rate and comb diameters. Replacement was observed seven times. Its occurrence and speed related positively to colony strength, independently of queen's age. In weak colonies, queen replacement was observed only once, following colony population increase that occurred after introduction of combs from another colony. Worker oviposition after queen removal was observed three times: in a strong colony with virgin queens and males, and in two of the weak colonies. In the first two or three days of new queen oviposition, during which most of the eggs were eaten by the queen, worker oviposition preceded almost all provisioning and oviposition processes (POPs). After this period, worker oviposition decreased until it reached around 25% of the POPs. Daily oviposition rate of young queens decreased or was even interrupted by hatching of their first brood.  相似文献   

10.
In polygynous (multiple queens per nest) ants, queen dispersal is often limited with young queens being recruited within the parental colony. This mode of dispersal leads to local resource competition between nestmate queens and is frequently associated with extremely male-biased sex ratios at the population level. The queen-replenishment hypothesis has been recently proposed to explain colony sex ratio investment under such conditions. It predicts that colonies containing many queens (subject to high local resource competition) should only produce males, whereas colonies hosting few queens (reduced or no local resource competition) should produce new queens in addition to males. We experimentally tested this hypothesis in the ant Formica exsecta by manipulating queen number over three consecutive years in 120 colonies of a highly polygynous population. Queens were transferred from 40 colonies into another 40 colonies while queen number was not manipulated in 40 control colonies. Genetic analyses of worker offspring revealed that our treatment significantly changed the number of reproductive queens. The sex ratio of colonies was significantly different between treatments in the third breeding season following the experiment initiation. We found that, as predicted by the queen-replenishment hypothesis, queen removal resulted in a significant increase in the proportion of colonies that produced new queens. These results provide the first experimental evidence for the queen-replenishment hypothesis, which might account for sex ratio specialization in many highly polygynous ant species.  相似文献   

11.
Inhibited dispersal, leading to reduced gene flow, threatens populations with inbreeding depression and local extinction. Fragmentation may be especially detrimental to social insects because inhibited gene flow has important consequences for cooperation and competition within and among colonies. Army ants have winged males and permanently wingless queens; these traits imply male‐biased dispersal. However, army ant colonies are obligately nomadic and have the potential to traverse landscapes. Eciton burchellii, the most regularly nomadic army ant, is a forest interior species: colony raiding activities are limited in the absence of forest cover. To examine whether nomadism and landscape (forest clearing and elevation) affect population genetic structure in a montane E. burchellii population, we reconstructed queen and male genotypes from 25 colonies at seven polymorphic microsatellite loci. Pairwise genetic distances among individuals were compared to pairwise geographical and resistance distances using regressions with permutations, partial Mantel tests and random forests analyses. Although there was no significant spatial genetic structure in queens or males in montane forest, dispersal may be male‐biased. We found significant isolation by landscape resistance for queens based on land cover (forest clearing), but not on elevation. Summed colony emigrations over the lifetime of the queen may contribute to gene flow in this species and forest clearing impedes these movements and subsequent gene dispersal. Further forest cover removal may increasingly inhibit Eciton burchellii colony dispersal. We recommend maintaining habitat connectivity in tropical forests to promote population persistence for this keystone species.  相似文献   

12.
1. Bumblebee colonies show much variation in the number of workers, drones, and queens produced. Because this variation prevails even when colonies are kept under identical conditions, it does not seem to be caused by extrinsic factors but rather by differences between founding queens. 2. The most likely factor that could cause differences between queens is diapause. Although colonies are raised under standardised conditions, the queens often experience diapause of different length. If there are costs associated with diapause that influence post‐diapause reproduction, the diapause history of the queens could affect colony characteristics. 3. Here, several colony characteristics are compared: number of first and second brood workers; total number of workers, drones, and queens; energy spent on sexuals; sex ratio; rate of worker production; time to emergence of first reproductive; and colony lifetime. Colonies were used where the queens experienced a diapause treatment of 0 (nondiapause queens), 2, and 4 months. 4. Although no proof was found for the existence of costs associated with diapause, the colony characteristics of nondiapause queens were significantly different from those of diapause queens. Colonies of nondiapause queens produced the lowest number of workers but the highest number of young queens. 5. It is argued that these nondiapause colonies are more time‐constrained than diapause colonies because nondiapause colonies produce two generations within the same season and should therefore be more efficient in producing sexual offspring. 6. Moreover, nondiapause colonies should rear a more female‐biased sex ratio because they can be certain of the presence of males produced by other (diapause) colonies.  相似文献   

13.
Conoesucidae (Trichoptera, Insecta) are restricted to SE Australia, Tasmania and New Zealand. The family includes 42 described species in 12 genera, and each genus is endemic to either New Zealand or Australia. Although monophyly has been previously assumed, no morphological characters have been proposed to represent synapomorphies for the group. We collected molecular data from two mitochondrial genes (16S and cytochrome oxidase I), one nuclear gene (elongation factor 1-α) (2237–2277 bp in total), and 12 morphological characters to produce the first phylogeny of the family. We combined the molecular and morphological characters and performed both a maximum parsimony analysis and a Bayesian analysis to test the monophyly of the family, and to hypothesize the phylogeny among its genera. The parsimony analysis revealed a single most parsimonious tree with Conoesucidae being a monophyletic taxon and sistergroup to the Calocidae. The Bayesian inference produced a distribution of trees, the consensus of which is supported with posterior probabilities of 100% for 15 out of 22 possible ingroup clades including the most basal branch of the family, indicating strong support for a monophyletic Conoesucidae. The most parsimonious tree and the tree from the Bayesian analysis were identical except that the ingroup genus Pycnocentria changed position by jumping to a neighbouring clade. Based on the assumption that the ancestral conoesucid species was present on both New Zealand and Australia, a biogeographical analysis using the dispersal-vicariance criteria demonstrated that one or two (depending on which of the two phylogenetic reconstructions were applied) sympatric speciation events took place on New Zealand prior to a single, late dispersal from New Zealand to Australia.  相似文献   

14.
In ants the presence of multiple reproductive queens (polygyny) decreases the relatedness among workers and the brood they rear, and subsequently dilutes their inclusive fitness benefits from helping. However, adoption of colony daughters, low male dispersal in conjunction with intranidal (within nest) mating and colony reproduction by budding may preserve local genetic differences, and slow down the erosion of relatedness. Reduced dispersal and intranidal mating may, however, also lead to detrimental effects owing to competition and inbreeding. We studied mating and dispersal patterns, and colony kinship in three populations of the polygynous ant Plagiolepis pygmaea using microsatellite markers. We found that the populations were genetically differentiated, but also a considerable degree of genetic structuring within populations. The genetic viscosity within populations can be attributed to few genetically homogeneous colony networks, which presumably have arisen through colony reproduction by budding. Hence, selection may act at different levels, the individuals, the colonies and colony networks. All populations were also significantly inbred (F=0.265) suggesting high frequencies of intranidal mating and low male dispersal. Consequently the mean regression relatedness among workers was significantly higher (r = 0.529-0.546) than would be expected under the typically reported number (5-35) of queens in nests of the species. Furthermore, new queens were mainly recruited from their natal or a neighbouring related colony. Finally, the effective number of queens coincided with that found upon excavation, suggesting low reproductive skew.  相似文献   

15.
Alate female reproductives of the facultatively polygynous andpolydomous ant, Lepiothorax curuispinosus, were reared fromfield-collected nests, mated, and introduced into either theirparental nests or alien conspecific nests. The 41 queens introducedinto alien nests were usually attacked and rejected (97. 6%),but one queen was accepted after initial aggression. The 27queens introduced into their parental nests received a variableresponse. Some were accepted without any apparent aggression(59. 3%), but others were strongly attacked and rejected (40.7%). Sequential introductions of up to four queens into particularparental nests indicated that nests consistently either acceptor reject their mated offspring. The presence or absence ofresident queens in parental nests had no apparent influenceon the acceptance of offspring queens. Nests that accepted queenshad significantly fewer workers than those that did not, butthis slight difference is unlikely to explain these dichotomousresults and could be spurious. Dissections of the introducedqueens revealed that 79. 0% were inseminated and 98. 3% haddeveloping, yolked eggs in their ovarioles, but these variableshad no apparent effect on acceptability. Similarly, the sizeof the introduced queens and the time that elapsed between matingand introduction had no apparent effect. The consistent responseof parental nests in either accepting or rejecting their matedoffspring indicates a mechanism of queen number regulation inthis species that involves characteristics of the colony ornest rather than variability among offspring queens. This mechanismcould be responsible for maintaining relatively low numbersof queens and high genetic relatedness in colonies (or individualnests) while promoting flexibility in colony reproduction bycolony fission ("budding") and the dispersal of young queens.This mechanism could also involve an important conflict of interestbetween parental colonies and their mated offspring and mightcontribute to the evolution of socially parasitic colony foundationstrategies. Acceptance of mated offspring by their parentalcolonies might only occur during certain periods in colony development,depend on the level of genetic diversity within the colony (ornest), reflect the condition of the colony, nest, queen(s),brood, or local habitat, or result from a genetic polymorphism.  相似文献   

16.
Abstract.— The objective of this study was to assess breeding and dispersal patterns of both males and females in a monogyne (a single queen per colony) population of ants. Monogyny is commonly associated with extensive nuptial flights, presumably leading to considerable gene flow over large areas. Opposite to these expectations we found evidence of both inbreeding and sex-biased gene flow in a monogyne population of Formica exsecta . We found a significant degree of population subdivision at a local scale (within islands) for queens (females heading established colonies) and workers, but not for colony fathers (the males mated to the colony queens). However, we found little evidence of population subdivision at a larger scale (among islands). More conclusive support for sex-biased gene flow comes from the analysis of isolation by distance on the largest island, and from assignment tests revealing differences in female and male philopatry. The genetic similarity between pairs of queens decreased significantly when geographical distance increased, demonstrating limited dispersal and isolation by distance in queens. By contrast, we found no such pattern for colony fathers. Furthermore, a significantly greater fraction of colony queens were assigned as having originated from the population of residence, as compared to colony fathers. Inbreeding coefficients were significantly positive for workers, but not for mother queens. The queen-male relatedness coefficient of 0.23 (regression relatedness) indicates that mating occurs between fairly close relatives. These results suggest that some monogyne species of ants have complex dispersal and mating systems that can result in genetic isolation by distance over small geographical scales. More generally, this study also highlights the importance of identifying the relevant scale in analyses of population structure and dispersal.  相似文献   

17.
The Little Penguin, Eudyptula minor, is a seabird that nests in colonies throughout New Zealand and southern Australia. Individuals from different colonies in southeast Australia differ significantly in morphology and ecology, suggesting that some genetic structuring may exist among colonies. In contrast, the marking of individuals with flipper bands has revealed some, albeit infrequent, movement between colonies. To determine the extent of genetic structuring, we tested the null hypothesis of substantial gene flow within southeast Australia by examining patterns of genetic variation across seven colonies separated by up to 1,500 km. Phylogeographic structuring was absent for mitochondrial control region sequences (2–3 individuals per colony). Microsatellite allele frequencies at five loci and mitochondrial haplotype frequencies (50 individuals per colony) were also homogenous among the majority of colonies sampled, although two colonies at the western periphery of the sampling range were distinct from those to the east. The genetic homogeneity among the majority of colonies can be explained by low but consistent contemporary gene flow among them, or a recent founder event in Bass Strait following the last marine transgression. The genetic break towards the western end of the sampling distribution appears best explained by differences in sea surface temperature and, consequentially breeding phenology, the latter hindering genetically effective migration.  相似文献   

18.
Abstract

Nests of both common (Vespula vulgaris) and German wasps (V. germanica) sometimes overwinter in New Zealand. Three overwintering common wasp colonies were found in low-altitude honeydew beech forest; about 2% of the colonies initiated there in 1988 survived the winter. Wasp traffic rates from nests in Nelson city and a nation wide survey of wasp abundance, showed that more German wasp than common wasp workers were on the wing in winter and spring. German wasp colonies in Nelson city were more likely to overwinter than were common wasp colonies. Of the active German wasp colonies recorded in Nelson in January and February 1989, only two (4%) had previously overwintered, but these two nests accounted for 38% of all German wasp workers estimated to leave nests in the area. Had other overwintering colonies not been poisoned, overwintering colonies might have accounted for up to 11 % of nests and produced up to 64% of German wasp workers on the wing in January and February 1989.

Overwintering common wasp colonies did not produce queens or drones in their first year or second spring, but all 10 overwintering German wasp colonies examined produced sexuals at both times. German wasp queens produced in winter and spring may influence the number of colonies successfully initiated and affect the population dynamics of German wasps in New Zealand.  相似文献   

19.
A total of 182 Aeromonas hydrophila strains isolated from environmental (food and water) and clinical (stool and other sources) samples taken in mainland Australia, Tasmania and New Zealand were assigned to one of three DNA/DNA hybridization groups (HGs) on the basis of biochemical characteristics, and tested with regard to their ability to produce virulence factors. Strains from HG2 were rarely isolated; strains from HG1 were most commonly isolated from clinical sources; and strains from HG3 formed the majority of environmental strains. There was no correlation of HG to geographic source. Strains from HG2 infrequently produced virulence factors. Strains from HG1 were more likely to produce virulence factors if they came from a clinical source. Overall, strains from mainland Australia produced virulence factors more frequently than those from Tasmania or New Zealand. Strains from HG1 may be of more clinical significance than strains from the other two HGs.  相似文献   

20.
The number of queens per colony is of fundamental importance in the life history of social insects. Multiple queening (polygyny), with dependent colony founding by budding, has repeatedly evolved from ancestral single queening (monogyny) and independent founding by solitary queens in waSPS, bees and ants. By contrast, the reversal to monogyny appears to be rare, as polygynous queens often lack morphological adaptations necessary for dispersal and independent colony founding. In the ant genus Cardiocondyla, monogynous species evolved from polygynous ancestors. Here, we show that queens of monogynous species found their colonies independently, albeit in an unusual way: they mate in the maternal nest, disperse on foot and forage during the founding phase. This reversal appears to be associated with the occurrence of a wing polymorphism, which reflects a trade-off between reproduction and dispersal. Moreover, queens of monogynous species live considerably longer than queens in related polygynous taxa, suggesting that queen life span is a plastic trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号