首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to test the hypothesis that both growth differential factor 9 (GDF9) and bone morphogenetic protein (BMP15; also known as GDF9B) are essential for normal ovarian follicular development in mammals with a low ovulation rate phenotype. Sheep (9-10 per group) were immunized with keyhole limpet hemocyanin (KLH; control), a GDF9-specific peptide conjugated to KLH (GDF9 peptide), a BMP15-specific peptide conjugated to KLH (BMP15 peptide), or the mature region of oBMP15 conjugated to KLH (oBMP15 mature protein) for a period of 7 mo and the effects of these treatments on various ovarian parameters such as ovarian follicular development, ovulation rate, and plasma progesterone concentrations evaluated. Also in the present study, we examined, by immunohistochemistry, the cellular localizations of GDF9 and BMP15 proteins in the ovaries of lambs. Both GDF9 and BMP15 proteins were localized specifically within ovarian follicles to the oocyte, thereby establishing for the sheep that the oocyte is the only intraovarian source of these growth factors. Immunization with either GDF9 peptide or BMP15 peptide caused anovulation in 7 of 10 and 9 of 10 ewes, respectively, when assessed at ovarian collection. Most ewes (7 of 10) immunized with oBMP15 mature protein had a least one observable estrus during the experimental period, and ovulation rate at this estrus was higher in these ewes compared with those immunized with KLH alone. In both the KLH-GDF9 peptide- and KLH-BMP15 peptide-treated ewes, histological examination of the ovaries at recovery (i.e., approximately 7 mo after the primary immunization) showed that most animals had few, if any, normal follicles beyond the primary (i.e., type 2) stage of development. In addition, abnormalities such as enlarged oocytes surrounded by a single layer of flattened and/or cuboidal granulosa cells or oocyte-free nodules of granulosa cells were often observed, especially in the anovulatory ewes. Passive immunization of ewes, each given 100 ml of a pool of plasma from the GDF9 peptide- or BMP15 peptide-immunized ewes at 4 days before induction of luteal regression also disrupted ovarian function. The ewes given the plasma against the GDF9 peptide formed 1-2 corpora lutea but 3 of 5 animals did not display normal luteal phase patterns of progesterone concentrations. The effect of plasma against the BMP15 peptide was more dramatic, with 4 of 5 animals failing to ovulate and 3 of 5 ewes lacking surface-visible antral follicles at laparoscopy. By contrast, administration of plasma against KLH did not affect ovulation rate or luteal function in any animal. In conclusion, these findings support the hypothesis that, in mammals with a low ovulation rate phenotype, both oocyte-derived GDF9 and BMP15 proteins are essential for normal follicular development, including both the early and later stages of growth.  相似文献   

2.
3.
The aim of this research was to investigate the genetic structure at BMPR 1B, BMP15 and GDF9 prolificacy genes in five sheep breeds reared in Tunisia: Barbarine, Queue Fine de L’Ouest, Noire de Thibar, Sicilo-Sarde and D’man. Genomic DNA of 204 sheep was investigated for the FecBB (BMPR 1B), FecXR, FecXH, FecXI, FecXL, FecXG, FecXB (BMP15) and FecGH (GDF9) mutations. The sequence variability of the different DNA fragments utilised for genotyping was further investigated by Single Stranded Conformation Polymorphism (SSCP) and sequencing. All the above-mentioned mutations were absent in the five sheep breeds examined. SSCP analysis and sequencing allowed the detection of two nucleotide variations. A non-functional mutation (T/C transition at nt 747 of BMP15 cDNA known as B3) was found at the BMP15 gene, in the Noire de Thibar breed; this mutation was first detected in the Belclare sheep. A new nucleotide change G/A at nt 1159 of BMP15 cDNA, causing the amino acid change A119T in the mature peptide, was detected in the Barbarine breed for the first time. The highly prolific D’man ewes were monomorphic for the absence of all the known prolificacy alleles.  相似文献   

4.
Immunization of ewes against growth differentiation factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15) can lead to an increased ovulation rate; however, it is not known whether normal pregnancies occur following such treatments. The aims of the present study were to determine the effects of a short-term immunization regimen against BMP15 and GDF9 on ovulation rate, fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, and the ability of immunized ewes to carry a pregnancy to term. Ewes were given a primary and booster immunization against keyhole limpet hemocyanin (KLH; control, n = 50), a GDF9-specific peptide conjugated to KLH (GDF9, n = 30), or a BMP15-specific peptide conjugated to KLH (BMP15, n = 30). The estrous cycles of all ewes were synchronized, and ewes were joined with fertile rams approximately 14 days after the booster immunization. The number of corpora lutea was determined by laparoscopy 3-4 days following mating. Subsequently, about one-half of the ewes in each group underwent an embryo transfer procedure 4-6 days following mating, with the embryos being transferred to synchronized, nonimmunized recipients. The remaining ewes were allowed to carry their pregnancies to term. Short-term immunization against either BMP15 or GDF9 peptides resulted in an increase in ovulation rate with no apparent detrimental affects on fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, or the ability of the immunized ewes to carry a pregnancy to term. Therefore, regulation of BMP15, GDF9, or both is potentially a new technique to enhance fecundity in some mammals.  相似文献   

5.
This study investigated the nucleotide sequences and tissue expression levels of genes relating to the ovulation rate in Yunling black goats, a famous Yunnan province, China, local breed with low fecundity. Five genes, FSHB, FSHR, BMP15, BMPR1B, and ESR2, were investigated; the complete cDNA sequences of these genes were 390, 2088, 1185, 1509, and 1585 bp, respectively, and compared with Boer goats (a more fecund breed), the sequence identities were 99%, 99%, 99%, 100%, and 99%, respectively. There were two base differences in FSHB and BMP15, four in FSHR, and three in ESR2. There were fewer follicles and oocytes in Yunling black goats than in Boer goats. Expression levels of FSHB, FSHR, and BMP15 genes in Yunling black goats were lower, and expression levels of BMPR1B and ESR2 genes were higher. Serum FSH content was lower in Yunling black goats, but serum estrogen content was higher. Protein expression levels of FSHR, BMP15, BMPR1B, and ESR2 in ovary and pituitary correlated positively with gene mRNA expression levels. In Yunling black goats, the mRNA expression levels of FSHB, FSHR, and BMP15 positively correlated with litter size, but those of BMPR1B and ESR2 correlated negatively. Together, base changes and variations in mRNA and protein expression levels of genes relating to the ovulation rate result in low fecundity in the Yunling black goat. Reduced BMP15 and FSHR levels may be related to the observed fewer oocytes and, consequently, fewer follicles.  相似文献   

6.
The Black Bengal is a prolific goat breed in India. Natural mutations in prolific sheep breeds have shown that the transforming growth factor beta (TGF-β) super family ligands such as growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and their type I receptor (bone morphogenetic protein receptor, BMPR1B) are crucial for ovulation and as well as for increasing litter size. Mutations in any of these genes increased prolificacy in sheep. Based on the known mutation information in sheep PCR primers were designed to screen known polymorphism in 88 random Black Bengal goats. Only the BMPR1B gene was polymorphic. Three genotypes of animals were detected in tested animals with mutant (FecBB) and wild type (FecB+) alleles were 0.57 and 0.43, respectively. Non-carrier, heterozygous carrier and homozygous carrier Black Bengal does had 2.7, 3.04 and 3.11 kids, respectively. All known point mutations of BMP15 and GDF9 genes were monomorphic in the animals tested. These results preliminarily showed that the BMPR1B gene might be a major gene that influences prolificacy of Black Bengal goats.  相似文献   

7.
8.
The present study was designed for screening polymorphism of known fecundity genes in prolific Indian Bonpala sheep. Employing tetra-primer amplification refractory mutation system PCR, 11-point mutations of BMP1B, BMP15, and GDF9 genes of 97 Bonpala ewes were genotyped. The FecB locus of the BMPR1B gene and two loci (G1 and G4) of GDF9 gene were found to be polymorphic. In FecB locus, three genotypes, namely, wild type (Fec++, 0.02), heterozygous (FecB+, 0.23), and mutant (FecBB, 0.75) were detected. At G1 locus of GDF9 gene, three genotypes, namely, wild type (GG, 0.89), heterozygous (GA, 0.10), and mutant (AA, 0.01) were detected. At G4 locus of GDF9 gene, three genotypes, namely, wild type (AA, 0.01), heterozygous (AG, 0.14), and mutant (GG, 0.85) were detected. Statistically no significant correlation of polymorphism of FecB, G1, and G4 loci and litter size was found in this breed. All five loci of BMP15 and three loci of GDF 9 genes were monomorphic. This study reports Bonpala sheep as the first sheep breed where concurrent polymorphism at three important loci (FecB, G1, and G4) of two different fecundity genes (BMPR1B and GDF9) has been found.  相似文献   

9.
Belclare and Cambridge are prolific sheep breeds, the origins of which involved selecting ewes with exceptionally high litter size records from commercial flocks. The variation in ovulation rate in both breeds is consistent with segregation of a gene (or genes) with a large effect on this trait. Sterile ewes, due to a failure of normal ovarian follicle development, occur in both breeds. New naturally occurring mutations in genes for the oocyte-derived growth factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are described. These mutations are associated with increased ovulation rate in heterozygous carriers and sterility in homozygous carriers in both breeds. This is the first time that a mutation in the gene for GDF9 has been found that causes increased ovulation rate and infertility in a manner similar to inactivating mutations in BMP15, and shows that GDF9 is essential for normal folliculogenesis in sheep. Furthermore, it is shown, for the first time in any species, that individuals with mutations in both GDF9 and BMP15 have a greater ovulation rate than sheep with either of the mutations separately.  相似文献   

10.
Goats form the backbone of rural livelihood and financial security systems in India but their population is showing decreasing trend. Improvement of reproductive traits such as prolificacy offers a solution to stabilize the decreasing goat population and to meet the nutritional needs of growing human population. In the present study, six novel SNPs in three candidate genes for prolificacy (BMPR1B, BMP15, and GDF9) were genotyped in seven breeds of Indian goats to evaluate their association with litter size. Tetra primer ARMS-PCR and PCR-RFLP based protocols were developed for genotyping six novel SNPs, namely, T(-242)C in BMPR1B; G735A and C808G in BMP15; and C818T, A959C, and G1189A in GDF9 gene. The effect of breed was highly significant (p ≤ 0.01) on litter size but the effect of genotype was nonsignificant. The effect of parity on litter size was also significant in the prolific Black Bengal breed. The litter size differences observed between breeds are attributed to breed differences. Novel mutations observed at different loci in GDF9, BMP15, and BMPR1B genes do not contribute to the reproductive capability of the investigated breeds. Further studies with more number of breeds and animals exploring association of these novel SNPs with reproductive traits may be fruitful.  相似文献   

11.
The aims of these studies were to determine the abilities of antisera against different regions of ovine bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) to inhibit ovarian follicular activity, estrus (mating), and ovulation in sheep. The 9-15-mer peptides were conjugated to keyhole limpet hemocyanin (KLH) and used to generate antibodies against the flexible N-terminal regions of the mature protein as well as against regions in which dimerization of the protein or interaction with a type 1 BMP or a type 2 TGFB or BMP receptor was predicted to occur. Ewes (n = 10 per treatment group) were vaccinated with KLH or the KLH-BMP15 (n = 9 different peptides) or KLH-GDF9 (n = 10) peptides in Freund adjuvant at five consecutive monthly intervals. Overall, antisera generated against peptides that corresponded to amino acid residues 1-15 of the N-terminus of the BMP15 or GDF9 mature protein or GDF9 amino acid residues 21-34 were the most potent at inhibiting ovulation following primary and single booster vaccination. Several other BMP15 (8/9) or GDF9 (6/10) treatment groups, but not KLH alone, also produced significant reductions in the numbers of animals that ovulated, although 2, 3 or 4 booster vaccinations were required. Anovulation was commonly associated with the inhibition of normal ovarian follicular development and anestrus. The in vitro neutralization studies with IgG from the BMP15 or GDF9 immunized ewes showed that the mean inhibition of BMP15 plus GDF9 stimulation of (3)H-thymidine uptake by rat granulosa cells was approximately 70% for animals without corpora lutea (CL), whereas for animals with one to three CL or more than three CL, the inhibition was 24%-33% or 27%-42%, respectively. In summary, these data suggest that reagents that block the biological actions of BMP15 or GDF9 at their N-termini have potential as contraceptives or sterilizing agents.  相似文献   

12.
13.
The synergetic process of folliculogenesis is mainly regulated by GDF-9 and BMP-15 as well as their receptors, such as BMPR2, TβR1 and BMPR1B. Expressions of these factors and the receptors are significant different among species. This study was designed to detect expression of GDF-9, BMP-15 and their receptors in mouse, porcine and human healthy follicles by immunohistochemistry. Three ages of human ovary were studied according to ovarian developmental schedule, i.e. gestational week (GW) 16, puberty (14 year-old) and adult (40 year-old). The results showed that both GDF-9 and BMP-15 were detectable in oocytes from primary follicles onward, besides, BMP-15 also presented in granulosa cells (GCs) and follicular follicle of mature follicles in mouse. However, they were maintained in oocytes and GCs from primordial to mature follicles in porcine except that GDF-9 was undetectable in GCs of mature follicles. For human ovary, GDF-9 presented in oocytes of primordial follicles in all samples, whereas BMP-15 was only observed in primordial follicle of adult ovary. Receptors, BMPR2, TβR1 and BMPR1B were found in oocytes and GCs of all follicles in mouse and porcine. In human, they were stained in oocytes from primordial follices but BMPR1B was not expressed in pubertal primordial follicles. Furthermore, we found that GDF-9, BMP-15 and three receptors distributed in adult corpus lutea. Collectively, our studies suggested that GDF-9, BMP-15 and their receptors might correlate with primordial follicular recruitment in pig and human. Positive expression of the receptors (BMPR2, TβR1 and BMPR1B)in primordial follicles of mouse ovaries indicated that these receptors might interact with others ligands besides GDF-9 and BMP-15 to regulate primordial follicular activity in mouse. Moreover, presence of GDF-9 in oocytes and BMP-15 in oocytes and GCs of mature follicles from mice and porcine elucidated coordinated roles of GDF-9 and BMP-15 in cumulus oophorus expansion. Additionally, expression of these factors in adult human corpus lutea suggested they play roles in corpus luteum activity.  相似文献   

14.
Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) are secreted by the mammalian oocyte and are essential for ovarian follicular development, ovulation, and fertility. However, the secreted forms of the BMP15 and GDF9 proteins and the nature of cooperative molecular interactions between BMP15 and GDF9 previously reported have not been fully characterized. In this study, we found that recombinant mouse BMP15 and GDF9 are secreted as cleaved mature and proregion proteins, with BMP15 also secreted as uncleaved promature protein. Noncovalent interactions were identified between the mature and proregion proteins of each growth factor. Moreover, GDF9 mature protein was found to coimmunoprecipitate with the BMP15 proregion, suggestive of a heteromeric association between BMP15 and GDF9. Mouse GDF9 was found to exist mostly as a dimer of mature protein, in both the presence and absence of BMP15. In contrast, BMP15 formed mostly multimers of proregion and mature protein when combined with GDF9, providing further evidence for heteromeric interaction. Mouse BMP15 was found to act cooperatively with GDF9 in a rat granulosa cell thymidine incorporation bioassay and to signal through the BMPR2 and ACVR1B/TGFBR1/ACVR1C receptor-mediated pathways. Immunoneutralization experiments using GDF9 mature protein antibody indicated that these cooperative interactions are species specific. Additionally, immunoneutralization with proregion antibodies highlighted the involvement of the BMP15 proregion in BMP15/GDF9 cooperative interactions. Taken together, these findings support a novel hypothesis where the extracellular cooperative interactions of recombinant mouse BMP15 and GDF9 are multimeric, involving the proregion of BMP15, and may well be species specific.  相似文献   

15.
Bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9 are oocyte-secreted growth factors that are critical local regulators of ovarian function and may be involved in preovulatory cumulus expansion. As cumulus expansion occurs in response to the ovulatory surge, the present study was designed: 1) to investigate whether GDF9 and BMP15 are regulated by gonadotropins in the mouse ovary; and 2) to visualize changes in both GDF9 and BMP15 immunostaining in response to gonadotropins. Immature 21-day-old mice were sequentially treated with recombinant human FSH (r-hFSH), 5 IU daily, at Days 21, 22, and 23 of life, then injected with 5 IU hCG at Day 24 of life. In response to r-hFSH, steady-state Bmp15 mRNA expression levels increased in both total ovaries and cumulus-oocyte complexes, whereas Gdf 9 mRNA levels did not. In addition, BMP15 protein levels increased in total ovaries. The GDF9 immunostaining was exclusively seen in growing oocytes in both control and gonadotropin-treated mice, whereas that of BMP15, which was also primarily seen in growing oocytes, exhibited important changes in response to gonadotropins. Strong BMP15 immunostaining was observed in the follicular fluid of atretic antral follicles after FSH treatment and in expanded, but not in compact, cumulus cells after hCG. The present results show for the first time that BMP15 levels increase during gonadotropin-induced follicular development, in parallel with oocyte maturation, and that this local factor is likely involved in cumulus expansion as previously suggested by studies in Bmp15-null mice.  相似文献   

16.
17.
The aim of the study was to evaluate meiotic maturation, and expression of genes coding for oocyte secreted factors (GDF9, BMP15, TGFBR1, and BPR2) and apoptosis (BCL2, BAX and P53) after vitrification of immature goat cumulus oocyte complexes (COCs) and in vitro maturation. COCs were vitrified in a solution containing ethylene glycol, dimethyl sulfoxide and sucrose using either a conventional straw (CS), open pulled straw (OPS), cryoloop (CL), hemistraw (HS) or cryotop (CT). Freshly collected COCs (Control), COCs exposed to vitrification and dilution solutions without cryopreservation (EC) and vitrified-warmed COCs were matured in vitro for 27h. The viability of vitrified-warmed COCs 2 h post warming and in vitro maturation was similar for CL, HS and CT. The proportion of oocytes that extruded a 1st polar body and reached TI/MII was significantly higher with CT and HS followed by CL, OPS and CS. Gene expression of GDF9, BMP15, BMPR2, BAX and P53 were comparable to control levels for OPS, CL, HS and CT. The gene expression pattern in CS vitrified COCs was by contrast changed in that GDF9, BMP15, TGFBR1 and BAX were up regulated and BMPR2, BCL2 and P53 down regulated. In conclusion immature goat COCs vitrified using CT and HS showed that viability, maturation rates and expression of genes coding for oocyte secreted factors and apoptosis were similar to non-vitrified controls.  相似文献   

18.
BMP15和GDF9是转化生长因子β(TGFβ)超家族的成员,对绵羊的繁殖性状有直接的调节作用,从中发现的多个高产突变位点直接提高了排卵数和产羔数。在之前的研究中,作者从贵州白山羊中找到了一个高产突变位点。为了进一步揭示Bmp15Gdf9基因突变与繁殖性状之间的关系,对贵州白山羊Bmp15Gdf9基因编码区进行了克隆,以人BMP7的晶体结构为模板构建了贵州白山羊BMP15和GDF9成熟肽的三维模型。贵州白山羊Bmp15Gdf9基因分别编码394和453个氨基酸的蛋白前体。对BMP15和GDF9成熟肽序列进行分析发现,除了之前确认的BMP15中的FecXB 突变(S99I)和GDF9中的V79I突变之外,还从贵州白山羊的BMP15和GDF9成熟肽分别发现7个和3个位点突变。其中,BMP15成熟肽的S32G、N66H、S99I/P99I和G107R突变可能影响二聚体与受体的结合;GDF9成熟肽的P78Q和V79I影响二聚体与I型受体的亲和力,将值得进一步深入研究。对Bmp15Gdf9基因编码的蛋白前体序列进行聚类分析,结果显示在鱼类到哺乳类的进化过程中,BMP15出现长度逐渐增加的现象,以BMP15成熟肽N端长度增加为主。这种演变可能使BMP15对低排卵哺乳动物繁殖力的控制更为灵敏。该文的研究结果为贵州白山羊Bmp15Gdf9基因变异与繁殖力的关系提出了合理的解释,并支持这两个因子是贵州白山羊高产性状重要调节因子的观点。  相似文献   

19.

Background  

It has been reported that calf oocytes are less developmentally competent than oocytes obtained from adult cows. Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) play critical roles in folliculogenesis, follicular development and ovulation in mammalian ovaries. In the present study, we attempted to compare the expression patterns of BMP15 and GDF9 in the cells of calf and cow ovaries to determine a relationship between the level of these genes and the low developmental competence of calf oocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号